






Social network analysis is used widely in the social and 
behavioral sciences, as well as in economics, marketing, and 
industrial engineering. The social' network perspective focuses 
on relationships among social entities; examples include 
communications among members of a group, economic 
transactions between corporations, and trade or treaties among 
nations, The focus on relationships is an important addition to 
standard social and behavioral research, which is primarily 
concerned with attributes of the social units. 

Social Network Analysis: Methods and Applications reviews and 
discusses methods for the analysis of social networks with a 
focus on applications of these methods to many substantive 
examples. The book is organized into six parts. The 
introductory chapters give an overview of the social network 
perspective and describe different kinds of social network data. 
The second part discusses formal representations for social 
networks, including notations, graph theory, and matrix 
operations. The third part covers structural and locational 
properties of social networks, including centrality, prestige, 
prominence, structural balance, clusterability, cohesive 
subgroups, and affiliation networks. The fourth part examines 
methods for social network roles and positions and includes 
discussions of structural equivalence, blockmodels, and 
relational algebras. The properties of dyads and triads are 
covered in the fifth part of the book, and the final part 
discusses statistical methods for social networks. 

Social Network Analysis: Methods and Applications is a 
reference book that can be used by those who want a 
comprehensive review of network methods, or by researchers 
who have gathered network data and want to find the most 
appropriate method by which to analyze them. It is also 
intended for use as a textbook, as it is the first book to provide 
comprehensive coverage of the methodology and applications 
of the field. 
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Preface 

Our goal for this book is to present a review of network analysis methods, 
a reference work for researchers interested in analyzing relational data, 
and a text for novice social networkers looking for an overview of the field. 
Our hope is that this book will help researchers to become aware of the 
very wide range of social network methods, to understand the theoretical 
motivations behind these approaches, to appreciate the wealth of social 
network applications, and to find some guidance in selecting the most 
appropriate methods for a given research application. 

The last decade has seen the publication of several books and edited 
volumes dealing with aspects of social network theory, application, and 
method. However, none of these books presents a comprehensive discus
sion of social network methodology. We hope that this book will fill this 
gap. The theoretical basis for the network perspective has been exten
sively outlined in books by Berkowitz (1982) and Burt (1982). Because 
these provide good theoretical overviews, we will not dwell on theoretical 
advances in social network research, except as they pertain directly to 
network methods. In addition, there are several collections of papers 
that apply network ideas to substantive research problems (Leinhardt 
1977; Holland and Leinhardt 1979; Marsden and Lin 1982; Wellman 
and Berkowitz 1988; Breiger 1990a; Hiramatsu 1990; Weesie and Flap 
1990; Wasserman and Galaskiewicz 1994). These collections include 
foundational works in network analysis and examples of applications 
from a range of disciplines. 

Finally, some books have presented collections of readings on special 
topics in network methods (for example, Burt and Minor 1983), papers 
on current methodological advances (for example, Freeman, White and 
Romney 1989), or elementary discussions of basic topics in network 
analysis (for example, Knoke and Kuklinski 1982; Scott 1992). And there 
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are a nnmber of monographs and articles reviewing network methodology 
(Northway 1952; Lindzey and Borgatta 1954; Mitchell 1974; Roistacher 
1974; Freeman 1976; Burt 1978b; Feger, Hummell, Pappi, Sodeur, and 
Ziegler 1978; Klovdahl 1979; Niesmoller and Schijf 1980; Burt 1980; 
Alba 198 1 ;  Frank 198 1 ;  Wellman 1983; Rice and Richards 1985; Scott 
1988; Wc11man 1988a; WeHman and Berkowitz 1988; Marsden 1990b). 
Very recently, a number of books have begun to appear, discussing 
advanced methodological topics. Hage and Harary (1983) is a good 
cxmnplc from this genre ; Boyd (1990), Breiger (1991), and Pattison 
(1993) introduce the reader to other specialized topics. 

However, the researcher seeking to understand network analysis is left 
with a void between the elementary di�cussions and sophisticated analytic 
presentations since none of these books provides a unified discussion of 
network methodology. As mentioned, we intend this book to fill that void 
by presenting a broad, comprehensive, and, we hope, complete discussion 
of network analysis methodology. 

There are many people to thank for their help in making this book 
a reality. Mark Granovetter, the editor of this series for Cambridge 
University Press, was a source of encouragement throughout the many 
years that we spent revising the manuscript. Lin Freeman, Ron Breiger, 
and Peter Marsden reviewed earlier versions of the book for Cambridge, 
and made many, many suggestions for improvement. Alaina Michaelson 
deserves much gratitude for actually reading the entire manuscript during 
the 1990-1991 academic year. Sue Freeman, Joe Galaskiewicz, Nigel 
Hopkins, Larry Hubert, Pip Pattison, Kim Romney, and Tom Snijders 
read various chapters, and had many helpful comments. Colleagues at the 
University of South Carolina Department of Sociology (John Skvoretz, 
Pat Nolan, Dave Willer, Shelley Smith, Jimy Sanders, Lala Steelman, 
and Steve Borgatti) were a source of inspiration, as were Phipps Arabie, 
Frank Romo, and Harrison White. Dave Krackhardt, John Padgett, Russ 
Bernard, Lin Freeman, and Joe Ga1askiewicz shared data with us. Our 
students Carolyn Anderson, Mike Walker, Diane Payne, Laura Koehly, 
Shannon Morrison, and Melissa Abboushi were wonderful assistants. Jill 
Grace provided library assistance. We also thank the authors of the 
computer programs we used to help analyze the data in the book -
Karel Sprenger and Frans Stokman (GRADAP), Ron Breiger (ROLE), 
Noah Friedkin (SNAPS), Ron Burt (STRUCTURE), and Lin Freeman, 
Steve Borgatti, and Martin Everett (UCINET). And, of course, we are 
extremely grateful to Allison, Drew, Eliot, Keith, Ross, and Sarah for 
their notoriety! 
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Emily Loose, our first editor at Cambridge, was always helpful in 
finding ways to speed up the process of getting this book into print. 
Elizabeth Neal and Pauline Ireland at Cambridge helped us during the 
last stages of production. Hank Heitowit, of the Interuniversity Con
sortium for Political and Social Research at the University of Michigan 
(Ann Arbor) made it possible for us to teach a course, Social Network 
Analysis, for the last seven years in their Summer Program in Quanti
tative Methods. The students at ICPSR, as well as the many students 
at the University of Illinois at Urbana-Champaign, the University of 
South Carolina, American University, and various workshops we have 
given deserve special recognition. And lastly, we thank Murray Aborn, 
Jim Blackman, Sally Nedove, and Cheryl Eavey at the National Science 
Foundation for financial support over the years (most recently, via NSF 
Grant #SBR93-10184 to the University of Illinois). 
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Part I 
Networks, Relations, and Structure 





1 
Social Network Analysis in the 
Social and Behavioral Sciences 

The notion of a social network and the methods of social network analy
sis have attracted considerable interest and curiosity from the social and 
behavioral science community in recent decades. Much of this interest 
can be attributed to the appealing focus of social network analysis on 
relationships among social entities, and on the patterns and implications 
of these relationships. Many researchers have realized that the network 
perspective allows new leverage for answering standard social and be
havioral science research questions by giving precise formal definition 
to aspects of the political, economic, or social structural environment. 
From the view of social network analysis, the social environment can be 
expressed as patterns or regularities in relationships among interacting 
units. We will refer to the presence of regular patterns in relationship as 
structure. Throughout this book, we will refer to quantities that measure 
structure as structural variables. As the reader will see from the diversity 
of examples that we discuss, the relationships may be of many sorts : 
economic, political, interactional, or affective, to name but a few. The 
focus on relations, and the patterns of relations, requires a set of methods 
and analytic concepts that are distinct from the methods of traditional 
statistics and data analysis. The concepts, methods, and applications of 
social network analysis are the topic of this book. 

The focus of this book is on methods and models for analyzing social 
network data. To an extent perhaps unequaled in most other social 
science disciplines, social network methods have developed over the past 
fifty years as an integral part of advances in social theory, empirical 
research, and formal mathematics and statistics. Many of the key struc

tural measures and notions of social network analysis grew out of keen 
insights of researchers seeking to describe empirical phenomena and are 
motivated by central concepts in social theory. In addition, methods have 

3 



4 Social Network Analysis in the Social and Behavioral Sciences 

developed to test specilic hypotheses about network structural properties 
arising in the course of substantive research and model testing. The 
result of this symbiotic relationship between theory and method is a 
strong grounding of network analytic techniques in both application 
and theory. In the following sections we review the history and theory 
of social lIetwork analysis from the perspective of the development of 
methodology. 

Since our goal in this book is to provide a compendium of methods 
lind applications for both veteran social network analysts, and for naive 
but curious people from diverse research traditions, it is worth taking 
some time at the outset to lay the foundations for the social network 
perspective. 

1.1 The Social Networks Perspective 

In this section we introduce social network analysis as a distinct research 
perspective within the social and behavioral sciences; distinct because 
social network analysis is based on an aSllumption of the importance of 
relationships among interacting units The social networR: perspective en
compasses theories, models, and applications that are expressed in terms 
of relational concepts or processes. That is relations defined by linkages 
among umts are a fundamental component of network theories. Along 
with growing interest and increased use of network analysis has come 
a consensus about the central principles underlying the network per
spective. These principles distinguish social network allalysis from other 
research approaches (see Wellman 1988a, for example). In addition to 
the use of relational concepts, we note the following as being important : 

• Actors and their actions are viewed as interdependent rather 
than independent, autonomous units 

• Relational ties (linkages) between actors are channels for transfer 
or "flow" of resources (either material or nonmaterial) 

• Network models focusing on individuals view the network struc
tural environment as providing opportunities for or constraints 
on individual action 

• Network models conceptualize structure (social, economic, polit
ical, and so forth) as lasting patterns of relations among , actors 

In this section we discuss these principles further and illustrate how 
the social network perspective differs from alternative perspectives in 
practice. Of critical importance for the development of methods for 
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N"cial network analysis is the fact that the unit of analysis iu network 
"nalysis is not the individual. but an entity consisting of a collection of 
Individuals and the linkages among them, Network methods focus on 
dynds (two actors and their ties), triads (three actors and their ties), or 
Imgcr systems (subgroups of individuals, or entire networks), Therefore, 
"pecial methods are necessary, 

Formal Descriptions. Network analysis enters into the process 
of model development, specification, and testing in a number of ways: 
10 express relationally defined theoretical concepts by providing formal 
definitions, measures and descriptions, to evaluate models and theories in 
which key concepts and propositions are expressed as relational processes 
or structural outcomes, or to provide statistical analyses of multirelational 
systems, In this first, descriptive context, network analysis provides 
It vocabulary and set of formal definitions for expressing theoretical 
concepts and properties, Examples of theoretical concepts (properties) 
for which network analysis provides explicit definitions will be discussed 
shortly. 

Model and Theory Evaluation and Testing. Alternatively, net
work models may be used to test theories about relational processes or 
structures, Such theories posit specific structural outcomes which may 
then be evaluated against observed network data, For example, suppose 
one posits that tendencies toward reciprocation of support or exchange 
of materials between families in a community should arise frequently. 
Such a supposition can be tested by adopting a statistical model, and 
studying how frequently such tendencies arise empirically, 

The key feature of social network theories or propositions is that 
they require concepts, definitions and processes in ",hich social units are 
linked to one another by various relations. Both statistical and descriptive 
uses of network analysis are distinct from more standard social science 
analysis and require concepts and analytic procedures that are different 
from traditional statistics and data analysis, 

Some Background and Examples. The network perspective has 
proved fruitful in a wide range of social and behavioral science disciplines, 
Many topics that have traditionally interested social scientists can be 
thought of in relational or social network analytic terms. Some of the 
topics that have been studied by network analysts are: 

• Occupational mobility (Breiger 1981c, 1990a) 
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il Th� Imp!\ct of urbanization on individual well-being (Fischer 

! <)�g,) 
,. Tlw world political and economic system (Snyder and Kick 1979; 

Nemeth and Smith 1985) 
• Community elite decision making (Laumann, Marsden, and Ga

laskiewicz 1977; Laumann and Pappi 1973) 
• Social support (Gottlieb 198 1 ;  Lin, Woelfel, and Light 1986; 

Kadushin 1966; Wellman, Carrington, and Hall 1988; Wellman 
and Wortley 1990) 

• Community (Wellman 1979) 
• Group problem solving (Bavelas 1950; Bavelas and Barrett 195 1 ;  

Leavitt 1951) 
• Diffusion and adoption of innovations (Coleman, Katz, and 

Menzel 1957, 1966; Rogers 1979) 
• Corporate interlocking (Levine 1972; Mintz and Schwartz 1981a, 

1981b; Mizruchi and Schwartz 1987, and references) 
• Belief systems (Erickson 1988) 
• Cognition or social perception (Krackhardt 1987a; Freeman, 

Romney, and Freeman 1987) 
• Markets (Berkowitz 1988; Burt 1988b; White 1981, 1988; Leifer 

and White 1987) 
• Sociology of science (Mullins 1973; Mullins, Hargens, Hecht, 

and Kick 1977; Crane 1972; Burt 1978j79a; Michaelson 1990, 
1991 ; Doreian and Fararo 1985) 

• Exchange and power (Cook and Emerson 1978; Cook, Emerson, 
Gillmore, and Yamagishi 1983; Cook 1987; Markovsky, Willer, 
and Patton 1988) 

• Consensus and social influence (Friedkin 1986; Friedkin and 
Cook 1990; Doreian 198 1 ;  Marsden 1990a) 

• Coalition formation (Kapferer 1969; Thurman 1980; Zachary 
1977) 

The fundamental difference between a social network explanation and 
a non-network explanation of a process is the inclusion of concepts 
and information on relationships among units in a study. Theoretical 
concepts are relational, pertinent data are relationa� and critical tests use 
distributions of relational properties. Whether the model employed seeks 
to understand individual action in the context of structured relationships, 
or studies structures dIrectly, network analysis operationalIzes structures 
in terms of networks of lInkages among units. Regularities or patterns in 
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interactions give rise to structures. "Standard" social science perspectives 
usually ignore the relational information. 

Let us explore a couple of examples. Suppose we are interested in 
corporate behavior in a large, metropolitan area, for example, the level 
and types of monetary support given to local non-profit and charitable 
organizations (see, for example, Galaskiewicz 1985). Standard social and 

economic science approaches would first define a population of relevant 
units (corporations), take a random sample of them (if the population 
is quite large), and then measure a variety of characteristics (such as 
size, industry, profitability, level of support for local charities or other 
non-profit organizations, and so forth) .. 

The key assumption here is that the behavior of a specmc unit does 
not influence any other units. However, network theorists take exception 
to this assumption. It does not take much insight to realize that there 
are many ways that corporations decide to do the things they do (such 
as support non-profits with donations). Corporations (and other such 
actors) tend to look at the behaviors of other actors, and even attempt 
to mimic each other. In order to get a complete description of this 
behavior, we must look at corporate to corporate relationships, such as 
membership on each others' boards of directors, acquaintanceships of 
corporate officers, joint business dealings, and other relational variables. 
In brief, one needs a network perspective to fully understand and model 
this phenomenon. 

As another example, consider a social psychologist studying how 
groups make decisions and reach consensus (Hastie, Penrod, and Pen
nington 1983; Friedkin and Cook 1990; Davis 1973). The group might be 
a jury trying to reach a verdict, or a committee trying to allocate funds. 
Focusing just. on the outcome of this decision, as many researchers do, 
is quite limiting. One really should look how members influence each 
other in order to make a decision or fail to reach consensus. A network 
approach to this study would look at interactions among group members 

in order to better understand the decision-making process. The influences 
a group member has on his/her fellow members are quite important to 
the process. Ignoring these influences gives an incomplete picture. 

The network perspective differs in fundamental ways from standard 
social and behavioral science research and methods. Rather than fo
cusing on attributes of autonomous individual units, the associations 
among these attributes, or the. usefulness of one or more attributes for 
predicting the level of auother attribute, the social network perspective 
views characteristics of the social units as arising out of structural or 
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relational processes or focuses on properties of the relational systems 
themselves. The task is to understand properties of the social (economic 
01' political) structural environment, and how these structural properties 
in llucnce observed characteristics and associations among characteristics. 
As Collins (1988) has so aptly pointed out in his review of network 
theory. 

Social life is relational; it's only because, say, blacks and whites occupy 
particular kinds of patterns in networks in relation to each other that 
"race" becomes an important variable. (page 413) 

In social network analysis the observed attributes of social actors (such 
as race or ethnicity of people, or size or productivity of collective bodies 
such as corporations or nation-states) are understood in terms of patterns 
or structures of ties among the units. Relational ties among actors are 
primary and attributes of actors are secondary. 

Employing a network perspective, one can also study patterns of rela
tional structures directly without reference to attributes of the individuals 
involved. For example, one could study patterns of trade among nations 
to see whether or not the world economic system exhibits a cote-periphery 
structure. Or, one could study friendships among high school students to 
�ee whether or not patterns of friendships can be described as systems of 
relatively exclusive cliques. Such analyses focus on characteristics of the 
network as a whole and must be studied using social network concepts. 

In the network analytic framework, the ties may be any relationship 
existing between units; for example, kinship, material transactions, flow 
of resources or support, behavioral interaction, group co-memberships, 
or the afiective evaluation of one person by another. Clearly, some types 
of ties will be relevant or measurable for some sorts of social units but 
not for others. The relationship between a pair of units is a property 
of the pair and not inherently a characteristic of the individual unit. 
For example, the number (or dollar value) of Japanese manufactured 
automobiles exported from Japan to the United States is part of the 
trade relationship between Japan and the United States, and not an 
intrinsic characteristic of either one country or the other. In sum, the 
basic unit that these relational variables are measured on is the pair of 
actors, not one or the other individual actors. It is important for methods 
described in this book, that we assume that one has measurements on 
interactions between all possible pairs of units (for example, trade among 
all pairs of nations). 
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It is important to contrast approaches in which networks and structural 
properties are central with approaches that employ network ideas and 
measurements in standard individual-level analyses. A common usage of 
network ideas is to employ network measurements, or statistics calculated 
from these network measurements, as variables measured at the individ
ual actor level. These derived variables are then incorporated into a 
more standard "cases by variables" analysis. For example, the range of a 
person's social support network may be used as an actor-level variable in 
an analysis predicting individual mental well-being (see Kadushin 1982), 
or occupational status attainment (Lin and Durnin 1986; Lin, Ensel, and 
Vaughn 1981 ;  Lin, Vaughn, and Ensel 1981). We view analyses such as 
these as auxiliary network studies. Network theories and measurements 
become explanatory factors or variables in understanding individual be
havior. We note that such an analysis still uses individual actors as the 
basic modeling unit. Such analyses do not focus on the network structure 
or network processes directly. 

Our approach in this book is that network measurements are central. 
We do not discuss how to use network measurements, statistics, model 
parameter estimates, and so forth, in fnrther modeling endeavors. These 
usual data analytic concerns are treated in existing standard statistics 
and methods texts. 

Tbe Perspective. Given a collection of actors, social network 
analysis can be used to study the structural variables measured on actors 
in the set. The relational structure of a group or -larger social system 
consists of the pattern of relationships among the collection of actors. 
The concept of a network emphasizes the fact that each individual has 
ties to other individuals, each of whom in turn is tied to a few, some, or 
many others, and so on. The phrase "social network" refers to the set 
of actors and the ties among them. The network analyst would seek to 
model these relationships to depict the structure of a group. One could 
then study the impact of this structure on the functioning of the group 
and! or the influence of this structure on individuals within the group. 

In the example of trade among nations, information on the imports 
and exports among nations in the world reflects the global economic 
system. Here the world economic system is evidenced in the observable 
transactions (for example, trade, loans, foreign investment, or, perhaps, 
diplomatic eXChange ) among nations. The social network analyst could 
then attempt to describe regularities or patterns in the world economic 
system and to understand economic features of individual nations (such 
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as rate of economic development) in terms of the nation's location in the 
world economic system. 

Network analysis can also be used to study the process of change 
within a group over time. Thus, the network perspective also extends 
longitudinally. For example, economic transactions between nations 
could certainly be measnred at several points in time, thereby allowing a 
researcher to use the network prespective to study changes in the world 
economic system. 

The social network perspective thus has a distinctive orientation in 
which structures, their impact, and their evolution become the primary 
focus. Since structures may be behavioral, social, political, or economic, 
social network analysis thus allows a flexible set of concepts and methods 
with broad interdisciplinary appeal. 

1.2 Historical and Theoretical Foundations 

Social network analysis is inherently an interdisciplinary endeavor. The 
concepts of social network analysis developed out of a propitious meeting 
of social theory and application, with formal mathematical, statistical, 
and computing methodology. As Freeman (1984) and Marsden and 
Laumann (1984) have documented, both the social sciences, and mathe
matics and statistics have been left richer from the collaborative efforts 
of researchers working across disciplines. 

Further, and more importantly, the central concepts of relation, net
work, and structure arose almost independently in several social and 
behavioral science disciplines. The pioneers of social network analy
sis came from sociology and social psychology (for example, Moreno, 
Cartwright, Newcomb, Bavelas) and anthropology (Barnes, Mitchell). In 
fact, many peol.'le attribute the first use of the term "social network " to 
Barnes (1954). The notion of a network of relations linking social enti
ties, or of webs or ties among social units emanating through society, has 
found wide expression throughout the social sciences. Furthermore, many 
of the structural principles of network analysis developed as researchers 
tried to solve empirical and/or theoretical research puzzles. The fact 
that so many researchers, from such different disciplines, almost simul
taneously discovered the network perspective is not surprising. Its utility 
is great, and the problems that can be answered with it are numerous, 
spanning a broad range of disciplines. 

In this section we briefly comment on the historical, empirical, and 
theoretical bases of social network methodology. Some authors have 
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seen network analysis as a collection of analytic procedures that are 
somewhat divorced from the main theoretical and empirical concerns of 
social research. Perhaps a particular network method may appear to 
lack theoretical focus because it can be applied to such a wide range of 
substantive problems from many different contexts. In contras� we argue 
that much network methodology arose as social scientists in a range 
of disciplines struggled to make sense of empirical data and grappled 
with theoretical issues. Therefore, network analysis, rather than being 
an unrelated collection of methods, is grounded in important social 
phenomena and theoretical concepts. 

Social network analysis also provides a formal, conceptual means for 
thinking about the social world. As Freeman (1984) has so convincingly 
argued, the methods of social network analysis provide formal statements 
about social properties and processes. Further, these concepts must 
be defined in precise and consistent ways. Once these concepts have 
been defined precisely, one can reason logically about the social world. 
Freeman cites group and social role as two central ideas which, until 
they were given formal definitions in network terms, could only serve as 
"sensitizing concepts." The payoff of mathematical statements of social 
concepts is the development of testable process models and explanatory 
theories. We are in full agreement with Leinhardt's statement that "it 
is not possible to build effective explanatory theories using metaphors" 
(Leinhardt 1977, page xiv). We expand on this argument in the next 
section. 

1.2.1 Empirical Motivations 

It is rare that a methodological technique is referred to as an "inven
tion" but that is how Moreno described 'his early 1930's invention, the 
sociogram (Moreno 1953). This innovation, developed by Moreno along 
with Jennings, marked the beginning of sociometry (the precursor to 
social network analysis and much of social psychology). Starting at this 
time point, this book summarizes over a half-century of work in network 
analysis. There is wide agreement among social scientists that Moreno 
was the founder of the field of sociometry - the measurement of inter
personal relations in small groups - and the inspiration for the first two 
decades of research into the structure of small groups. Driven by an inter
est in understanding human social and psychological behavior, especially 
group dynamics, Moreno was led to invent a means for depicting the in
terpersonal structure of groups: the sociogram. A sociogram is a picture 



12 Social Network Analysis in the Social and Behavioral Sciences 

in which people (or more generally, any social units) are represented as 
points in two-dimensional space, and relationships among pairs of peo
ple are represented by lines linking the corresponding points. Moreno 
claimed that "before the advent of sociometry no one knew what the 
interpersonal structure of a group 'precisely' looked like" (1953, page Ivi). 

This invention was revealed to the public in Apri1 1933 at a convention 
of medical scholars, and was found to be so intriguing that the story was 
immediately picked up by The New York Times (April 3, 1933, page 17), 
and carried in newspapers across the United States. Moreno's interest 
went far beyond mere depiction. It was this need to model important 
social phenomena that led to two of the mainstays of social network 
analysis : a visual display of group structure. and a probabilistic model 
of structural outcomes. 

Visual displays including sociograms and two or higher dimensional 
representations continue to be widely used by network analysts (see Klov
dahl 1986; Woelfel, Fink, Serota, Barnett, Holmes, Cody, Saltiel, Marlier, 
and Gi11ham 1977). Two and sometimes three-dimensional spatial repre
sentations (using multidimensional scaling) have proved quite useful for 
presenting structures of influence among community elites (Laumann and 
Pappi 1976; Laumann and Knoke 1987), corporate interlocks (Levine 
1972), role structures in groups (Breiger, Boorman, and Arabie 1975; 
Burt 1976, 1982), and interaction patterns in small groups (Romney and 
Faust 1982; Freeman, Freeman, and Michaelson 1989). 

Recognition that sociograms could be used to study social structure 
led to a rapid introduction of analytic techniques. The history of this 
development is nicely reviewed by Harary, Norman, and Cartwright 
(1965), who themselves helped pioneer this development. At rhe same 
time, methodologists discovered that matrices could be used to represent 
social network data. These recognitions and discoveries brought the 
power of mathematics to the study of social systems. Forsyth and Katz 
(1946), Katz (1947), Lucc and Perry (1949), Bock and Husain (1950, 
1952), and Harary and Norman (1953) were the first to use matrices in 
novel methods for the study of social networks. 

Other researchers also found inspiration for network ideas in the 
course of empirical research. In the mid-1950's, anthropologists studying 
urbanization (especially British anthropologists - such as Mitchell and 
Barnes) found that the traditional approach of describing social organi
zation in terms of institutions (economics, religion, politics, kinship, etc.) 
was not sufficient for understanding the behavior of individuals in com
plex societies (Barnes 1954; Bott 1957; Mitchell 1969; Boissevain 1968; 
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Kapferer 1969). Furthermore, as anthropologists turned their attention 
to "complex" societies, they found that new concepts were necessary in 
order to understand the fluid social interactions they observed in the 
course of ethnographic field work (for example, see Barnes 1954, 1969a; 
Boissevain 1968; also Mitchell 1969; and Boissevain and Mitchell 1973, 
and papers therein). Barnes (1972), Whitten and Wolfe (1973), Mitchell 
(1974), Wolfe (1978), Foster (1978/79), and others provide excellent re
views of the history of social network ideas in anthropology. Many of 
the current formal concepts in social network analysis, for example, den
sity (Bott 1957), span (Thurman 1980), connectedness, clusterability, and 
multiplexity (Kapferer 1969), were introduced in the 1950's and 1960's 
as ways to describe properties of social structures and individual social 
environments. Network analysis provided both a departure in theoretical 
perspective and a way of talking about social phenomena which were 
not easily defined using then current terminology. 

Many social psychologists of the 1940's and 1950's found experimental 
structures useful for studying group processes (Leavitt 1949, 195 1 ;  Bave
las 1948, 1950; Smith 1950; and many others ; see Freeman, Roeder, and 
Mulholland 1980, for a review). The experimentally designed communi
cation structures employed by these researchers lent themselves naturally 
to graphical representations using points to depict actors and lines to de
pict channels of communication. Key insights from this research program 
indicated that there were both important properties of group structures 
and properties of individual positions within these structures. The theory 
of the impact of structural arrangement on group problem solving and 
individual performance required formal statements of the structural prop
erties of these experimental arrangements. Structural properties found 
by these researchers include the notions of actor centrality and group 
centralization. 

Clearly, important empirical tendencies led to important new, network 
methods. Very important findings of tendencies toward reciprocity or 
mutuality of positive affect, structural balance, and transitivity, discovered 
early in network analysis, have had a profound impact on the study of 
social structure. Bronfenbenner (1943) and Moreno and Jennings (1945) 
were the first to study such tendencies quantitatively. 

1.2.2 Theoretical Motivations 

Theoretical notions have also provided impetus for development of net
work methods. Here, we explore some of the theoretical concepts that 
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have motivated the development of specific network analysis methods. 
Among the important examples are : social group, isolate, popularity, 
liaison, prestige, balance, transitivity, clique, subgroup, social cohesion, 
social position, social role, reciprocity, mutuality, exchange, influence, 
dominance, conformity. We briefly introduce some of these ideas below, 
and discuss them all in more detail as they arise in later chapters. 

Conceptions of social group have led to several related lines of method
ological development. Sociologists have used the phrase "social group" 
in numerous and imprecise ways. Social network researchers have taken 
specific aspects of the theoretical idea of social group to develop more 
precise social network definitions. Among the more influential network 
group ideas are: the graph theoretic entity of a clique and its general
izations (Luce and Perry 1949; Alba 1973; Seidman and Foster 1978a; 
Mokken 1979; and Freeman 1988); the notion of an interacting com
munity (see Sailer and Gaulin 1984); and social circles and structures 
of afliliation (Kadushin 1966 ; Feld 198 1 ;  Breiger 1974; Levine 1972; 
McPherson 1982). The range and number of mathematical definitions of 
"group" highlights the usefulness of using network concepts to specify 
exact properties of theoretical concepts. 

Another important theoretical concept, structural balance, was postu
lated by Heider during the 1940's (Heider 1946), and later Newcomb 
(1953). Balanced relations were quite common in empirical work; con
sequently, theorists were quick to pose theories about why such things 
occurred so frequently. This concept led to a very active thirty-year 
period of empirical, theoretical, and quantitative research on triples of 
individuals. 

Balance theory was quantified by mathematicians using graph theoret
ical concepts (Harary 1953, 1955b). Balance theory also influenced the 
development of a large number of structural theories, including transitiv
ity, another theory postulated at the level of a triple of individuals. 

The related notions of social role. social status, and social position 
have spawned a wide range of network analysis methods. Lorrain and 
White were among the first social network analysts to express in social 
network terms the notion of social role (Lorrain and White 1971). Their 
foundational work on the mathematical property of structural equiva
lence (individuals who have identical ties to and from all others in a 
network) expressed the social concept of role in a formal mathematical 
procedure. Much of the subsequent work on tltis topic has centered on 
appropriate conceptualizations of notions of position (Burt 1976; Faust 
1988; Borgatti and Everett 1992a) or role (White and Reitz 1983, 1989; 
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Winship and Mandel 1983; Breiger and Pattison 1986) in social network 
terms. 

1.2.3 Mathematical Motivations 

Early in the theoretical development of social network analysis, re
searchers found use for mathematical models. Beginning in the 1940's 
with attempts to quantify tendencies toward reciprocity, social network 
analysts have been frequent users and strong proponents of quantita
tive analytical approaches. The three major mathematical foundations 
of network methods are graph theory, statistical and probability theory, 
and algebraic models. Early sociometricians discovered graph theory 
and distributions for random graphs (for example, the work of Moreno, 
Jennings, Criswell, Harary, and Cartwright). Mathematicians had long 
been interested in graphs and distributions for graphs (see Erdos and 
Renyi 1960, and references therein), and the more mathematical social 
network analysts were quick to pick up models and methods from the 
mathematicians. Graph theory provides both an appropriate representa
tion of a social network and a set of concepts that can be used to study 
formal properties of social networks. 

Statistical theory became quite important as people began to study 
reciprocity, mutuality, balance, and transitivity. Other researchers, par
ticularly Katz and Powell (1955), proposed indices to measure tendencies 
toward reciprocation. 

Interest in rel:iprocity, and pairs of interacting individuals, led to a 
focus on threesomes. Empirical and theoretical work on balance theory 
and transitivity motivated a variety of mathematicians and statisticians 
to formulate mathematical models for behavior of triples of actors. 
Cartwright and Harary (1956) were the first to quantify structural balance 
propositions, and along with Davis (1967), discussed which types of triads 
(triples of actors and all observed relational linkages among the actors) 
should and should not arise in empirical research. Davis, Holland, 
and Leinhardt, in a series of papers written in the 1970's, introduced a 
wide variety of random directed graph distributions into social network 
analysis, in order to test hypotheses about various structural tendencies. 

During the 1980's, research on statistical models for social networks 
heightened. Models now exist for analyzing a wide variety of social 
network data Simple log linear models of dyadic interactions are now 
commonly used in practice. These models are often based on Holland 
and Leinhardt's (1981) Pl probability distribution for relational data. 
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This model can be extended to dyadic interactions that are measured on 
a nominal or an ordinal scale. Additional generalizations allow one to 
simultaneously model multivariate relational networks. Network inter
actions on different relations may be associated, and the interactions of 
one relation with others allow one to study how associated the relational 
variahles are. In the mid-1 970's, there was much interest in models for the 
study of networks over time. Mathematical models, both deterministic 
and stochastic, are now quite abundant for such study. 

Statistical models are used to test theoretical propositions about net
works. These models allow the processes (which generate the data) to 
show some error, or lack of fit, to proposed structural theories. One 
can then compare data to the predictions generated by the theories to 
determine whether or not the theories should be rejected. 

Algebraic models have been widely used to study multirelational net
works. These models use algebraic operations to study combinations of 
relations (for example, "is a friend of," "goes to for advice," and "is a 
friend of a friend") and have been used to study kinship systems (White 
1963; Boyd 1969) and network role structures (Boorman and White 1976; 
Breiger and Pattison 1986; Boyd 1990; and Pattison 1993). 

Social network analysis attempts to solve analytical problems that 
are non-standard. The data analyzed by network methods are quite 
different from the data typically encountered in social and behavioral 
sciences. In the traditional data analytic framework one assumes that 
one has a set of measurements taken on a set of independent units 
or case1S; thus giving rise to the familiar "cases by variables" data 
array. The assumption of sampling independence of observations on 
individual units allows the considerable machinery of statistical analysis 
to be applied to a range of research questions. However, social network 
analysis is explicitly interested in the interrelatedness of social units. The 
dependencies among the units are measured with structural variables. 
Theories that incorporate network ideas are distinguished by propositions 
about the relations among social units. Such theories argue that units 
are not acting independently from one another, but rather influence each 
other. Focusing on such structural variables opens up a different range 
of possibilities for, and constraints on, data analysis and model building. 

1.1.4 In Summary 

The historical examination of empirical, theoretical, and mathematical 
developments in network research should convince the reader that social 
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network analysis is far more than an intuitively appealing vocabulary, 
metaphor, or set of images for discussing social, behavioral, political, 
or economic relationships. Social network analysis provides a precise 
way to define important social concepts, a theoretical alternative to the 
assumption of independent social actors, and a framework for testing 
theories about structured social relationships. 

The methods of network analysis provide explicit formal statements 
and measures of social structural properties that might otherwise be de
fined only in metaphorical terms. Such phrases as webs of relationships, 
closely knit networks of relations, social role, social position, group, 
clique, popularity, isolation, prestige, prominence, and so on are given 
mathematical definitions by social network analysis. Explicit mathemat
ical statements of structural properties, with agreed upon formal defini
tions, force researchers to provide clear definitions of social concepts, and 
facilitate development of testable models. Furthermore, network analysis 
allows measurement of structures and systems which would be almost 
impossible to describe without relational concepts, and provides tests of 
hypotheses about these structural properties. 

1.3 Fundamental Concepts in Network Analysis 

There are several key concepts at the heart of network analysis that are 
fundamental to the discussion of social networks. These concepts are: 
actor, relational tie, dyad, triad, subgroup, group, relation, and network. 
In this section, we define some of these key concepts and discuss the 
different levels of analysis in social networks. 

Actor. As we have stated above, social network analysis is con
cerned with understanding the linkages among social entities and the 
implications of these linkages. The social entities are referred to as ac
tors .. Actors are discrete individual, corporate, or collective social units. 
Examples of actors are people in a group, departments within a cor
poration, public service agencies in a city, or nation-states in the world 
system. Our use of the term "actor" does not imply that these entities 
necessarily have volition or the ability to "act." Further, most social 
network applications focus on collections actors that are all of the same 
type (for example, people in a work group). We call such collections one
mode networks. However, some methods allow one to look ' at actors of 
conceptually different types or levels, or from different sets. For example, 
Galaskiewicz (1985) and Galaskiewicz and Wasserman (1989) analyzed 
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monetary donations made from corporations to nonprofit agencies in the 
Minneapolis/St. Paul area. Doreian and Woodard (1990) and Woodard 
and Doreian (1990) studied community members' contacts with public 
service agencies. 

Relational Tie. Actors are linked to one another by social ties> 
As we will see in the examples discussed throughout this book, the range 
and type of ties can be quite extensive. The defining feature of a tie is 
that it establishes a linkage between a pair of actors. Some of the more 
common examples of ties employed in network analysis are: 

• Evaluation of one person by another (for example expressed 
friendship, liking, or respect) 

• Transfers of material resources (for example business transac
tions, lending or borrowing things) 

• Association or affiliation (for example jointly attending a social 
event, or belonging to the same social club) 

• Behavioral interaction (talking together, sending messages) 
• Movement between places or statuses (migration, social or phys

ical mobility) 
• Physical connection (a road, river, or bridge connecting two 

points) 
• Formal relations (for example authority) 
• Biologicalrelationship (kinship or descent) 

We will expand on these applications and provide concrete examples of 
different kinds of ties in the discussion of network applications and data 
in Chapter 2. 

Dyad. At the most basic level, a linkage or relationship estab
lishes a tie between two actors. The tie is inherently a property of the 
pair and therefore is not thought of as pertaining simply to an individual 
actor. Many kinds of network analysis are concerned with understand
ing ties among pairs. All of these approaches take the dyad as the 
unit of analysis. A dyad consists of a pair of actors and the (possible) 
tie(s) between them. Dyadic analyses focus on the properties of pairwise 
relationships, such as whether ties are reciprocated or not, or whether 
specific types of multiple relationships tend to occur together. Dyads 
are discussed in detail in Chapter 13, while dyadic statistical models are 
discussed in Chapters 15 and 16. As we will see, the dyad is frequently 
the basic unit for the statistical analysis of social networks. 
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Triad. Relationships among larger subsets of actors may also be 
studied. Many important social network methods and models focus on 
the triad ; a subset of three actors and the (possible) tie(s) among them. 
The analytical shift from pairs of individuals to triads (which consist of 
three potential pairings) was a crucial one for the theorist Simmel, who 
wrote in 1908 that 

. . .  the fact that two elements [in a triad] are each connected not only 
by a straight line - the shortest - but also by a broken line, as it were, 
is an enrichment from a formal-sociological standpoint. (page 135) 

Balance theory has informed and motivated many triadic analyses. Of 
particular interest are whether the triad is transitive (if actor i "likes" 
actor j, and actor j in turn "likes" actor k, then actor i will also «like" 
actor k), and whether the triad is balanced (if actors i and j like each 
other, then i and j should be similar in their evaluation of a third actor, 
k, and if i and j dislike each other, then they should differ in their 
evaluation of a third actor, k). 

Subgroup. Dyads are pairs of actors and associated ties, triads 
are triples of actors and associated ties. It follows that we can define 
a subgroup of actors as any subset of actors, and all ties among them. 
Locatiug and studying subgroups using specific criteria has been an 
important concern in social network analysis. 

Group. Network analysis is not simply concerned with collec
lions of dyads, or triads, or subgroups. To a large extent, the power 
of network analysis lies in the ability to model the relationships among 
systems of actors. A system consists of ties among members of some 
(more or less bounded) group. The notion of group has been given a 
wide range of definitions by social scientists. For our purposes, a group 
is the collection of all actors on which ties are to be measured. One 
m.ust be able to argue by theoretical, empirical, or conceptual criteria 
that the actors in the group belong together in a more or less bounded 
set. Inde€d,. once one decides to gather data on a group, a more concrete 
meaning of the term is necessary. A group, then, consists of a finite set of 
actors who for conceptual, theoretical, or empirical reasons are treated 
as a finite set of individuals on which network measurements are made. 

The restriction to afinite set or sets of actors is an ana1ytic requirement. 
Though one could conceive of ties extending among actors in a nearly 
infinite group of actors, one would have great difficulty analyzing data 
on such a network. Modeling finite groups presents some of the more 
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problematic issues in network analysis, including the specification of 
network boundaries, sampling, and the definition of group. Network 
sampling and boundary specification are important is·sues. 

Early network researchers clearly recognized extensive ties among in
dividuals (de Sola Pool and Kochen 1978; see Kochen 1989 for recent 
work on this topic). Indeed, some early social network research looked 
at the "smull world" phenomenon: webs and chains of connections ema
nating to and from an individual, extending throughout the larger society 
(Milgram 1967; Killworth and Bernard 1978). 

However, in research applications we are usually forced to look at finite 
collections of actors and ties between them. This necessitates drawing 
some boundaries or limits for inclusion. Most network applications are 
limited to a single (more or less bounded) group; however, we could 
study two or more groups. 

Throughout the book, we will refer to the entire collection of actors 
on which we take measurements as the actor set. A network can contain 
many groups of actors, but only one (if it is a one-mode network) actor 
set. 

Relation. The collection of ties of a specific kind among members 
of a group is called a relation. For example, the set of friendships among 
pairs of children in a classroom, or the set of formal diplomatic ties 
maintained by pairs of nations in the world, are ties that define relations. 
For any group of actors, we might measure several different relations 
(for example, in addition to formal diplomatic ties among nations, we 
might also record the dollar amount of trade in a given year). It is 
important to note that a relation refers to the collection of ties of a given 
kind measured on pairs of actors from a specified actor set. The ties 
themselves only exist between specific pairs of actors. 

Social Network. Having defined actor, group, and relation we 
can now give a more explicit definition of social network. A social network 
consists of a finite set or sets of actors and the relation or relations defined 
on them. The presence of relational information is a cntical and defining 
feature of a social network. A much more mathematical definition of a 
social network, but consistent with the simple notion given here, can be 
found at the end of Chapter 3. 

In Summary. These terms provide a core working vocabulary 
for discussing social networks and social network data. We can see that 
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social network analysis not only requires a specialized vocabulary, but 
also deals with conceptual entities and research problems that are quite 
difficult to pursue using a more traditional statistical and data analytic 
framework. 

We now turn to some of the distinctive features of network analysis. 

1.4 Distinctive Features of Network Theory and Measurement 

It is quite important to note the key features that distinguish network 
theory, and consequently network measurement, from the more usual 
data analytic framework common in the social and behavioral sciences. 
Such features provide the necessary motivation for the topics discussed 
in this book. 

The most basic feature of network measurement, distinctive from other 
perspectives, is the use of structural or relational infonnation to study or 

. test theories. Many network analysis methods provide formal definitions 
and descriptions of structural properties of actors, subgroups of actors, or 
groups. These methods translate core concepts in social and behavioral 
theories into fonnal definitions expressed in relational terms. All of these 
concepts are quantified by considering the relations measured among the 
actors in a network. 

Because network measurements give rise to data that are unlike other 
social and behavioral science data, an entire body of methods has been 
developed for their analysis. Social network data require measurements 
on ties among social units (or actors); however, attributes of the actors 
may also be collected. Such data sets need social network methods for 
analysis. One cannot use mUltiple regression, t-tests, canonical correla
tions, structural equation models, and so forth, to study social network 
data or to test network theories. This book exists to organize, present, 
critique, and demonstrate the large body of methods for social network 
analysis. 

Social network analysis may be viewed as a broadening or general
ization of standard data analytic techniques and applied statistics which 
usually focus on observational units and their characteristics. A social 
network analysis must consider data on ties among the units. However, 
attributes of the actors may also be included. 

Measurements on actors will be referred to as network composition. 
Complex network data sets may contain information about the charac
teristics of the actors (such as the gender of people in a group, or the 
GNP of nations in the world), as well as structural variables. Thus, the 
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sort of data most often analyzed in the social and behavioral sciences 
(cases and variables) may also be incorporated into network models. But 
the fact that one has not only structural, but also compositional, vari
ables can lead to very complicated data sets that can be approached only 
with sophisticated graph theoretic, algebraic, and/or statistical methods. 

Social network theories require specification in terms of patterns of 

rclations, characterizing a group or social system as a whole. Given ap
propriate network measurements, these theories may be stated as propo
sitions about group relational structure. Network analysis then provides a 
collection of descriptive procedures to determine how the system behaves, 
and statistical methods to test the appropriateness of the propositions. 
In contrast, approaches that do not include network measurements are 
unable to study and/or test such theories about structural properties. 

Network theories can pertain to units at different levels of aggregation: 
individual actors, dyads, triads, subgroups, and groups. Network analysis 
provides methods to study structural properties and to test theories 
stated at all of these levels. The network perspective, the theories, and 
the measurements they spawn are thus quite wide-ranging. This is quite 
unique in the social and behavioral sciences. Rarely does a standard 
theory lead to theoretical statements and hence measurements at more 
than a single level. 

1.5 Organization of the Book and How to Read It 

The question now is how to make sense of the more than 700 pages 
sitting in front of you. First, find a comfortable chair with good reading 
light (shoo the cats, dogs, and children away, if necessary). Next, make 
sure your cup of coffee (or glass of scotch, depending on the time of 
day) is close at hand, put a nice jazz recording on the stereo, and have 
a pencil or highlighting pen available (there are many interesting points 
throughout the book, and we are sure you will want to make note of 
them). 

This book is organized to highlight several themes in network analysis, 
and to be accessible to readers with different interests and sophistication 
in social network analysis. We have mentioned these themes throughout 
this chapter, and now describe how these themes help to organize the 
methods discussed in this book. These themes are: 

• The complexity of the methods 
• Descriptive versus statistical methods 
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• The theoretical motivation for the methods 
• The chronological development of the methods 
• The level of analysis to which the methods are appropriate 

Since social network analysis is a broad, diverse, and theoretically varied 
field, with a long and rich history, it is impossible to reflect all of these 
possible thematic organizations simultaneously. However, insofar as is 
practical and useful, we have tried to use these themes in the organization 
of the book. 

1.5.1 Complexity 

First, the material progresses from simple to complex. The remainder 
of Part I reviews applications of network analysis, gives an overview of 
network analysis methods in a general way, and then presents notation 
to be used throughout the book. Part II presents graph theory, develops 
the vocabulary and concepts thaLare widely used in network analysis, 
and relies heavily on examples. It also discusses simple actor and group 
properties. Parts II, III, and IV require familiarity with algebra, and a 
willingness to learn some graph theory (presented in Chapter 4). Parts V 
and VI require some knowledge of statistical theory. Log linear models 
for dyadic probabilities provide the basis for many of the techniques 
presented later in these chapters. 

1.5.2 Descriptive and Statistical Methods 

Network methods can be dichotomized into those that are descriptive 
versus those that are based on probabilistic assumptions. This dichotomy 
is an important organizational categorization of the methods that we 
discuss. Parts II, III, and IV of the book are based on the former. 
The methods presented in these three parts of the book assume specific 
descriptive models for the structure of a network, and primarily present 
descriptive techniques for network analysis which translate theoretical 
concepts .into formal measures. 

Parts V and VI are primarily concerned with methods for testing 
network theories and with statistical models of structural properties. In 
contrast to a descriptive approach, we can also begin with stochastic 
assumptions about actor behavior. Such models assume that there is 
some probabilistic mechanism (even as simple as flipping a coin) that 
underlies observed, network data. For example, one can focus on dyadic 
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interactions, and test whether an observed network has a specified amount 
of reciprocity in the ties among the actors. Such a test uses standard 
statistical theory, and thus one can formally propose a null hypothesis 
which can then be rejected or not. Much of Chapter 13 is devoted 
to a description of these mechanisms, which are then used throughout 
Chaptet's 14, 15, and 16. 

1.5.3 Theory Driven Methods 

As we have discussed here, many social network methods were developed 
by researchers in the course of empirical investigation and the develop
ment of theories. This categorization is one of the most important of the 
book. 

Part III covers approaches to groups and subgroups, notably cliques 
and their generalizations. Sociological tendencies such as cohesion and 
influence, which can cause actors to be "clustered" into subgroups, are 
among the topics of Chapters 7 and 8. Part IV discusses approaches 
related to the sociological notions of social role, status and position, and 
the mathematical property of structural equivalence and its generaliza
tions. The later sections of the book present statistical methods for the 
analysis of social networks, many of which are motivated by theoretical 
concerns. Part V covers models for dyadic and triadic structure, early 
sociometry and social psychology of affective relations (dyadic analyses 
of Chapter 13), and structural balance and transitivity (triadic analyses 
of Chapters 6 and 14). 

1.5.4 Chronology 

It happens that the chapters in this book are approximately chronological. 
The important empirical investigations of social networks began over 
sixty years ago, starting with the sociometry of Moreno. This research 
led to the introduction of graph theory (Chapter 4) to study structural 
properties in the late 1940's and 1950's, and methods for subgroups 
and cliques (Chapter 7), as well as structural balance and transitivity 
(Chapters 6 and 14). More recently, H. White and his collaborators, 
using the sociological ideas of formal role analysis (Nadel aud Lorrain), 
introduced structural equivalence (Chapter 9), and an assortment of 
related methods, in the 1970's, which in the 1980's, led to a collection of 
algebraic network methods (Chapters 11  and 12). 
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As can be seen from our table of contents, we have mostly followed 
this chronological order. We start with graph theory in Chapter 4, and 
discuss descriptive methods in Parts III and IV before moving on to 
the more recent statistical developments covered in Parts V and VI. 
However, because of our interest in grouping together methods with 
similar substantive and theoretical concerns, a few topics are out of 

historical sequence (structural balance and triads in Chapters 6 and 14 
for example). Thus, Part V (Dyadic and Triadic Methods) follows Part 
IV (Roles and Positions). This reversal was made to place dyadic and 
triadic methods next to the other statistical methods discussed in the 
book (Part VI), since the methods for studying dyads and triads were 
among the first statistical methods for networks. 

1.5.5 Levels of Analysis 

Network methods are usually appropriate for concepts at certain levels 
of analysis. For example, there are properties and associated methods 
pertaining just to the actors themselves. Examples include how "promi
nent" an actor is within a group, as quantified by measures such as 
centrality and prestige (Chapter 5), actor-level expansiveness and popu
larity parameters embedded in stochastic models (Chapters 15 and 16), 
and measures for individual roles, such as isolates, liaisons, bridges, and 
so forth (Chapter 12). Then there are methods applicable to pairs of 
actors and the ties between them, such as those from graph theory that 
measure actor distance and reachability (Chapter 4), :structural and other 
notions of equivalence (Chapters 9 and 12), dyadic analyses that postu
late statistical models for the various states of a dyad (Chapter 13), and 
stochastic tendencies toward reciprocity (Chapter 15). Triadic methods 
are almost always based on theoretical statements about balance and 
transitivity (Chapter 6), and postulate certain behaviors for triples of 
actors and tbe ties among them (Chapter 14). 

Many methods allow a researcher to find and study subsets of actors 
that are homogeneous with respect to some network properties. Examples 
of such applications include: cliques and other cohesive subgroups that 
contain actors who are "close" to each other (Chapter 7), positions 
of actors that arise via positional analysis (Chapters 9 and 10), and 
subgroups of actors that are assumed to behave similarly with respect to 
certain model parameters arising from stochastic models (Chapter 16). 
Lastly, there are measures and methods that focus on entire groups and 
all ties. Graph theoretic measures such as connectedness and diameter 
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(Chapter 4), group-level measures of centralization, density, and prestige 
(Chapter 5), as well as blockmodels and role algebras (Chapters 9, 10, 
and 11)  are examples of group-level methods. 

1.5.6 Chapter Prerequisites 

Finally, it is important to note that some chapters are prerequisites for 
others, while a number of chapters may be read without reading all 
intervening chapters. This ordering of chapters is presented in Figure 1 .1 .  
A line in this figure connects two chapters if the earlier chapter contains 
material that is necessary in order to read the later chapter. Chapters 1, 
2, 3, and 4 contain the introductory material, and should be read before 
all other chapters. These chapters discuss social network data, notation, 
and graph theory. 

From Chapter 4 there are five possible branches: Chapter 5 (cen
trality); Chapter 6 (balance, clusterability, and transitivity); Chapter 7 
(cohesive subgroups); Chapter 9 (structural equivalence); or Chapter 13 
(dyads). Chapter 8 (affiliation networks) follows Chapter 7 ;  Chapters 10 
(blockmodels), 11  (relational algebras), and 12 (network role and posi
tion) follow, in order, from Chapter 9 ;  Chapter 15 (statistical analysis) 
follows Chapter 13. Chapter 14 requires both Chapters 13 and 6. Chapter 
16 (stochastic blockmodels and goodness-of-fit) requires both Chapters 
15  and 10. Lastly, Chapter 17 concludes the book (and is an epilogue to 
all branches). 

A good overview of social network analysis (with an emphasis on 
descriptive approaches including graph theory, centrality, balance and 
clusterability, cohesive subgroups, structural equivalence, and dyadic 
models) could include Chapters 1 through 10 plus Chapter 13. This ma
terial could be covered in a one semester graduate course. Alternatively, 
one could omit Chapter 8 and include Chapters 15 and 16, for a greater 
emphasis on statistical approaches. 

One additional comment - throughout the book, you will encounter 
two symbols used to label sections: 0 and 0. The symbol 0 implies 
that the text that follows is tangential to the rest of the chapter, and 
can be omitted (except by the curious). The symbol 0 implies that the 
text that follows requires more thought and perhaps more mathematical 
and/or statistical knowledge than the other parts of the chapter, and 
should be omitted (except by the brave). 
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We have just described the history and motivations for social network 
analysis. Network theories and empirical findings have been the primary 
reasons for the development of much of the methodology described in 
this book. 

A complete reading of this book, beginning here and continuing on to 
the discussion of network data in Chapter 2, then notation in Chapter 
3, and so forth, should provide the reader with a knowledge of network 
methods, theories, and histories. So without further ado, let us begin . . . .  



2 
Social Network Data : Collection and 
Applications 

This chapter discusses characteristics of social network data, with an 
emphasis on how to collect such data sets. We categorize network data 
in a variety of ways, and illustrate these categories with examples. We 
also describe the data sets that we use throughout the book. As noted 
in Chapter 1, the most important difference between social network 
data and standard social and behavioral science data is that network 
data include measurements on the relationships between social entities. 
Most of the standard data collection procedures known to every social 
scientist are appropriate for collecting network data (if properly applied), 
but there are a few techniques that are specific to the investigation of 
social networks. We highlight these similarities and differences in this 
chapter. 

2.1 Introduction: What Are Network Data? 

Social network data consist of at least one structural variable measured 
on a set of actors. The substantive concerns and theories motivating 
a specific network study usually determine which variables to measure, 
and often which techniques are most appropriate for their measurement. 
For example, if one is studying economic transactions between countries, 
one cannot (easily) rely on observational techniqnes; one would probably 
use archival records to obtaiu informatiou ou such transactious. On 
the other hand, friendships among people are most likely studied using 
questionnaires or interviews, rather than using archival or historical 
records. In addition, the nature of the study determines whether the 
entire set of actors can be surveyed or whether a sample of the actors 
must be taken. 

28 



2.1 Introduction: What Are Network Data? 29 

The nature of the structural variables also determines which analytic 
methods are appropriate for their study. Thus, it is crucial to understand 
the nature of these variables. The data collection techniques described 
here determine, to some degree, the characteristics of the relations. 

2.1.1 Structural aud Composition Variables 

There are two types of variables that can be included in a network data 
set: structural and compositioil. Structural variables are measured on 
pairs of actors (subsets of actors of size 2) and are the cornerstone of 
social network data sets. Structural variables measure ties of a specific 
kind between pairs of actors. For example, structural variables can 
measure business transactions between corporations, friendships between 
people, or trade between nations. Actors comprising these pairs usually 
belong to a single set of actors. 

Composition variables are measurements of actor attributes. Compo
sition variables, or actor attribute variables, are of the standard social 
and behavioral science variety, and are defined at the level of individual 
actors. For example, we ntight record gender, race, or ethnicity for peo
ple, or geographical location, after-tax profits, or number of employees 
for corporations. Some of the methods we discuss allow for simultaneous 
analyses of structural and composition variables. 

2.1.2 Modes 

We will use the term "�ode" to refer to a distinct set of entities on 
which the structural variables are measured (Tucker 1963, 1964, 1966; 
Kroonenberg 1983; Arabie, Carroll, and DeSarbo 1987). Structural 
variables measured on a single set of actors (for example, friendships 
among residents of a neighborhood) give rise to one-mode networks. 
The most common type of network is a one-mode network, since all 
actors come from one set. 

There are types of strnctural variables that are measured on two (or 
even more) sets of entities. For example, we might study actors from 
two different sets, one set consisting of corporations and a second set 
consisting of non-profit organizations. We could then measure the flows 
of financial support flows from corporations to non-profit actors. A 
network data set containing two sets of actors is referred to as a two
mode network, to reflect the fact that there are two sets of actors. A 
two-mode network data set contains measurements on which actors from 
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one of the sets have ties to actors in the other set. Usually, not all 
. actors can initiate ties. Actors in one of the sets are "senders," while 
those in the other are "receivers" (although the relation itself need not 
be directional). We will consider one-mode and two-mode, and even 
mention higher-mode, social networks in this book. 

2.1.1 Affiliation Variables 

A special type of two-mode network that arises in social network studies 
is an affiliation network. Affiliation networks are two-mode, but have 
only one set of actors. The second mode in an affiliation network is 
a set of events (such as clubs or voluntary organizations) to which the 
actors belong. Thus, in affiliation network data the two modes are the 
actors and the events. In such data, the events are defined not on pairs 
of actors, but on subsets of actors. These subsets can be of any size. A 
subset of actors affiliated with an affiliation variable is that collection of 
actors who participate in a specific event, belong to a given club, and so 
forth. Each affiliation variable is defined on a specific subset of actors. 

For example, consider a set of actors, and three elite clubs in some city. 
We can define an affiliation variable for each of these three clubs. Each 
of these variables gives us a subset of actors - those actors belonging 
to one of the clubs. 

The collections of individuals affiliated with the events can be found 
in a number of ways, depending on the substantive application. When 
events are clubs, boards of directors of corporations, or committees, the 
membership lists or rosters give the actors affiliated with each event. 
Often events are informal social occasions, such as parties or other 
gatherings, and observations or attendance or interactions among people 
provide the affiliations of the actors (Bernard, Killworth, and Sailer 1980, 
1982; Freeman and Romney 1987). One of the earliest, and now classic, 
examples of an empirical application is the study of Davis, Gardner, 
and Gardner (1941) of the cohesive subgroups apparent in the social 
activities of women in a Southern city. Using newspaper records and 
interviews, they recorded the attendance of eighteen women at fourteen 
social events. 

2.2 Boundary Specification and Sampling 

A number of concerns arise in network studies that must be addressed 
prior to gathering any network data. Typically, a researcher must first 
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identify the population to be studied, and if sampling is necessary, worry 
about how to sample actors and relations. These issues are considered 
here. 

2.2.1 What Is Your Population? 

A very important concern in a social network study is which actors 
to include. That is, who are the relevant actors? Which actors are in 
the population? In the case of small, closed sets of actors (such as all 
employees at a service station, faculty in an academic department, or 
corporations headquartered in a major metropolitan area), this issue is 
relatively easy to deal with. For other studies, the boundary of the set of 
actors may be difficult (if not impossible) to determine. The boundary of 
a set of actors allows a researcher to describe and identify the population 
under study. 

Actors may come and go, may be many in number and hard to 
enumerate, or it may be difficult even to determine whether a specific 
actor belongs in a set of actors. For example, consider the study of 
elites in a community. The boundary of the set, including all, and 
only, the elites within the community, may be difficult, or impossible, to 
determine. However, frequently there will be a clear "external" definition 
of the boundary of the set which enables the researcher to determine 
which actors belong in it. 

In some instances it is quite plausible to argue that a set of actors 
is relatively bounded, as for example, when there is a fairly complete 
membership roster. In such a case, the entire set of members can 
make up the actor set. However, there are other instances when drawing 
boundaries around a set is somewhat arbitrary. In practice, while network 
researchers recognize that the social world consists of many (perhaps 
infinite) links of connection, they also find that effective and reasonable 
limits can be placed on inclusion. Network researchers often define actor 
set boundaries based on the relative frequency of interaction, or intensity 
of ties among members as contrasted with non-members. 

Laumann, Marsden, and Prensky (1989) describe two different ap
proaches to boundary specification in social network studies. The Iirst 
way, which they refer to as the realist approach, focuses on actor set 
boundaries and membership as perceived by the actors themselves. For 
example, a street-corner gang is acknowledged as a social entity by its 
members (it may even have a name - "Jets" or "Sharks") and the mem
bership of the gang is the collection of people the members acknowledge 
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as belonging to the gang. The second way of specifying network bound
aries, which Laumann, Marsden, and Prensky refer to as the nominalist 
approach, is based on the theoretical concerns of the researcher. For 
example, a researcher might be interested in studying the flow computer 
messages among researchers in a scientific specialty. In such a study, the 
list of actors might be  the collection of people who published papers on 

the topic in the previous five years. This list is constructed for the ana
lytical purposes of the researcher, even though the scientists themselves 
might not perceive the list of people as constituting a distinctive social 
entity. Both of these approaches to boundary specification have been 
used in social network studies. 

Consider now two specific examples of how researchers have defined 
network boundaries. The first example illustrating the problem of iden
tifying the relevant population of actors comes from a study of how 
information or new ideas diffuse through a community. Coleman, Katz, 
and Menzel (1957) studied how a new drug was adopted by physicians. 
Their solution to the problem of boundary identification is as follows: 

It was decided to include in the sample, as nearly as possible, all the 
local doctors in whose specialities the new drug was of major potential 
significance. This assured that the "others" named by each doctor in 
answer to the sociometric questions were included in the sample. (page 
254) 

The second example comes from the study of community leaders by 
Laumann and Pappi (1973). They asked community leaders to define the 
boundary by identifYing the elite actors in the community of Altneustadt. 
These leaders were asked to 

... name all persons [who] are now in general very influential in Alt
neustadt. 

From these lists, each of which can be considered a sample of the relevant 
actors in the elite network, the actor set was enumerated. 

Many naturally occurring groups of actors do not have well-defined 
boundaries. However, all methods must be applied to a specific set of 
data which assumes not only finite actor set size(s), but also enumerable 
set(s) of actors. Somehow, in order to study the network, we must 
enumerate a finite set of actors to study. 

For our purposes, the set of actors consists of all social �nits on which 
we have measurements (either structural variables, or structural and com
positional variables). Social network analysis begins with measurements 
on a set of actors. Researchers using methods described here must be able 
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to make such an assumption. We assume, prior to any data gathering, 
that we can obtain relevant information on all substantively important 
actors ; such actors will be included in the actor set. However, some actors 
may be left out unintentionally or for other reasons. Thus, the constitu
tion of the actor set (that is, its size and composition) depends on both 
practical and theoretical concerns. The reason for the assumption that 
the actor set consists of all social units on which we have measurements 
is quite simple - the methods we discuss here cannot handle amorphous 
set boundaries. We will always start our analyses with a set (or sets) of 
actors, and we must be able to enumerate (or label) all members. 

Many network studies focus on small collectivities, such as classrooms, 
offices, social clubs, villages, and even, occasionally, artificially created 
and manipulated laboratory groups. All of these examples have clearly 
defined actor set boundaries; however, recent network studies of actors 
such as elite business leaders in a community (Laumann and Pappi 1976), 
interorganizational networks in a community (Galaskiewicz 1979, 1985; 
Knoke 1983; Knoke and Wood 1981;  Knoke and Kuklinski 1982), and 
interorganizational networks across an entire nation (Levine 1972) have 
less well-defined boundaries. 

In several applications, when the boundary is unknown, special sam
pling techniques such as snowball sampling (Goodman 1949, 1961; Er
ickson 1978) and random nets (first proposed by Rapoport 1949a, 1949b, 
1950, and especially 1963; recently resurrected by Fararo 1981, 1983, and 
Fararo and Skvoretz 1984) can be used to define actor set boundaries. 
Examples of social network studies using snowball sampling include: 
Johnson (1990) and Johnson, Boster, and Holbert (1989) on commercial 
fishermen; Moore (1979) and Alba and Moore (1978) on elite networks. 
Such sampling techniques are discussed in the next section. 

2.2.2 Sampling 

Sometimes, it may not be possible to take measurements on all the actors 
in the relevant actor set. In such situations, a sample of actors may be 
taken from the set, and inferences made about the "popnlation" of actors 
from the sample. Typically, the sampling mechanism is known, and the 
sample is a good, probability sample (with known selection probabilities). 

We will not assume in this book that the actors in the actor set(s) 
are samples from some population. Most network studies focus on 
well-defined, completely enumerated sets, rather than on samples of 
actors from larger populations. Methodology for the latter situation is 
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considerably different from methods for the former. With a sample, one 
usually views the sample as representative of the larger, theoretically 
interesting population (which must have a well-defined boundary and 
hence, a known size), and uses the sampled actors and data to make 
inferences about the population. For example, in a study of major 
corporate actors in a national economy, a sample of corporations may 
be taken in order to keep the size of the problem manageable ; that is, it 
might take too much time and/or too many resources actually to take a 
census of this quite large population. 

There is a large literature on network sampling, both applied and 
theoretical. The primary focus of this literature is on the estimation of 
network properties, such as the average number of ties per actor (see 
Chapter 4), the degree of reciprocity present (see Chapter 13), the level 
of transitivity (see Chapters 6 and 14), the density of the relation under 
study (see Chapter 5), or the frequencies of ties between subgroups of 
actors (see Chapter 7) based on the sampled units. 

Frank (1977a, 1977b, 1977c, 1978b, 1979a, 1979b, 1980, 1985) is the 
most widely known and most important researcher of sampling for social 
networks. His classic work (Frank 1971) and more recent review papers 
(Frank 198 1, 1988) present the basic solutions to the problems that arise 
when the entire actor set is not sampled. Erickson and Nosanchuk (1983) 
review the problems that can arise with network sampling based on a 
large-scale application of the standard procedures to a network of over 
700 actors. Various other sampling models are discussed by Hayashi 
(1958), Goodman (1961), Bloemena (1964), Proctor (1967, 1969, 1979), 
Capobianco (1970), Sheardon (1970), and Cabobianco and Frank (1982). 

One very clever network sampling idea originated with Goodman 
(1961). A snowball network sample begins when the actors in a set 
of sampled respondents report on the actors to whom they have ties 
of a specific kind. All of these nominated actors constitute the "first
order" zone of the network. The researcher then will sample all the 
actors in this zone, and gather all the additional actors (those nominated 
by the actors in the first-order zone who are not among the original 
respondents or those in this zone). These additional actors constitute 
the "second-order" zone. This snowballing proceeds through several 
zones. Erickson (1978) and Frank (1979b) review snowball sampling, 
with the goal of understanding how other "chain methods" (methods 
designed to trace ties through a network from a source to an end; see, 
for example, Granovetter 1974, and Useem 1973, for applications) can 
be used in practice. Chain methods include snowball sampling and the 
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small world technique discussed below. Erickson also discusses at length 
the differences between standard network sampling and chain methods. 

In some network sampling situations, it is not clear what the relevant 
sampling unit should be. Should one sample actors, pairs of actors, triples 
of actors, or perhaps even subsets of actors? Granovetter (1977a, 1977b) 
and Morgan and Rytina (1977) have sensitized the network community to 
these issues (see also Erickson, Nosanchuk, and Lee 1981, and Erickson 
and Nosanchuk 1983). In other situations, one might sample actors, 
and have them report on their ties and the ties that might exist among 
the actors they choose or nominate. Such samples give rise to "ego
centered" networks (defined later in this chapter). With a sample of 
ego-centered networks, one usually wants to make inferences about the 
entire population of such networks (see for example, the epidemiological 
networks discussed by Klovdahl 1985; Laumann, Gagnon, Michaels, 
Michael, and Coleman 1989; and Morris 1989, 1990). Statistically, 
sampling dyads or ego-centered networks leads to sampling designs which 
are not simple; the sampling is actually clustered, and one must adjust 
the standard statistical summaries to allow for possible biases (Reitz and 
Dow 1989). 

2.3 Types of Networks 

There are many different types of social networks that can be studied. 
We will categorize networks by the nature of the sets of actors and 
the properties of the ties among them. As mentioned earlier in this 
chapter, we define the mode of a network as the number of sets of 
entities on which structural variables are measured. One-mode networks, 
the predominate type of network, study just a single set of actors, while 
two-mode networks focus on two sets of actors, or one set of actors and 
one set of events. One could even consider three- (and higher) mode 
networks, but rarely have social network methods been designed for such 
complicated data structures. Our discussion in this section is organized 
by the number of modes in the network. We will first discuss one-mode 
networks (with a single set of actors), then discuss two-mode networks, 
first with two sets of actors and then with one set of actors and one set 
of events. Applications of these three types of networks are the focus for 
methods presented in this book. 

The number of modes in a network refers to the number of distinct 
kinds of social entities in the network. This usage is $lightly different from 
the use of the term "mode" in the psychometric literature (Tucker 1964; 
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Carroll and Arabie 1980). In that literature, mode refers to a "particular 
class of entities" (Carroll and Arabie 1980, page 610). Thus, a study in 
which subjects respond to a set of stimuli (such as questionnaire items) 
gives rise to two modes: the subjects and the stimulus items. In the 
standard sociometric data design, a number of actors are presented with 
a list of the names of other people in the actor set, and asked to rate 
each other person in terms of how much they "like" that person. In 
a non-network context one could view these data as two-mode : the 
people as respondents are the first mode, and the names of the people 
as stimulus (questionnaire) items are the second mode. However, as a 
social network, these data contain only a single set of actors, and thus, 
in our terminology, it is a one-mode network in which the relation of 
friendship is measured on a single set of people. One might very well be 
interested in studying the set of respondents making evaluations of the 
other people, in addition to studying the people as the "stimuli" that are 
being evaluated. In that case one would consider respondents and stimuli 
as two different modes (Feger and Bien 1982; Noma 1982b; Kumbasar, 
Romney, and Batchelder n.d.). 

We first categorize networks by how many modes the network has (one 
or two), and by whether affiliational variables are measured. There are, 
however, other kinds of relational data that are not one of these types. 
One example is data arising from an ego-centered network design. Data 
on such networks are gathered using special sampling strategies that 
allow the researcher to focus on a specific set of respondents, and the 
ties that these respondents have to particular others. We briefly describe 
special ego-centered networks and special dyadic designs at the end of 
this section. 

We turn now to a discussion of one-mode, two-mode, and then affilia
tional, and egocentric and special networks. 

2.3.1 One-Mode Networks 

Suppose the network under study is one-mode, and thus involves mea
surements on just a single set of actors Consider first the nature of the 
actors involved in such networks. 

Actors. The actors themselves can be of a variety of types. 
Specifically, the actors may be 

• People 



2.3 Types of Networks 37 

• Subgroups 
• Organizations 
• Collectives/Aggregates: 

- Communities 
- Nation-states 

Note that subgroups usually consist of people, organizations usually 
consist of subgroups of people, while communities and nation-states are 
larger entities, containing many organizations and subgroups. Thus, 
there is a natural progression of types of actors from sets of people, 
to collections or aggregates. Throughout this book, we will illustrate 
methodology with examples consisting of social network data on different 
types of actors. 

Relations. The relations measured on the single set of actors in a 
one-mode network are usually viewed as representing specific substantive 
connections, or "relational contents" (Knoke and Kuklinski 1982). These 
connections, measured at the level of pairs of actors, can be of many types. 
Barnes (1972) distinguishes, quite generally, between attitudes, roles, and 
transactions. Knoke and Kuklinski (1982) give a more extensive list of 
general kinds of relations. Specifically, the kinds of relations that we 
might study include : 

• Individual evaluations: friendship, liking, respect, and so forth 
• Transactions or transfer of material resources: lending or bor

rowing; buying or selling 
• Transfer of non-material resources: communications, sending/ 

receiving information 
• Interactions 
• Movement: physical (migration from place-to-place), social 

(movement between occupations or statuses) 
• Formal roles 
• Kinship: marriage, descent 

One or more of these types of relations might be measured for a single 
set of actors. 

Individual evaluations are usually measurements of positive or negative 
affect of one person for another. Sometimes, these relations are labeled 
sentiment, and classically were the focus of the early sociometricians (see 
Moreno 1934; Davis 1970; Davis and Leinhardt 1972). Without question, 
such relations historically have been the most studied. 
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Transactions, or transfers of material resources, include business trans
actions, imports and exports of goods, specific forms of social support, 
such as lending and borrowing, contacts made by one actor of another in 
order to secure valuable resources, and transfer of goods. Such relations 
include exchange of gifts, borrowing or lending items, and sales or pur
chases (Galaskiewicz and Marsden 1978; Galaskiewicz 1979; Laumann, 

Galaskiewicz, and Marsden 1978). Social support ties are also examples 
of transactions (Wellman 1992b). 

Transfers of non-material resources are frequently communications 
between actors, where ties represent messages transmitted or information 
received. These ties involve sending or receiving messages, giving or 
receiving advice, passing on gossip, and providing novel information (Lin 
1975; Rogers and Kincaid 1981 ;  Granovetter 1974). Information about 
innovations is frequently diffused over such communication channels 
(Coleman, Katz, and Menzel 1966; Rogers 1979; Michaelson 1990). 

Interactions involve the physical interaction of actors or their presence 
in the same place at the same time. Examples of interactions include : 
sittiog next to each other, attending the same party, visting a person's 
home, hitting, hugging, disciplining, conversing, and so on. 

Movement can also be studied using network data and processes. 
Individuals moving between communities can be counted, as well as 
workers changing jobs or people changing statuses (see, for example, 
Breiger 1981c). 

Formal roles, such as those dictated by power and authority, are also 
relational Ties can represent authority of one actor over others, especially 
in a management setting (White 1961). Example of formal roles include 
boss/employee, teacher/student, doctor/patient, and so on. 

Lastly, kinship relations have been studied using network methods for 
many years. Ties can be based on marriage or descent relationships and 
marriage or family relationships can be described using social network 
methods (for example, see White 1963; Boyd 1969). 

Actor Attributes. In addition to relational information, social 
network data sets can contain measurements on the characteristics of 
the actors. Such measurements of actor attribute variables constitute the 
composition of the social network. 

These variables have the same nature as those measured in non
network studies. People can be queried about their age, gender, race, 
socioeconomic status, place of residence, grade in school, and so on. 
For corporate actors, one can measure their profitability, revenues, geo-
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graphical location, purpose of business, and so on. The "size, shape, and 
flavor" of the actors constituting the network can be measured in many 
ways. 

2.3.2 Two-Mode Networks 

Suppose now that the netwo.rk..under study is two-mode, and thus involves 
measurements on two sets of actors, or on a set of actors and a set of 
events. We will first consider the case in which relations are measured 
on pairs of actors from two different actor sets. We will then discuss a 
special kind of two-mode network in which measurements are taken on 
subsets of actors. 

Two Sets of Actors. Relations in a two-mode network measure 
ties between the actors in one set and actors in a second set. We call such 
networks dyadic two-mode networks, since these relations are functions 
of dyads in which the first actor and the second actor in the dyad are 
from different sets. 

With respect to the different types of actors, the types of relations, 
and the types of actor attribute variables, all of our discussion about 
one-mode networks is relevant. Note, however, that there can be multiple 
types of actors, and we can have a unique collection of attribute variables 
for each set of actors. 

Actors. In a two-mode network that contains two sets of actors, 
these actors can be of the general types as described for one-mode 
networks. However, the two sets of actors may be of different types. 

Relations. In a two-mode network with two sets of actors, at 
least one relation is measured between actors in the two sets. In a more 
extensive two-mode network data set, relations can also be defined on 
actors within a set. However, for the network to be truly two-mode with 
two sets of actors, at least one relation must be defined between the two 
sets of actors. 

An example of such a network can be found in Galaskiewicz and 
Wasserman (1989). The data analyzed there consisted of two sets of 
actors : a collection of corporations headquartered in the MinneapolisjSt. 
Paul metropolitan area, and the non-profit organizations (such as the Red 
Cross, United Way, public radio and television stations) which rely on 
contributions from the public sector for their operating budgets. The 
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primary relation was the flow of donations from the corporations to 
the non-profit organizations, clearly a two-mode relation. Also, it is 
important to note that this relation is unidirectional since it flows from 
actors in one set to actors in the other set, but not the reverse. In addition, 
the analysis by Galaskiewicz and Wasserman considered a number of 
relations dcfined just for the corporations (such as shared country club 
memberships among the chief executive officers) and several just for the 
non-profits (such as interlocking boards of directors). A part of this data 
set will be discussed in more detail later in this chapter. 

One Set of Actors and One Set of Events. The next type of 
two-mode social network, which we refer to as an affiliation network, 
arises when one set of actors is measured with respect to attendance at, 
or affiliation with, a set of events or activities. The first mode in an 
affiliation network is a set of actors, and the second is a set of events 
which affiliates the actors. 

An example comes from Davis, Gardner, and Gardner (1941), as 
described and analyzed by Homans (1950) and Breiger (1974). A set of 
women attended a variety of social functions, and this attendance was 
recorded over a period of several months. Each social function can be 
viewed as a variable, and a binary measurement made as to whether a 
specific actor attended the specific function. These variables are termed 
affiliational. Such data and networks are called affiliation networks, or 
sometimes, membership networks. And since the affiliations are measured 
on subsets of actors, such networks are non-dyadic, two-mode networks. 

Actors. In an affiliation network, we have a first set of actors, 
and a second set of events or activities to which the actors in the first 
set attend or belong. The types of actors in affiliation networks can be 
exactly the same as those in one-mode and two-mode networks. The only 
requirement is that the actors must be affiliated with one or more events. 

Events. In affiliation networks, actors (the first mode) are related 
to each other through their joint affiliation with events (the second mode). 
The events are often defined on the basis of membership in clubs or 
voluntary organizations (McPherson 1982), attendance at social events 
(Davis, Gardner, and Gardner 1941), sitting on a board of directors, or 
socializing in a small group (Bernard, Killworth, and Sailer 1980, 1982; 
Wilson 1982). 
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The nature of the events, which affiliate the actors, depends on the 
type of actors involved. People may attend social functions or belong to 
athletic clubs, subgroups of people may attend various committee meet
ings (for example, departments at a major university send representatives 
to college committee meetings), organizations may be represented on 
various boards of directors in a community, or countries might belong 

to treaty organizations� and so OD. 

Attributes. We can have actor attribute variables that are of 
the same types as those for one-mode and two-mode networks. In 
addition, the events themselves may have characteristics associated with 
them which can be measured and included in the network data set. 
For example, clubs will be of a particular size or located in a specific 
geographical area. Events usually occur at discrete points in time, as 
well as in particular geographical places. Thus, there can be two sets of 
attribute variables in an affiliation network data set: attributes of the 
actors, and attributes of the events. 

Methods for analyzing affiliation network data are described in Chap
ter 8, and are applied to a network data set giving the memberships of 
a set of chief executive officers of major corporations in Minneapolis/St. 
Paul in a set of exclusive clubs. 

2.3.3 Ego-centered and Special Dyadic Networks 

Not all structural data give rise to standard social network data sets. With 
standard network data (regardless of how many modes the network has), 
one enumerates not only the actors, but the relevant pairs as well. All 
actors (theoretically) can relate to each other in one-mode networks. 
In two-mode networks with two sets of actors, all actors in the first 
mode can (theoretically) relate to all in the second. However, some data 
collection designs gather structural information on some pairs but not 
others. An example of such data arises in studies of couples. Each partner 
in the couple can interact with the other but with no other person during 
counseling sessions. Interactions during these sessions are then recorded. 
When interest centers on a collection of pairs (husband-wife, father-son, 
and so forth), one frequently samples from a large population of such 
pairs. We will refer to these non-network relational data as special dyadic 
designs. 

An actor may also relate to a limited number of "special" other 
actors. For example, one might observe mothers interacting with their 
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own children in an experimental situation. In this case, mothers only 
interact with their own children, and children only interact with their 
own mother. Thus, the partners for one person (either mother or child) 
are different from the partners for another. In this situation, the design 
of the experiment constrains the interactions among the set of people so 
that all people cannot, theoretically, interact with all others. 

Another related design is an ego-centered network. An ego-centered 
network consists of a focal actor, termed ego, as set of alters who have ties 
to ego, and measurements on the ties among these alters. For example, 
when studying people, one samples respondents, and each respondent 
reports on a set of alters to whom they are tied, and on the ties among 
these alters. Such data are often referred to as personal network data. 
Clearly these data are relational, but limited, since ties from each actor 
are measured only to some (usually only a few) alters. For example, 
in 1985 the General Social Survey conducted by the National Opinion 
Research Center (see Burt 1984, 1985) asked respondents : 

Looking back over the last six months � who are the people with 
whom you discussed matters important to you? (1984, page 1 1 9) 

Respondents also reported on the ties between the people they listed. 
Bernard, Johnsen, Killworth, McCarty, Shelley, and Robinson (1990), 
Killworth, Johnsen, Bernard, Shelley, and McCarty (1990), Huang and 
Tausig (1990), Burt (1984, 1985), Marsden (1987, 1990b), Wellman (1993), 
as well as Campbell. Marsden and Hurlbert (1986) discuss measurement 
of such personal. ego-centered networks. 

Ego-centered networks have been widely used by anthropologists to 
study the social environment surrounding individuals (Boissevain 1973) 
or families (Bott 1957). Ego-centered networks are also used quite often 
in the study of social support. The term "social support" has been used 
to refer to social relationsJiips that aid the health or well-being of an 
individual. The emphasis on relationships has allowed researchers to 
study support using social networks. Such networks are of great interest 
in clinical and community psychology, as well as in sociology. A variety 
of hypotheses (see Hammer 1983; Cohen and Syme 1985) have been 
offered to explain how personal relationships, as reflected by such ego
centered networks, can affect the emotional and physical well-being of 
an individual. 

The methods described in this book assume that there are no theo
retical 1imitations on interactions among actors. A social network arises 
when all actors can, theoretically, have ties to all relevant actors. The pri-
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mary object of study for methods discussed in this book is this complete 
collection of actors (one or more sets) and the ties among them. 

2.4 Network Data, Measurement and Collection 

We now turn to issues concerning the measurement and collection of 
network data, the accuracy, validity, and error associated with these 
data, and particular design considerations that can arise in network 
studies. 

2.4.1 Measurement 

Social network data differ from standard social and behavioral science 
data in a number of important ways. Most importantly, social network 
data consist of one (or more) relations measured among a set of actors. 
The presence of relations has implications for a number of measurement 
issues, including the unit of observation (actor, pair of actors, relational 
tie, or event), the modeling unit (the actor, dyad, triad. subset of ac
tors, or network), and the quantification of the relations (directional vs. 
nondirectional; dichotomous vs. valued). We will discuss each of these 
issues in turn. 

Social network data can be studied at a number of different levels : the 
individual actor, the pair of actors or dyad, the triple of actors or triad, 
a subset of actors, or the network as a whole. We will refer to the level 
at which network data are studied as the modeling unit However, social 
network data often are gatbered at a level that is different from the level 
at which they are modeled. We discuss the unit of observation and the 
modeling unit in the next two sections. 

Unit of Observation. The unit of observation is the entity on 
which measurements arc taken Most often social network data are 
collected by observing, interviewing, or questioning individual actors 
about the ties from these actors to other actors in the set. Thus, the unit 
of observation is an actor, from whom we elicit information about ties. 
The dyad is the unit of observation when one measures ties among pairs 
of actors directly. For example, one could record instances of aggression 
among pairs of children on a playground. When affiliation network data 
are collected, the unit of observation is often the event. The researcher 
selects events or social occasions, and for each event, records the actors 
who are affiliated with it. 
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Modeling Unit. Just as social network data can be observed at 
a number of levels, there are several levels at which network data can be 
modeled or summarized. These levels are the: 

• Actor 
• Dyad 
• Triad 
• Subgroup 
• Set of actors or network 

In categorizing network methods, it is useful to consider the level to which 
a model or network property applies. Some network properties pertain 
to actors (for example the number of "choices" that an individual actor 
receives from others in the network). Other properties pertain to pairs 
of actors (for example, if one person "chooses" another as a friend, is 
the "choice" returned by the second person?). Models at the level of the 
triad consider triples of actors and the ties among them. Many methods 
pertain to subgroups of actors ; for example, one could study whether 
there are subsets of actors in the network who interact frequently with 
each other. Finally many properties pertain to the network as a whole, 
for example, the proportion of ties that are present in the network. 

Relational Quantification. There are two properties of relations 
that are important for understanding .. their measurement. and for catego
rizing the methods described here: whether the relation is directional or 
nondirectional, and whether it is dichotomous or valued. In a directional 
relation, the relational tie between a pair of actors has an origin and 
a destination; that is, the tie is directed from one actor in the pair to 
the other actor in a pair. For example, one country exports manufac
tured goods to a second country; the first country is the source of the 
manufactured goods, and the second country is the destination. In a 
nondircctional relation the tie between a pair of actors does not have 
a direction. For example, we could define a tie as present between two 
countries if they share a border. 

A second important property of a relation is whether it is dichotomous 
or valued. Dichotomous relations are coded as either present or absent, 
for each pair of actors. For example one could record whether one 
country sends an ambassador to a second country; thus giving rise to 
a dichotomous relation that can only take on two values : "send" or 
"not send." On the other hand, valued relations can take on a range of 
values, indicating the strength, intensity, or frequency of the tie between 
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each pair of actors. For example, we could record the dollar value of 
manufactured goods that are exported from one country to a second 
country, thus giving rise to a valued relation. 

2.4.2 Collection 

There are a variety of ways in which social network data can be gathered. 
These techniques are: 

• Questionnaires 

• Interviews 
• Observations 

• Archival records 

• Experiments 

• Other techniques, including ego.centered, small world, and di· 
aries 

Each of these techniques will be discussed and illustrated with examples. 

Questionnaire, This data collection method is the most com
monly used (especially when actors are people). The questionnaire usu
ally contains questions about the respondent's ties to the other actors. 
Questionnaires are most useful when the actors are people, and the re
lation(s) that are being studied are ones that the respondent can report 
on. For example, people ca,\ report on who they like, respect, or go to 
for advice. Questionnaires can also be used when the actor in a study 
is a collective entity, such as a corporation, but an individual person 
representing the collective reports on the collective's ties. For example, 
Galaskiewicz (\985) asked officers in charge of corporate giving whether 
or not the <.::urporation had made a donation to a non- profit agency. 

There are three different question formats that can be used in a 
questionnaire : 

• Roster vs. free recall 

• Free vs. fixed choice 

• Ratings VB. complete rankings 

In the following sections we will discuss each of these formats and 
describe examples of their use. 
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Roster os. Free Recall. One issue in the design of a questionnaire 
to gather network data is whether each actor should be presented with a 
complete list, or roster, of the other actors in the actor set. Rosters can be 
constructed only when the researcher knows the members in the set prior 
to data gathering. For example, Krackhardt and Stern (1988) collected 
information on friendships among members of a university class as part 

of their study of "simulated" corporations. They had each person rate 
their friendship with every member of the class on a five point scale : 

Everyone in the class completed a questionnaire which asked them to 
rate every other person in the class as to how close a friend he or she was. 
The directions for this questionnaire included the following: "Please 
place a check in the space that best describes your relationship with each 
person on the list." The names of everyone participating in the game 
were listed below, with five categories from which the respondent could 
choose: "trust as a friend", "know welt", "acquaintance", "associate 
name with face", and "do not know". (page 131) 

For some network designs, the researcher does not present a complete 
list of the actors in the network to the respondent on the questionnaire. 
In such instances, it is common simply to ask respondents to "name 
those people with whom you (fill in specific tie)". Such a format, where 
respondents generate the list of names, is called free recall. For example, 
Rapoport and Horvath (1961) studied friendships in two junior high 
�chools. Students were asked to list their best friends, but were not 
presented with a roster. Specifically, 

Each pupil in both schools was asked to write his name, age, grade, and 
home room number on a card and to fill in the blanks in the statements: 

• "My best friend in (name of school) Junior High School is . . .  " 
• "My second best friend is . . .  " 
· . . .  
• "My eighth best friend is . . . .  " (page 281) 

Note here how the network membership is known beforehand (all stu

dents in a school are the set of actors) but students listed their friends 
using free recall. 

In some settings, the researcher might not even have a list; that is, the 
actors within the actor set might not even be known in advance. In this 
situation, sampling or enumeration techniques are necessary (as we have 
discussed earlier in this chapter). For example, in studies of community 
elites (Friedkin 1984; Moore 1979; Alba and Moore 1978), selected 
actors are asked to name other actors they believe to be influential in the 
community. 
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Free vs, Fixed Choice. If actors are told how many other actors 
to nominate on a questionnaire (for example, to name a specific number 
of "best friends"), then each person has a fixed number of "choices" to 
make. Such designs are termed fixed choice. In a fixed choice design each 
actor has a fixed maximum number of ties to the other actors in the set 
of actors. For example, Coleman, Katz, and Menzel (1957), in a study 
of diffusion of a medical innovation among physicians, interviewed all 
physicians in a community. Specifically, 

Each doctor interviewed was asked three sociometric questions: 

(i) "To whom did he most often turn for advice and information?" 
(ii) "With whom did he most often discuss his cases in the course of an 

ordinary week?" 
(iii) "Who were the friends, among his colleagues, whom he saw most 

often socially?" 

In response to each of these questions, the names of three doctors were 
requested. (page 254) 

In this study, each person was constrained to have no more than three 
ties for each of the three relations. 

On the other hand, if actors are not given any such constraints on 
how many nominations to make, the data are free choice. For example, 
Carley and Wendt (1988) studied the ties among people in an "invisible 
college" of users of a computer program at a variety of universities. 

Each individual was asked to denote for each member of the user group 
whether or not they: 

• Had an office next to each other 
• Attended the same school at the same time 
• Shared an office 
• Lived in the same living group or apartment 
• Were at the same school at the same time 
• Were in the same academic department at the same time 

Note that there is no constraint on the number of people that an 
individual respondent can choose on these six relations. 

The study of a university class by Krackhardt and Stern (1988) was a 
free choice design, since respondents were not limited in the number of 
friends they could choose. The Rapoport and Horvath design allowed 
each student to make eight choices; however, as Rapoport and Horvath 
note, students did not always fill in all of the 8 choices. Similarly, 
in a study of 384 sociograms that were collected using a fixed choice 
procedure, Holland and Leinhardt (1973) found that in fewer than 20 
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percent of the data sets did all respondents conform to the fixed number 
of choices. 

Later in this chapter, we discuss limitations of social network data 
collected using fixed choice designs. 

Ratings VS. Complete Ranking. In some network designs, actors 
are asked to rate or rank order all the other actors in the set for each 
measured relation. Such measurements reflect the intensity of strength of 
ties. Ratings require each respondent to assign a value or rating to each 
tie. Complete rankings require each respondent to rank their ties to all 
other actors. 

An example of a complete rank order design is the study by Bernard, 
Killworth, and Sailer (1980). They asked each of forty members of a 
social science research office to report the amount of communication 
with each other member of the office using the following procedure : 

. . .  each participant was given the familiar deck of cards containing the 
names of the other participants. They arranged (that is, ranked) the 
cards from most to least on how often they talked to others in the office 
during a normal working day. (page 194) 

Such data are complete rankings or complete rank orders. This ques
tionnaire design is quite different from that employing ratings of the 
ties. 

Alternatively, one can gather ratings from each actor about their ties to 
other members on every relation. These ratings can be dichotomous, as 
in the Carley and Wendt (1988) study (ties are either present or absent), 
or valued, as in the Krackhardt and Stern (1988) study where ratings 
were made by choosing one of five possible categories for the strength of 
each tie. 

Full rank-orders and rating scales with multiple response categories 
produce valued relations. Response formats where respondents either 
nominate a person or not on a given relation produce dichotomous 
relations. In either case, when "choices" are directed from respondents 
to the people they name, the resulting relations are directional. 

Interview. Interviews, either face-to-face or over the telephone, 
are occasionally used to gather network data in instances where ques
tionnaires are not feasible. For example, Galaskiewicz (1985) interviewed 
the chief executive officers of the largest corporations in the Minneapo
lislSt. Paul metropolitan area. Chief executive officers were much more 
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willing to participaie in face-to-face interviews than via an impersonal 
questionnaire. 

Interviews have been used to gather data from respondents in ego
centered networks, such as the 1985 NORC General Social Survey (Burt 
1984, 1985), Wellman's study of social support in East York, Ontario 
(Wellman 1979; Wellman, Carrington, and HaIl 1988; Wellman and 
Wortley 1990, and references therein), and Fischer's study of friendships 
in a community in Northern California (Fischer 1982). 

Observation. Observing interactions among actors is another 
way to collect network data. This method has been widely used in 
field research to study relatively small groups of people who have face
to-face interactions (Roethlisberger and Dickson 1961; Kapferer 1969; 
Hammer, Polgar, and Salzinger 1969; Thurman 1980; Bernard and Kill
worth 1977; Killworth and Bernard 1976; Bernard, Killworth, and Sailer 
1980, 1982; Freeman and Romney 1987; Freeman, Romney, and Free
man 1987; Freeman, Freeman, and Michaelson 1988, 1989). For example, 
Freeman, Freeman, and Michaelson (1988, 1989) observed a collection 
of fifty-four windsurfers on a beach in Southern California. 

Observations on the subjects' interaction patterns were made for two 
half-hour periods on each day of 31 consecutive days. (Freeman, 
Freeman, and Michaelson 1989, page 234) 

The information recorded was the number of minutes of interaction 
between pairs of people. 

Observational methods have been used extensively in the studies of 
Bernard, Killworth, and Sailer (Bernard and Killworth 1977; Killworth 
and Bernard 1976; Bernard, Killworth, and Sailer 1980, 1982). These 
researchers systematically observed interactions among people in a variety 
of social settings, such as a social science research office, facnlty, staff, and 
graduate students in a university department, and members of a college 
fraternity. Their research focused on the relationship between these 
observed interactions and actors' recollections of their own interactions. 
Since data are collected by observing interactions, without requiring 
verbal responses from the people, this method is quite useful with people 
who are not able to respond to questionnaires or interviews. 

Observational methods are widely used in the study of interactions 
among non-human primates (Dunbar and Dunbar 1975; Sade 1965). 
For instance, Wolfe (see MacEvoy and Freeman n.d.) observed a colony 
of monkeys, and recorded which monkeys visited a river together. Sailer 
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and Gaulin (1984) present data collected on interactions among members 

of a colony of mantled howler monkeys. 
Observational methods are also useful for collecting affiliation network 

data. The researcher can record who attends each of a number of 
social events. For example, Freeman, Romney, and Freeman (1987) 
recorded which faculty rn�mbers and graduate students attended a weekly 
departmental colloquium over the course of a semester. Each colloquium 

is an event in this affiliation network. 
In some studies, the researcher observes a set of actors for an extended 

period of time, and then summarizes his or her impressions of the ties 

among all pairs of actors in the set (Roethlisberger and Dickson 1961 ;  
Kapfercr 1969; Thurman 1980). The ties are based on the researcher's 

impressions. 

Archival Records. Some network researchers measure ties by ex
amining measurements taken from records of interactions. Such records 

can take many forms, such as measurements on past political interactions 
among nations, previously published citations of one scholar by another, 
and so on. Burt and Lin (1977) discuss how social networks can be 
obtained from archival data, such as journal articles, newspapers, court 
records, minutes of executive meetings, and the like. Frequently, as noted 

by Burt and Lin, such data give rise to longitudinal relations and can be 
used to reconstruct ties that existed in the past. For example, Burt (1975, 
1983) obtained information on interactions among corporate actors from 
the front pages of previously published issues of The New York Times. 

Rosenthal, Fingrutd, Ethier, Karant, and McDonald (1985) used bi

ographical records to study the organizational affiliations of women 
reformers in the 19th century in New York. These researchers were 

interested in the overlaps among the organizations. The list of women 

and their affiliations was compiled from biographical dictionaries which 
included information about organizational affiliations of 202 women, and 
1015 organizations. These data are thus affiliation data compiled from 

archival sources. 

Galaskiewicz (1985) obtained information on memberships of the chief 
executive officers of corporations in Minneapolis/St. Paul in elite country 
clubs by examining the membership rosters of the clubs. Other researchers 
have conducted similar elite studies by looking at volumes such as Who's 
Who, and social registers. 

Another common nse of archival records is for the study of sociol
ogy of science, specifically, patterns of citations among scholars. One 
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can examine "who cites whom" in order to understand diffusion of a 
scientific innovation (Burt, 1978/1979a; Breiger 1976; McCann 1978; 
Noma 1982a, 1982b; Doreian and Fararo 1985; White and McCann 
1988; Michaelson 1991; Carley and Hummon 1993). In these studies, the 
unit of observation is a citation, but since a given article usually contains 
many citations, the actor can be the article containing the citation, or the 
journal containing the article, or even the authors of the cited articles. 

All of the data collection methods discussed above attempt to measure 
the ties among all the actors in the set. Many network studies employ 
a variety of data collection methods for recording ties, in addition to 
gathering actor attribute information. These data collection methods 
(questionnaires, observations, interviews, experiments, and so forth) are 
common social and behavioral science procedures. 

Other. Here, we focus on other designs for collecting relational 
data. These include the cognitive social structure design (which is an 
extension of sociometric data to include actor perceptions of the net
work), experimental studies (in which network data are collected under 
controlled situations), and studies in which information is collected on 
ties among just some actors. Often these studies are used to estimate 
the size (de Sola Pool and Kochen 1978; Freeman and Thompson 1989; 
Bernard, Johnsen, Killworth, and Robinson 1989; Wellman 1992b) or 
composition (Verbrugge 1977; Wellman 1979; Marsden 1988; Wellman 
and Wortley 1990, and references therein) of an individual's ego-centered 
network. Perhaps only a rew actors are chosen as respondents. Or, the 
actors might not even be members of a well·defined set of actors. Clearly 
in these instances, we are not studying a network with a boundary. We 
refer to such studies as special network designs. 

In the next paragraphs, we discuss data collection procedures for 
cognitive social structure designs, experimental, ego-centered networks, 
and small- and reverse small-world techniques. 

Cognitive Social Structure. In a standard sociometric question
naire, one asks respondents about their own ties. A variation of this 
design is to ask respondents to give information on their perceptions 
of other actors' network ties. Such designs are called cognitive social 
structures because they measure perceived relations (Krackhardt 1987a; 
Kumbasar, Romney, and Batchelder n.d.). 

As an example, Krackhardt and Porter (1985) studied turnover in 
several fast food restaurants. They were interested in the employees' 
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perceptions of friendships among all other employees in the restaurant. 
Thus, they had to gather information from each person not only about 
their own friendships, but also about their perceptions of the friendships 
among all other pairs of employees. They collected network data at two 
points in time. 

Their procedure is described as follows: 

In the first questionnaire, each person in the work group was asked 
to record who they perceived to be a friend of whom. While simple 
on the surface, this substantial task required that employees consider 
all possible pairs of friends in the restaurant. To accomplish this, the 
respondent was told to check the names of all those listed whom he 
or she thought would be considered a friend by employee # 1 (for 
example, "Henry"), Then, the same list was r�peate<..l on the next page, 
and the respondent was asked to check all names of those whom he 
or she thought would be considered a friend of employee # 2 ("Rita"). 
This process was repeated a total of N times (for N employees). In 
this way, we could assess each person's perception of everyone's friends, 
their own as well as their coworkers. (page 250) 

Alternatively, one can ask respondents to report subgroups of people 
who form relatively tightly knit subgroups within the larger collection of 
people (Freeman, Freeman, and Michaelson 1988, 1989). 

Data collected using a cognitive social structure design gives consid
erably more information than the usual sociometric design, since actors 
report not only on their own ties, but also on their perceptions of ties 
among all pairs of actors. 

Experimental. Social network data can be collected using exper
imental designs. There are (at least) two basic ways to conduct such 
experiments. First, one can choose a set of actors and observe their in
teractions in an experimentally controlled situation. The researcher then 
records interactions or communications between pairs of actors. Ties 
may be observed between all pairs of actors. Second, one can not only 
choose actors but also specify which pairs of actors are permitted to com
municate with each other during the experiment. One only records the 
frequency or content of communications between those pairs of actors 
who are permitted to interact. 

Group problem-solving experiments (Bavelas 1950; Leavitt 1949, 1951) 
in which actors are assigned to positions within the network defined by the 

experimenter and allowed to communicate only with specific others are an 
example of the second type of experiment. The experimenter manipulates 
both group members and their ties. Power and exchange experiments are 
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also of the second type (Cook, Emerson, Gilmore, and Yamagishi 1983; 
Bonacich 1987; Markovsky, Willer, and Patton 1988; and Friedkin and 
Cook 1990). The experimenter assigns actors to positions, and allows 
certain pairs of actors to negotiate the exchange of reSOurces. 

Ego-centered. An ego-centered, or local, network consists of a 
focal person or respondent (ego), a set of alters who have ties to ego, 
and measurements on the ties from ego to alters and on the ties between 
alters. One begins by asking a collection of respondents about their ties 
to other people to elicit the set of alters. In 1985 the NORC General 
Social Survey (see Burt 1984, 1985) asked a sample of 1531 people 

From time to time, most people discuss important matters with other 
people. Looking back over the past six months, who are the people 
with whom you discussed matters important to you? (page 1 19) 

One also asks respondents information about the ties among the people 
that the respondent has named. The 1985 General Social Survey COn
tained a question about the ties among all pairs of people named by 
the respondent. If we label two of the people named by a particular 
respondent "Alter 1" and "Alter 2," then the question can be worded 

Please think about the relations between the people you just mentioned. 
Some of them may be total strangers, in the sense that they would 
not recognize each other if they bumped into each other on the street. 
Others might be especially close, as close to each other as they are to 
you. First think about [Alter 1] and [Alter 2]. Are these people total 
strangers? (Burt 1985, page 120) 

Such measurements give rise to ego-centered networks. 

Small World. Special network designs are also used in small 
world and reverse small world studies. A small world study is an attempt 
to delermine how many actors a respondent is removed from a target 
individual based on acquaintanceship. Of primary interest is not only how 
long these "chains" are, but also the characteristics of the intermediate 
actors in the chain. This data collection design was pioneered by Milgram 
(Milgram 1967; Travers and Milgram 1969). Korte and Milgram (1970) 
describe the typical small world study as follows: 

The small world method consists of presenting each of the persons in a 
"starting population" with the description of a given "target person" 
his name, address, occupation, and other selected information. The task 
of a starter is to advance a: booklet toward the target person by sending 
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the booklet to a personal acquaintance whom he considers more likely 
than himself to know the target. Each person in turn advances the 
booklet in this manner until the chain reaches the target (page 101) 

Often the intermediaries are asked to return a postcard to the researcher 
reporting some basic demographic characteristics. The researcher can 
then compare characteristics of successful and unsuccessful chains. Korte 
and Milgram (1970), Erickson and Kringas (1975), and Shotland (1976) 
have also used this design, as discussed by Lin (1989), and by papers in 
the volume edited by Kochen (1989). 

A reverse small world study focuses on the ties from a specific respon
dent to a variety of hypothetical targets (Killworth and Bernard 1978; 
Cuthbert 1989). Cuthbert (1989) states: 

. . .  individuals are asked to imagine that they will pass something to 
someone who is to eventually reach a target person they do not know. 
They are instructed to think of someone they know, who might be a 
first link in a chain to the target person. . . .  The respondent is given 
a list of possible targets who are located geographically and socially 
in different parts of the society. In this way the reverse small world 
method clearly maps the outgoing network of the people who complete 
the questionnaire. (page 212) 

White (1970) discusses the possible biases that can arise by using the 
small world technique. Many of these biases arise because response rates 
are typically much lower with this form of network data collection. Better 
estimation strategies of network properties are discussed by White (1970) 
and by Hunter and Shotland (1974). 

Diary. Another way to gather social network data is to ask each 
respondent to keep a continuous record of the other people with whom 
they interact (for example, Gurevich 1961 ;  de Sola Pool and Kochen 
1978). Such methods have been used in the study of personal networks 
among people. For example, see Cubbitt (1973), Mitchell (1974), and 
Higgins, McClean, and Conrath ( 1985). 

Social support researchers sometimes ask respondents to keep daily 
records of all people with whom they come into contact. In addition 
to generating a list of people in every respondent's personal network, 
these data sets frequently include information on the type of relation 
and characteristics of the alters in each ego-centered network (see Reis, 
Wheeler, Kernix, Spiegel, and Nezlek 1985; Pagel, Erdly, and Becker 
1987). 
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2.4.3 Longitudinal Data Collection 

Occasionally, a researcher is interested in how ties in a network change 
over time. In studies of such processes, one measures one or more 
relations at fixed intervals of time. Such designs allow one to study how 
stable ties are and whether such ties ever reach an equilibrium state. 
There are (usually) two research questions to be answered when studying 
longitudinal network data. The first is how the process has changed over 
time, while the second question asks how well the past, or the history of 
the process, can predict the future. Some comments on how to gather 
longitudinal social network data can be found in Wasserman (1979). 

Longitudinal social network data can be collected using any of the 
methods described above (questionnaire, interview, observation, and so 
on). There have been some important longitudinal studies, primarily of 
sociometric relations, such as friendship. Other researchers have looked 
at communications throughout a network over time. 

Nordlie (1958) and Newcomb (1961) studied two 1956 University of 
Michigan fraternities, each containing seventeen men housed together, 
for a period of fifteen weeks. All students were incoming transfer students 
who were initially unknown to each other. Each person was asked to 
rank each of his fellow fraternity members on the basis of positive feeling. 
Rankings were recorded each week, except for week 9. These data were 
studied in depth by Nordlie (1958), White, Boorman, and Breiger (1976), 
Boorman and White (l976), and Wasserman (1980). 

Bernard, Killworth, and Sailer ( 1980, 1982) studied another fraternity 
over time, this one existing in the late 1970's in Morgantown, West 
Virginia. The fifty-eight fraternity members had been living together at 
least three months. Interactions among members within the fraternity 
were recorded by an outside observer every fifteen minutes, twenty-one 
hours per day, for five days. This observation process was conducted three 
times during the year. The observer noted every group in conversation, 
yielding a very rich set of longitudinal interaction ties. In addition, the 
researchers asked the fraternity members both about their "friendships" 
within the fraternity and about their recollections of their interactions 
with other fraternity members at the end of each of the three observation 
periods. To measure the interaction relation, the students were asked to 
give a rating of their interactions with each of the other actors on an 
ordinal scale of 1 (no communication) to 5 (great deal of communication). 
Thus, three longitudinal relations were studied: interaction (measured 
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almost continuously for three different five-day periods), friendship, and 
recalled communication (measured at three points in time). 

Another classic example is Freeman's EIES data, which consist of 
measurements of computer mail interactions, over the course of an 
eighteen month period, among a set of quantitative researchers studying 
social networks. These data arc described at the end of this chapter. 
Yet another example comes from Katz and Proctor's (1959) study of ties 
in an eighth-grade classroom of twenty-five boys and girls. These data 
consist of friendship choices made four times during the school year. The 
data were gathered by Taba (1955), who focused on the differences and 
similarities between boy-boy and girl-girl choices, and "mixed gender" 
ties. 

2.4.4 Measurement Validity, Reliability, Accuracy, Error 

As we noted in Chapter 1, social network research is concerned with 
studying patterns of social structure. As Freeman and Romney (1987) 
note, "social structure refers to a relatively prolonged and stable pattern 
of interpersonal relations" (1987, pages 330-331). In their discussion of 
measurement error in sociometry, Holland and Leinhardt (1973) refer to 
this pattern as the true structure, in contrast to the observed structure 
contained in the measured network data, which might contain error. 
Important concerns in social network measurement are the validity, 
reliability, and measurement error in these data. In addition, since 
social network data are often collected by having people report on 
their own interactions, the accuracy of these self-report data is also a 
concern. Surprisingly little work has been done on the issues of validity, 
reliability, and measurement error in social network data. A recent paper 
by Marsden (1990b) reviews this work; we summarize this and other 
research briefly here. 

"Accuracy". Often sociometric data are collected by having peo
ple report on their interactions with other people. For example, a 
researcher might ask each actor to report "With whom did you talk 
last week?", or "What other people were at the party with you last 
Saturday?" In either case, the respondent is asked to recall his or her 

interactions. An important issue is the relationship between information 
collected using verbal reports and information collected by observing the 
peoples' interactions. 
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Considerable research has been done on the question of iriformant 
accuracy in social network data. Much of this research was conducted by 
Bernard, Killworth, and Sailer using very clever data collection designs 
in which they observed interactions among people in several different 
communities (for example, a fraternity, a research office, and ham radio 
operators) and also asked the same people to report on their interactions 
(Bernard and Killworth 1977, 1979; Killworth and Bernard 1976, 1979; 
Bernard, Killworth, and Sailer 1980, 1982; Bernard, Killwor!h, Kronen
feld, and Sailer 1985). They concluded that about half of what people 
report about their own interactions is incorrect in one way or another. 
Thus, people are not very good at reporting on their interactions in 
particular situations. 

However, recent studies by Freeman, Romney, and colleagues (Rom
ney and Faust 1982; Romney and Weller 1984; Freeman and Romney 
1987; Freeman, Romney, and Freeman 1987; Freeman, Freeman, and 
Michaelson 1988) and by Hammer (1980, 1985) argue that particular 
interactions are not of primary concern to social network researchers. 
Rather, as we noted above, the "true" structure of the network, relatively 
stable patterns of interaction, are of most interest. Thus it is these long
term patterns the researcher should be studying and estimating, not the 
particular interactions of individuals. Freeman, Romney, and Freeman 
(1987) argue !hat verbal reports (recall of interactions) should be under
stood using principles of memory and cognition. They found that what 
people report about their interactions is in fact related to the long-range 
social structure, rather than to particular instances. 

Another issue related to the accuracy of network data occurs when the 
actors in the network are organizations (for example corporations) but 
information on ties is collected from individuals as representatives of the 
organization. For example, Galaskiewicz (1985) measured donations from 
corporations to non-profit agencies by interviewing the officer in charge 
of corporate giving. One must be able to assume that the individual who 
is interviewed in fact has knowledge of the information being sought. 

Validity. A measure of a concept is valid to the extent that it 
actually measures what it is intended to measure. Often, a researcher 
assumes that the measurements of a concept are indeed valid. For 
example, one might assume that asking people "Which people in this 
group 'are your friends?" has face validity as a measure of friendship, in 
the sense that the answer to the question gives a set of actors who are 
related to the respondent through friendship ties. 



58 Social Network Data 

However, the validity of a measure of a concept is seldom tested in a 
rigorous way, A more formal notion of validity, construct validity, arises 
when measures of concepts behave as expected in theoretical predictions. 
Thus, the construct validity of social network measures can be studied 
by examining how these measures behave in a range of theoretical 
propositions (Monton. Blake, and Fruchter 1955b; Burt, Marsden, and 
Rossi 1985). 

Very little research on the construct validity of measures of network 
concepts has been conducted. In one study of this important idea, 
Mouton, Blake, and Fruchter (1955b) reviewed dozens of sociometric 
studies and found that sociometric measnres, such as number of choices 
received by an actor, were related to a number of actor characteristics, 
such as leadership and effectiveness, thus demonstrating the construct 
validity of those sociometric measures. 

Reliability. A measure of a variable or concept is reliable if 
repeated measurements give the same estimates of the variable. In a 
standard psychometric test-theoretic framework (see Lord and Novick 
1968; Messick 1989), the reliability of a measure can be assessed by com
paring measurements taken at two points in time (test-retest reliability), 
or by comparing measurements based on subsets of test items (split
halves or alternative forms). For the test-retest assessment of reliability 
to be appropriate, one must assume that the "true" value of a variable 
has not changed over time. This assumption is likely to be inappropriate 
for social network properties, since social phenomena can not be assumed 
to remain in stasis over any bnt the shortest spans of time. Assessing 
reliability of social network measurements using the test-retest approach 
is therefore problematic. Three approaches that have been used to assess 
the reliability of social network data are: test-retest comparison, compar
ison of alternative question formats, and the reciprocity of sociometric 
choices (Conrath, Higgins, and McClean 1983; Hammer 1985; Laumann 
1969; Tracy, Catalano, Whittaker, and Fine 1990). 

Reliability of sociometric data can also be assessed at different levels. 
One can study the reliability of the "choices" made by individual actors, 
or one can study the reliability of measures aggregated over a number of 
individual responses (for example, the popularity of an actor measured 
as the total number of choices it received) (Mouton, Blake, and Fruchter 
1955a; Burt, Marsden, and Rossi 1985). 

Although it is difficult to draw general conclusions from the research 
on the reliability of social network data collected from interviews or 
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questionnaires, several findings are noteworthy. Sociometric questions 
using ratings or full rank orders are more reliable (have higher test-restest 
reliability) than fixed choice designs in which just a few responses are 
allowed (Mouton, Blake, and Fruchter 1955a). Responses to sociometric 
questions about more intense or intimate relations have higher rates of 
reciprocation than sociometric questions about less intense or intimate 
relations (see Marsden 1990b; Hammer 1985). Lastly, the reliability of 
aggregate measures (such as popularity) is higher than the reliability of 
"choices" made by individual actors (Burt, Marsden, and Rossi 1985). 

Measurement Error. Measurement error occurs when there is 
a discrepancy between the "true" score or value of a concept and the 
observed (measured) value of that concept. It is common to assume that 
the observations or measurements of a concept are an additive combina
tion of the "true" score plus error (or noise). This error, the difference 
between the true and observed values, is referred to as measurement error. 

Holland and Leinhardt (1973) present a thorough discussion of mea
surement error and its implications in social network research. As they 
note, in social network research the measurements are the collection 
of ties among actors in, the network, represented in the sociomatrix or 
sociogram. These measurements may differ from the "true" structure of 
the network. Since there are several levels at which we can study social 
networks (for example, one can look at properties of actors, pairs of 
actors, subsets of actors, or the network as a whole), it is important to 
understand the implications of measurement error at each of these levels. 

Of particular importance in the discussion presented by Holland and 
Leinhardt is the error that arises in fixed choice data collection designs. 
Recall that in a fixed choice design, the respondent is instructed to 
nominate or name some fixed number of others for each relation. For 
example, each person may be asked to "List your three best friends." 
This design introduces error since it is quite unlikely that all people have 
exactly three best friends. The restriction of the nomination process also 
introduces error into the measurement of other network properties, such 
as properties of triads (triples of actors and their ties) and of subgroups. 

2.5 Data Sets Found in These Pages 

We now turn our attention to the network data sets that we focus on 
throughout this book. Each is described in detail, with attention given 
to the issues mentioned earlier in the chapter. All of these data sets, 
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including measurements on all relations and actor attributes (if included) 
can be found in Appendix B. As the reader will see, these data are quite 
diverse, coming from a variety of disciplines and theoretical concerns. 
There are five primary data sets we discuss below. 

2.5.1 Krackhardt's High-tech Managers 

This is a one-mode network, with three relations measured on a set of 
people. These data were gathered by Krackhardt (1987a) in a small man
ufacturing organization on the west coast of the U.S. This organization 
had been in existence for ten years and produced high-tech machinery for 
other companies. The firm employed approximately one hundred people, 
and had twenty-one managers. These twenty-one managers are the set 
of actors for this data set. Throughout the book, we will refer to this 
example as "Krackhardt's high-tech managers." Krackhardt's interest in 
these data focused on the managers' perceptions of the entire network of 
informal advice and friendship relations. Specifically, he was interested 
in the perceptions held by the managers of the structure of the entire 
network. N; we note later, he gathered much more extensive data than 
we will use. Here, we are interested only in the reports made by each 
manager of his or her own advice seeking and friendships. 

Each manager was given a questionnaire and asked two questions : 
"Who would [you] go to for advice at work?" and "Who are your 
friends?" Each manager was given a roster of the names of the other 
managers, and asked (in a free choice setting) to check the other managers 
to whom they would go for advice at work, and with whom they were 
friends. Krackhardt also gathered a third relation based on the official 
organizational chart. He recorded "who reports to whom" for all twenty
one managers. 

Thus, this is a multirelational data set, with three relations : "advice," 
"friendship," and "reports to." All three are dichotomous and directional. 
The first two were gathered from questionnaires, and the third, from 
organizational records. These relations were measured for a single point 
in time. The friendship relation clearly is an individual evaluation, while 
the advice relation is a verbal report of an interaction between actors. 
The third relation is a measurement of the formal bureaucratic structure 
within the organization. So, this data set has three very different types 
of relations. 

The network is one-mode, since we have just a single set of twenty-one 
actors. The actors are people. This data set also includes four actor 
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attributes : age; length of time employed by the organization (tenure); 
level in the corporate hierarchy; and the department. The first two are 
measured in years. There are four departments in the firm. All but the 
president of the firm have a department attribute coded as an integer 
from 1 to 4. The level attribute is measured on an integer scale from 1 
to 3 :  1 = CEO, 2 = vice president, and 3 = manager. 

Of primary interest to Krackhardt were the perceptions held by each 
actor of the friendships and advice seeking within the firm. Each actor 
was asked to evaluate all the ties between all actors, not just the ties 
involving the respondent. In this way, Krackhardt was able to study 
perceptions of network structure. For example, how were an actor's 
actual reported friendships perceived by all the other acto",? K rackhardt 
(1987a) categorized actors by their importance (as measured by centrality 
indices) and found that more important actors had better perceptions 
than those less important. 

2.5.2 Padgett's Florentine Familie:,' 

This is a one-mode network with two relations measured among a set 
of families. These multirelational network data, compiled by Padgett, 
consist of the marriage and business ties among 16 families in 1 5th 
century Florence, Italy. These data were compiled from the history of 
this period given by Kent (1978). The 16 families were chosen for analysis 
from a much larger collection of 1 1 6  leading Florentine families because 
of their historical prominence. Padgett ( 1987), Padgett and Ansell ( 1989, 
1993), and Breiger and Pattison (1986) have extensively analyzed these 
data. Throughout, we will refer to this example as "Padgett's Florentine 
families." 

The actors in this network are families. As noted by Breiger and 
Pattison, the family was an important et::onomic and political unit, so 
the history of 15th century Florence can be well understood by focusing 
on families, rather than individual people. In the early 1430's, a political 
battle was waged in Florence for control of the government, primarily 
between the Medicis and the Strozzis, two of the families included in this 
data set. An excellent account of this history can be found in Padgett 
(1987). We note that Padgett and Ansell (1989) studied seventy-one 
families, and were interested in how the Medici family rose to dominate 
Florence between 1427 and 1434. Of primary interest to them was the 
association between the two relations, marriage and business. 
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The two measured relations are marriage and business. Both are 
nondirectional and dichotomous, and are transactional, since the business 
relation as well as the marital ties were used to solidify political and 
economic alliances. A marital tie exists between a pair of families if 
a member of one family marries a member of the other. A business 
tie exists if, for example, a member of one family grants credits, makes 

a loan, or has a joint business partnership with a member of another 
family (Breiger and Pattison 1986). 

For these data, Padgett was not able to determine how families married 
each other or how families did business with each other. This nondirec
tionality is proper for marital ties, but perhaps not for business dealings. 
A variety of authors (including Breiger and Pattison 1986) have remarked 
that the non directionality of the business relation is unfortunate, since 
loans and credits are clearly directed from one family to another. More 
recent research by Padgett and Ansell (1993) contains an updated coding 
of the marriage relation that records both the family for the bride and 
the family for the groom, so that a directional marital relation can be 
studied. Both relations reflect activities occurring during this time period, 
but are not longitudinal. 

The actors are families, 16 in number. There are three actor attributes: 
net wealth in 1427 (as taken from government records) ; number of priors 
(seats on the city council) from 1282-1344; and number of business or 
marriage ties in the total network (consisting of all 1 16 families). 

2.5.3 Freeman's EIES Network 

This is a one-mode network with two relations measured on a set of 
people. These data come from a computer conference among researchers 
working in the emerging scientific specialty of social network research, 
organized by Freeman, and sponsored by the National Science Foun
dation. These data were collccted as part of a study of thc impact of 
the Electronic Information Exchange System (EIES) housed at the New 
Jersey Institute of Technology. Fifty researchers interested in social net
work research participated. We focus here on the thirty-two people who 
completed the study. These researchers included sociologists, anthro
pologists, and statisticians/mathematicians. As part of the conference, 
a computer network was set up and participants were given computer 
terminals and access to a network for sending electronic mail messages 
to other participants. We note that this study was done prior to the 
widespread use of BITNET, INTERNET, and other popular computer 
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networks that are widely available to academics today; consequently, this 
study involved a novel way for researchers to communicate. For more 
details of this study, see S. Freeman and L. Freeman (1979), L. Freeman 
and S. Freeman (1980), and Freeman (1986). A more detailed description 
of the design of this study can be found in Bernard, Killworth, and Sailer 
(1982). Here, we will refer to this example as "Freeman's EIES network." 

Of particular interest are the network data arising from this study. Two 
relations, messages sent and acquaintanceships, were recorded. As part 
of this project, the computer system recorded all message transactions, 
specifically the origin and destination of the message, the day and time, 
and the number of lines in the message. Records were kept for several 
months. We therefore have a record of the number of messages sent from 
each participant to every other participant. We restrict our attention to 
the total number of messages sent from one actor to another; however, 
this message-sending relation can be defined for any time interval, for 
example, the number of messages sent in a given month. A second 
relation is acquaintanceship, and was gathered by a questionnaire. At the 
beginning and at the end of the project, participants were asked to fill out 
a questionnaire that included, among other things, a network question. 
Each participant was asked to indicate, for every other participant, 
whether she/he: (1) did not know the other, (2) had heard of the other but 
had not met him/her, (3) had met the other, (4) was a friend of the other, 
or (5) was a close personal friend of the other. This acquaintanceship 
relation is longitudinal, measured at two points in time: at the beginning 
of the study (January 1978), and at the end (September 1978) (S. Freeman 
and L. Freeman 1979). 

There are two attribute variables in this data set: Primary disciplinary 
affiliation of the person; and Number of citations of the researcher's 
work in the Social Science Citation Index for the year 1978 (when the 
research started). The disciplinary affiliation variable has four categories : 
(1) sociology, (2) anthropology, (3) mathematics or statistics, and (4) 
other. The citation variable is coded as the number of citations. 

These data are a part of a more comprehensive data set gathered 
by Bernard (who, along with Freeman, supplied us with these data) 
to study the accuracy of informants' reports of communications (see 
Bernard, Killworth, and Sailer 1982). Freeman (1986) studied the impact 
of this newly formed computer network on the acquaintanceship� and 
friendships among the network researchers. Wasserman and Faust (1989) 
used these data to demonstrate the application of correspondence and 
canonical analysis to social network data. 
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2.5.4 Countries Trade Data 

This is a one-mode network with five relations measured on countries. 
These data were gathered by us for use in this book. The actors are 
countries, selected from a list of sixty-three countries given in Smith 
and White (1988). We chose countries representing different categories 
from across several developmental classifications: Snyder and Kick's 
(1979) core/periphery status, Nemeth and Smith's (1985) alternative 
world system classification and level of industrialization, and a historical 
economic base from Lenski (as reported in Breedlove and Nolan 1988). 
We also chose countries both to span the globe and to represent politically 
and economically interesting characteristics. Only countries for which 
data were reported in 1984 commodity trade statistics were eligible for 
inclusion. We also attempted to reduce the number of shared borders 
between countries; however, some politically interesting countries are 
included even though they share borders (Israel and Syria, for example). 
Because of data availability, less-developed nations (African nations in 
particular) are probably under-represented in this set. 

The final twenty-four countries represented as actors in this network 
are a geographically, economically, and politically diverse set, chosen 
to represent a range of interesting features and to span the categories 
of existing world system/ development typologies. We will refer to these 
data as the countries trade network. Because of the selection mechanism, 
we will assume that this set of actors is representative of all possible 
countries. 

Five relations were measured. Four of them are economic and one is 
political. The relations are : 

• Imports of food and live animals 
• Imports of crude materials, excluding fuel 
• Imports of mineral fuels 
• Imports of basic manufactured goods 
• Diplomatic exchange 

The first four relations are taken from the United Nations Commodity 
Trade Statistics (1984). We chose these four types of commodities (with 
single digit section codes 0, 2, 3, and 6 from the commodity trade 
statistics) since these commodities were studied originally by Breiger 
(1981a). The last relation comes from The Europa Year Book (Europa 
Publications 1984), which lists for each country those countries that have 
embassies or high commissions in the host country. 
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All five relations are dichotomous and directional. The four economic 
relations were reported on a continuous US$ scale. The reported values 
indicate the amount of goods (of the specified type) in 100,000 US$ 
imported by one country from the other (the UN does not list trade 
amounts under 100,000 US$). In order to standardize the imports to 
control for the vastly different economy sizes across countries, we first 
standardized each value by dividing by the country's total imports on 
that commodity. If the realized proportion was less than 0.01 %, we 
coded the tie as absent. Otherwise, the tie was coded as present. This 
standardization actually had very little impact. Most of the ties that were 
changed from "trade present" to "trade absent" were large countries 
(US, Japan, UK) importing small amounts from very small countries 
(Madagascar, Liberia, Ethiopia). 

The diplomatic relation records a tie as present if one country has an 
embassy or a high commission in another country. These data are taken 
from the 1984 Europa Year Book (Europa Publications 1984). 

The data set includes four attribute variables reflecting the economic 
and social characteristics of the countries. The first two attribute variables 
measure annual rates of change between 1970 and 1981. They are: 
Annual population growth rate between 1970 and 1981, and Annual 
growth rate in GNP per capita between 1970 and 1981. The second two 
attribute variables measure rates of education and energy consumption. 
These variables are: Secondary school enrollment ratio in 1980, and 
Energy consumption per capita in 1980 (measured in kilo coal equivalent). 
Researchers have argued that these variables are related either to level 
of national development (industrialization) or to world system status. 
Measurements on these four variables were taken from The World Bank 
(1983). 

Numerous social scientists have used network methods and data to 
study the world political and economic system (Snyder and Kick 1979; 
Nemeth and Smith 1985; Breiger 1981c). These researchers are primarily 
interested in whether location in a network "system" affects the rates of 
industrialization and development. 

2.5.5 Galaskiewicz's CEOs and Clubs Network 

This data set is a two-mode, affiliation network. The .first mode consists 
of twenty-six chief executive officers (and spouses) of the major corpora
tions, banks, and insurance companies headquartered in the Minneapo
lislSt. Paul metropolitan area. These data were gathered by Galaskiewicz 
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through interviews with the CEOs and records of the clubs and boards. 
Thus, the first mode is a set of corporate CEOs as actors. The sec
ond mode is a collection of fifteen clubs, cultural boards, and corporate 
boards of directors to which the CEOs belong. There are two coun
try clubs (Woodhill Country Club and Somerset Country Club), three 
metroplitan clubs (Minnesota Club, Minneapolis Club, and the Womens 
Club), four prestigious cultural organizations (such as Guthrie Theater, 
Minnesota Orchestra Society, Walker Art Center, SI. Paul Chamber Or
chestra, Minnesota Public Radio), and the six corporate boards of the 
FORTUNE 500 manufacturing firms and FORTUNE 50 banks head
quartered in the area. These data record which CEO belongs to each of 
the clubs and boards. These memberships are for 1978-1981 (as discussed 
by Galaskiewicz 1985). We will refer to these data as Galaskiewicz's CEOs 
and clubs. 

All data are dichotomous, indicating presence or absence of a mem
bership. The first mode is a set of people, and the second, a set of 
organizations. The data are affiliational, and represent memberships. 
There are a number of attributes that are measured for both modes. For 
the first mode, we can categorize the actors by the nature of the corpo
rations they head. For the second, we can categorize the organizations 
by their nature (clubs or corporate boards). 

2.5_6 Other Data 

In addition, we analyze a hypothetical data set throughout the book. 
This data set is used mostly to illustrate calculations, and consists of 
six second-grade children. It has measurements on four relations, three 
measured for the first mode (a set of six children) and one for actors in 
the first mode choosing actors in the second mode (a set of four teachers). 
One of the relations is longitudinal - friendship at the beginning and end 
of the school year. In addition, we have a single affiliation relation (party 
attendance). There are also a number of attributes that are recorded for 
both children and teachers, which will be introduced as needed. 
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Notation for Social Network Data 

Social network data consist of measurements on a variety of relations 
for one or more sets of actors. In a network data set we may also have 
recorded information on attributes of the actors. We will need notation 
for the set of actors, the relations themselves, and the actor attributes so 
that we can refer to important network concepts in a unified manner. 

In this chapter, we introduce notation and illustrate with examples. 
We start by defining notation for a single, dichotomous relation. We then 
move to more complicated network data sets involving more than one set 
of actors and/ or more than one relation. We will need a notational system 
flexible enough to handle the wide range of network data sets that are 
encountered in practice. We note that the only type of structural variable 
discussed in this chapter is relational. Chapter 8 presents notation and 
methodology for affiliational networks. 

For the reader who already is familiar with social networks and the 
ways in which social network data can be denoted, or the reader who 
is only interested in specific techniques, we recommend a quick reading 
of the material in this chapter. Specifically, such readers can glance at 
Section 2 and the examples used in this chapter (perhaps skipping the 
material on multiple relations), and return to this chapter as needed. 

There are many ways to describe social network data mathematically. 
We will introduce three different notational schemes. These schemes can 
each be adapted to represent a wide range of network data. However, for 
some forms of data and some types of network methods, one notation 
scheme may be preferred to the others, because of its appropriateness, 
clarity, or efficiency. The notations are: 

• Graph theoretic 

• Sociometric 

69 
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• Algebraic 

Each scheme will be described and illustrated in detail. We will show how 
these schemes overlap, and discuss when a specific scheme is more useful 
than the others. Graph theoretic notation is most useful for centrality and 
prestige methods, cohesive subgroup ideas, as well as dyadic and triadic 
methods. Sociometric notation is often used for the study of structural 
equivalence and blockmodels. Algebraic notation is most appropriate for 
role and positional analyses and relational algebras. We should note that 
there are other ways to denote social network data, some of which are 
used to study specific statistical models. Such schemes will be mentioned, 
when needed, in later chapters. 

The graph theoretic notation scheme can be viewed as an elementary 
way to represent actors and relations. It is the basis of the many concepts 
of graph theory used since the late 1940's to study social networks. 
The notation provides a straightforward way to refer to actors and 
relations, and is completely consistent with the notation from the other 
three schemes. Mathematicians and statisticians such as Bock, Harary, 
Katz, and Luce were among the first to view networks as directed and 
undirected graphs (see Forsyth and Katz 1946; Katz 1947; Luce and 
Perry 1949; Bock and Husain 1950, 1952; Harary and Norman 1953). 
Graph theory texts such as Flament (1963) and Harary (1969) describe 
social network applications. We should also direct the reader to other 
texts on graph theory and social networks, such as Harary, Norman, 
and Cartwright ( 1965), and Hage and Harary (1983), that present graph 
theoretic notation for social network data. Mathematical sociology texts, 
such as Coleman (1964), Fararo (1973), and Leik and Meeker (1975), 
contain elementary discussions of the use of graph theory in social 
network analysis. 

The second notation scheme, sociometric notatiol1, is by far the most 
common in the social network literature. One presents the data for each 
relation in a two-way matrix, termed a sociomatrix, where the rows and 
columns refer to the actors making up the pairs. Sociomatrices began 
to be used more than fifty years ago after their introduction by Moreno 
(1934) in his pioneering research in sociometry (see also Moreno and 
Jennings 1938). 

Most major computer software packages for social network data an
alyze network information presented in sociomatrices. Further, many 
methods are defined for sociomatrices. This notational scheme is prob
ably the most useful for readers interested in the methods discussed 
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in Parts III and IV of the book. Sociomatrices are adjacency matrices 
for graphs, and consequently, this second notational scheme is directly 
related to the first. 

The third notational scheme, algebraic notation, is used to study 
multiple relations. This notation is useful for studying network role 
structures and relational algebras. Such analyses use algebraic techniques 
to compare and contrast measured relations, and derived compound 
relations. A compound relation is the composition or combination of 
two or more relations. For example, if we have measured two relations, 
"is a friend of" and "is an enemy of," for a set of people, then we 
might be interested in the composition of these two relations : "friends' 
enemies." The focus of such algebraic techniques is on the associations 
among the relations measured on pairs of actors,. across the entire set of 
actors. This notation is designed for one-mode networks, and was first 
used by White (1963) and Boyd (1969). 

We now turn to each of these notations, show how they are related, 
discuss when each is useful, and illustrate each with examples. 

3,1 Graph Theoretic Notation 

A network can be viewed in several ways. One of the most useful views 
is as a graph, consisting of nodes joined by lines. Chapter 4 discusses 
graph theory at length. Here, we introduce some simple graph theoretic 
notation, and show how this notation can be used to label the actors and 
relations in a network data set. 

Suppose we have a set of actors. We will refer to this set as %. 
The set % contains g actors in number, which we will denote by % 
= {n" n" . . .  ,ng}. The symbol % is commonly used to stand for the 
set, sinoe the graph theory literature frequently refers to this set as a 
collection of !lodes of a graph. For example, consider a collection of 
g = 6 second-grade children: Allison, Drew, Eliot, Keith, Ross, and 
Sarah. We have % = {Allison, Drew, Eliot, Keith, Ross, Sarah}, a 
collection of six actors, so that we can refer to the children by their 
symbols: n, = Allison, n, = Drew, n3 = Eliot, n4 = Keith, ns = Ross, 
and n6 = Sarah. 

3,1,1 A Single Relation 

We now assume that we have a single relation for the set of actors %. 
That is, we record whether each actor in % relates to every other actor 
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on this relation. To start, we will let the relation be dichotomous and 
directional. Thus, n, either relates to nj or does not. For now, we do not 
consider the strength of this interaction or how frequently n, interacts 
with nj-

Consider an ordered pair of actors, n, and nj. Either the first actor in 
the ordered pair relates to the second or it does not. Since the relation is 
directional, the pair of actors n, and nj is distinct from the pair nj and n, 
(that is, order matters). If a tie is present, then we say that the ordered 
pair is an element of a special collection of pairs, which we will refer to 
as !t? If an ordered pair is in !t?, then the first actor in the pair relates 
to the second on the relation under consideration. 

Note that there can be as many as g(g - 1) elements (the total number 
of ordered pairs in !t?), and as few as O. 

If the ordered pair under consideration is < n" nj >, and if there is 
a tie present, we will write n, --+ nJ. The elements, or ordered pairs, of 
relating actors in !t? will be denoted by the symbol !. Let us assume that 
there are L entries in !t?, so that !t? = {II, I" . . .  , ld.  The elements in !t? 
can be represented graphically by drawing a line from the first actor in 
the element to the second. It is customary to refer to such a graph as a 
directed graph, since the lines have a direction. Directed lines are referred 
to as arcs. We use the symbol !f to refer to the set of directed Lines and 
the symbol I to refer to the individual directed lines in the set. We will 
frequently refer to such ordered pairs of relating actors as directed lines 
or arc.�. 

Since a graph consists of a set ·,of nod�s .. A', and a set of lines .se, it 
can be described mathematically by the two sets, (.#", !f). We will use 
the symbol <"fj to denote a graph. It .is important fa note that for the · 
graph theoretic notation.s.cherne, these. two sets (a set of actors, and a set 
of ordered pairs of actors, or arcs) suffice for mathematica) descriptions 
of the crncial components in a network on which a single. dichotomous 
relation is meaSl.lXed 

On some relations, an individual actor does not usually relate to itself. 
When studying such relations, one does not consider self-choices. 

There are relations that are nondirectional, that is, we cannot distin
guish between the line from n, to nj and the line from nj to n,. For 
example, we may consider a set of actors, and record whether they "live 
near each other." Clearly, this is a nondirectional relation - if n, lives 
near nj' then nj lives near nj. There is only one measurement to be 
made for each pair, rather than two as with a. directional relation. The 
two ordered pairs have identical relational interactions. The set !f now 
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contains at most gig - 1)/2 pairs. The order of the pair of actors in these 
relating pairs no longer matters, since both actors relate to each other in 
the same way. 

Return to our example, and suppose that the single, dichotomous 
directional relation is "friendship," so that we consider wbetber each 
child views every other cbild as a friend. Suppose further that eight 
of the possible tbirty ordered pairs are friendships (tbat is, eight of tbe 
tbirty possible arcs are present) and tbat the other twenty-two are not 
friendships (or that there are twenty-two arcs absent). Let these L = 8 
pairs be <Allison, Drew>, <Allison, Ross>, <Drew, Sarah>, <Drew, 
Eliot>, <Eliot, Drew>, <Keitb, Ross>, <Ross, Sarah>, and <Sarab, 
Drew>. Tbus, for tbe elements of :t', Z, = <Allison, Drew>, 12 = 
<Allison, Ross>, . . .  , and 18 = <Sarah, Drew>. The data tell us tbat 
Allison views Drew as a friend, Allison also views Ross as a friend, Drew 
states tbat Sarah is bis friend, and so fortb. It is also interesting to note 
that tbis friendship is not reciprocal; that is, if n, states that nj is his 
friend (or n, -+ nj), it is possible tbat tbis sentiment is not returned -
nj may not "cboose" n, as a friend (or nj -I-> n,). 

A graph can be presented as a diagram in which nodes are represented 
as points in a two-dimensional space and arcs are represented by directed 
arrows between points. Thns, tbese six cbildren can be represented as 
points in a two-dimensional space. It is important to note tbat the actual 
location of points in tbis two-dimensional space is irrelevant. We can take 
tbese points, and draw in the eigbt arcs representing these eight ordered 
pairs of children who are friends. This directed graph or sociogram is 

. 
shown in Fignre 3.1. . 

3.1.2 OMultiple Relations 

We may have more than one relation m a social network data set. 
O'raph theoretic notation can be generalized to multirelatiorial networks, 
which could include both directional and nondirectional relations. For 
example, we may study whether tbe corporations in a metropolitan area 
do business with eacb other - does n, sell to nj, for example - and 
whether fhey interlock tbrough tbeir boards of directors - does an officer 
of corporation n, sit on the board of directors of corporation nj? Given 
the notation presented for the case of a single dichotomous relation, it is 
easy to generalize it to multiple relations. 

Suppose that we are interested in more than one relation defined 
on pmrs of actors taken from %. Let R be tbe number of relations. 
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Allison Drew .--------------------+. • 

• 
Eliot 

Keith 
----- . 

. ---
Ross 

Fig. 3.1. The six actors and the directed lines between them - a 
sociogram 

Each of these relations can be represented as a graph or directed graph; 
hence, each has associated with it a set of lines or arcs, specifying 
which (directed) lines are present in the (directed) graph for the relation 
(or, which (ordered) pairs are "relating"). Thus, each relation has a 
corresponding set of arcs, 2" which contains L, ordered pairs of actors 
as elements. Here, the subscript r ranges from 1 to R, the total number 
of relations. 

Each of these R sets defines a directed graph on the nodes in ff. These 
directed graphs can be viewed in one or more figures. So, each relation 
is defined on the same set of nodes, but each has a different set of arcs. 
Thus, we can quantify the rth relation by (ff, 2,), for r = 1, 2, . . .  , R. 

For example, return to our second-graders, and now consider R = 3 
relations : 1) who chooses whom as a friend, measured at the beginning 
of the school year; 2) who chooses whom as a friend, measured at the 
end of the school year; and 3) who lives near whom. The first two 
relations are directional, while the last is nondirectional. Suppose that 
L] = 8 ordered pairs of actors, L2 = 1 1, and LJ = 12. Below, we list 
these three sets. 
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Relation 1 Relation 2 Relation 3 
Friendship at Friendship at Lives 

Beginning End Near 

<Allison, Drew> <Allison, Drew> (Allison, Ross) 
<Allison, Ross> <Allison, Ross> (Allison, Sarah) 
<Drew, Sarah> <Drew, Sarah> (Drew, Eliot) 
<Drew, Eliot> <Drew, Eliot> (Keith, Ross) 
<Eliot, Drew> <Drew, Ross> (Keith, Sarah) 
<Keith, Ross> <Eliot, Ross> (Ross, Sarah) 
<Ross, Sarah> <Keith, Drew> 
<Sarah, Drew> <Keith, Ross> 

<Ross, Keith> 
<Ross, Sarah> 
<Sarah, Drew> 

For a non.directional relation, such as "lives near," measurements are 
made on unordered rather than ordered pairs. Clearly, when one actor 
relates to a second, the second relates to the first; therefore, since Allison 
lives near Ross, Ross lives near Allison. When listing the pairs of relating 
actors (or arcs) for a nondirectional relation, each pair can be listed no 
more than once. We use (., .) to denote pairs of actors for whom a tie is 
present on a non directional relation, and use < ., . > to denote ties on 
a directional relation. 

Examining such lists can be difficult. An alternative way to present 
the three sets £'" £'2, and £'3 is graphically. We can place the arcs for 
directed graphs or lines for undirected graphs on three figures (one for 
each relation), or on a single figure containing points representing the six 
actors and arcs or lines for all relations, simultaneously. We use different 
types of lines in Figure 3.2 for the different relations: solid, for relation 1 
(friend at beginning); dashed, for relation 2 (friend at end); and dotted, 
for relation 3 (lives near). Since friendship is a directional relation, there 
are arrowheads indicating the directionality of an arc. Since "lives near" 
is nondirected, there are no arrowheads on these lines. This figure is an 
example of a multivariate directed graph; such graphs are described in 
more detail in Chapter 4: 

3.1.3 Summary 

To review, we have assumed that there is just one set of actors. This 
assumption will be relaxed in a later section of this chapter. In this simple 
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Fig. 3.2. The six actors and the three sets of directed lines - a multi
variate directed graph 

situation, there is just a single kind of pair of actors, those with both 
actors in the single set JV. The number of actors in JV is g. Assuming 
that we have R relations, we have a set of arcs associated with each 
relation, .5!' 1, .5!' 2, . . . , .5!' R· Each set of arcs can have as many as g(g - 1) 
entries in these sets. The entries in each set are exactly those ordered 
pairs for which the first actor relates to the second actor on the relation 
in question. Thus, one needs to specify the set JV and the R sets of arcs 
to describe completely the network data set. 

We should mention that this notation scheme does not extend well to 
valued relations. Graph theory is not well designed for data sets that 
record the strength or frequency of the mteracfion for a pair of actors. 
One can use special graphs, such as signed graphs and valued graphs (see 
Chapter 4), to represent valued relations, but many of the more elegant 
results from graph theory do not apply to this extension. However, 
sociome1!:ic..notation is general enough to handle valued relations. 
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3.2 Sociometric Notation 

Sociometry is the study of positive and negative affective relations, such 
as liking/disliking and friends/enemies, among a set of people. A social 
network data set consisting of peopl'e and measured I affective relations 
between people is often referred to as "ociometric. 

Relational data are often presented in two-way matrices termed so
ciomatrices. The two dimensions of a sociomatrix are indexed by the 
sending actors (the rows) and the receiving actors (the columns). Thus, 
if we have a one-mode network, the sociomatrix wiIl be square. 

A sociomatrix for a dichotomous relation is exactly the adjacency 
matrix for the graph (or sociogram) quantifying the ties between the 
actors for the relation in question. So, this notation can be viewed 
as complementary to graph theoretic notation described in the previous 
section. In these next paragraphs, we describe the history of sociomatrices 
and sociograms. We then show how social network data can be denoted 
by a set of sociomatrices. 

Sociometry has grown and expanded over the past half century, so 
that such studies are now usually called simply sociological or occasion
ally social psychological. The first sociometricians published much of 
their research in the journal Sociometry, which was renamed first So
cial Psychology and then Social Psychology Quarterly in the late 1970's. 
Moreno was Sociometry's founding editor (in 1937). Moreno and other 
researchers developed a very useful notation for social networks, which 
we will refer to as sociometric notation. We describe this classic notation 
in this section. 

Sociograms and sociomatrices were first used by Moreno (1934), who 
demonstrated how they could represent the relational interactions pic
tured in a sociogram. The focus of Moreno's research, and much of the 
sociometric literature of the 1930's and 1940's, was how advantageous 
it was to picture interpersonal interactions using sociograrns, even for 
sets with many actors. In fact, Moreno (see "Emotions Mapped," 1933) 
aspired to draw a sociometric "map" of New York City, but the best 
he could do was a sociogram for a community of size 435 (included as 
a foldout in Moreno 1934). Both Moreno (1934) and Northway (1940) 
proposed rules for drawing sociograms. These pioneering sociometricians 
looked for techniques to show the acceptability of each actor relative to 
the set of actors as a whole and to determine which "choices" were the 
most important to the group structure. Lindzey and Byrne ( 1968), build
ing on Moreno's original guidelines, provide a very good discussion of 



78 Notation for Social Network Data 

the measurement of relations. Recently, because of innovations in com
puting, there has been renewed interest in the graphical representations 
of social network data (Klovdahl 1986). 

Moreno actually preferred the use of sociograms to sociomatrices, and 
had several arguments in print with proponents of sociomatrices, such 
as Katz. :Moreno used his position as editor of Sociometry frequently to 
interject editor's notes into articles in his journal. 

Even with the growing interest in figures such as sociograms, re
searchers were unhappy that different investigators using the same data 
could produce as many different sociograms (in appearance) as there 
were investigators. As we have mentioned, the placement of actors and 
lines in the two-dimensional space is completely arbitrary. Consequently, 
the use of the sociomatrix to denote social network data increased in 
the 1940's. The literature in the 1940's presented a variety of methods 
for analyzing and manipulating sociomatrices (see Dodd 1940; Katz 
1947; Festinger 1949; Luce and Perry 1949; and Harary, Norman, and 
Cartwright 1965). For example, Dodd (1940) described simple algebraic 
operations for square sociomatrices indexed by the set of actors. He also 
showed how rows and columns of such matrices could be aggregated to 
highlight the relationships among sets of actors, rather than the indi
vidual actors themselves. Forsyth and Katz (1946) advocated the use of 
sociomatrices over sociograms to standardize the quantification of social 
interactions and to represent network data "more objectively" (page 341). 
This research appears to be the first to focus on derived subgroupings of 
actors. Katz (1947) proposed a "canonical" decomposition of a socioma
trix to facilitate the comparison of an observed sociomatrix to a target 
sociomatrix, an idea first proposed by Northway (1940, 1951, 1952). He 
also showed how sociomatrices could be rearranged using permutation 
matrices to identify subgroups of actors, and how choices made by a 
particular actor could be viewed as a multidimensional vector. Festinger 
(1949) applied matrix multiplication to sociomatriccs and described how 
products of a sociomatrix (particularly squares and cubes) can be used 
to find cliques or subgroups of similar actors (see also Chabot 1950). 
Since such powers have simple graph theoretic interpreta!ion-fsee-Chap
ter 4's discnssion of 2- and 3-step walks), this research helped begin the 
era of graph theoretic approaches to social network analysis. Luce and 
Perry (1949) and Luce (1950) proposed one of the first techniques to find 
cliques or subgroups of actors using (for that time) rather sophisticated 
sociomatrix calculations backed up with an elaborate set of theorems 
describing the properties and uniqueness of their approach (which was 
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termed n-clique analysis ; see Chapter 7). Bavelas (1948, 1950) and Leavitt 
(1951) introduced the notion of centrality (see Chapter 5) into social net
work analysis. By the end of the decade, researchers had begun to think 
about electronic calculations for sociometric data (Beum and Criswell 
1947; Katz 1950; Beum and Brundage 1950) consisting of a collection 
of sociomatrices. Research of Katz ( 1953), MacRae (1960), Wright and 
Evitts (1961), Coleman (1964), Hubbell (1965), and methods discussed 
by Mitchell (1969) rely extensively on computers to find various graph 
theoretic measures. The 1950's and early 1960's became the era of graph 
theory in sociometry. 

The line between sociometric and graph theoretic approaches to social 
network analysis began to become blurred during the early history of 
the discipline, as computers began to play a bigger role in data analysis. 
Sociograms waned in importance as sociomatrices became more popular 
and as more mathematical and statistical indices were invented that used 
sociomatrices, much to the dismay of Moreno (1946). 

History is certainly on the side of this notational scheme. In fact, most 
research papers and books on social network methodology begin with 
lhe definition of a sociomatrix. Readers who are interested in the topics 
in Parts II and III will find this notation most useful. For most social 
network methods, sociometric notation is probably the only notation 
necessary. It is also the scheme preferred by most network analysis 
computer programs. It is important to note, however, that sociometric 
notation can not easily quantify or denote actor attributes, and thus 
is limited. It is useful when actor attributes are not measured. The 
relationship between sociometric notation and the more general graph 
theoretic notation contributes to the popularity of this approach. 

As is done throughout this chapter, we split our discussion of socio
metric notation and sociomatrices into several parts. We first describe 
how to construct these two-dimensional sociometric arrays when only 
one set of actors and one relation is present, and then, when one set of 
actors and two (or more) relations are measured. Our discussion of two 
(or more) sets of actors can be found at the end of the chapter. 

3.2.1 Single Relation 

'Let us suppose that we have a single relation measured on one set of g 
actors in % = {nJ, n2, . . .  , ng}. We let !!r refer to this single valued, 
directional relation. This relation is measured on the ordered pairs of 
actors that can be formed from the actors in %. 
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Consider now the measurements taken on each ordered pair of actors. 
Define xij as the value of the tie from the ith actor to the jth actor on 
the single relation. We now place these measurements into a sociornatrix. 
Rows and columns of this soeiomatrix index the individual actors, ar
ranged in identical order. Since there are g actors, the matrix is of size 
g x g. Sociometric notation uses such matrices to denote measurements 
on ties. 

For the relation f!C, we define X as the associated sociomatrix. This 
sociomatrix has g rows and g columns. The value of the tie from n; to 
nj is placed into the (i,j)th element of X. The entries are defined as: 

Xij the value of the tie from ni to nj 

on relation !!l', (3.1) 

where i and j (i '" j) range over all integers from 1 to g. An example will 
be given shortly. One can think of the elements of X as the coded values 
of the relation f!C. If the relation is dichotomous, then the values for the 
tie are simply 0 and 1. 

Pairs listing the same actor twice, (n;, n;), i = 1, 2, . . .  , g, are called 
"self-choices" for a specific relation and are usually undefined. These 
self-choices lie along the main diagonal of the sociomatrix; consequently, 
the_main diagonal of a sociomatrix is usually full of undefined entries. 
However, there are situations in which self-choices do make sense. In 
such cases, the entries {xu} of the sociomatrix are defined. Usually, we 
will assume undefined sociomatrix diagonals since most methods ignore 
these elements. 

Assume now that this relation is valued and discrete. We will then 
assume that the possible values for the relation corne from the set 
{O, 1, 2, . . .  , c - I}, for C = 2, 3, . . . . If the relation is dichotomous, 
then C = 2 possible values. Thus, C is defined as the number of different 
values the tie can take on. If the relation is valued and discrete, but 
takes on other than integer values from 0 to C - 1, then we can easily 
transform the actual values into the values for this set. For example, if 
the relation can take on the values -1, 0, 1 ,  then we can map -1  to 0, 
o to 1, and +1 to 2 (so that C = 3). One nice feature __ of sociometric 
notation is its ability to handle valued relations. 

Since the ease of a single relation is just a special ease of the multire
lational situation, we now turn to this more general ease. 
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3.2.2 Multiple Relations 

Suppose that we have R relations grJ, gr" . . .  , gr R measured on a 
single set of actors. We assume that we have R relations indexed by 
r = 1 , 2, . . .  , R. As with a single relation, these relations are valued, and 
the values for relation gr, come from the set {O, 1, 2, . . .  , C, - 1}. 

Consider now the measurements on each possible ordered pair of 

actors. We define xij' as the strength of the tie from the ith actor to the 
jth actor on the rth relation. We now place these measurements into 
a collection of sociomatrices, one for each relation. Rows and columns 
of each sociomatrix index the individual actors, arranged in identical 
order. Thus, the rows and columns of all the sociomatrices are labeled 
identically. Each matrix is of size g x g. 

Consider one of the relations, say gr" and define X, as the sociomatrix 
associated with this relation. The value of the tie from ni to nj is placed 
into the (i,j)th element of X,. The entries are defined as: 

Xijr the value of the tie from ni to nj 

on relation f!{ r, (3.2) 

where i and j (i + j) range over all integers from 1 to g, and r = 
1, 2, . . .  , R. As mentioned, xij' takes on integer values from 0 to C, - 1. 
One can think of the elements of X, as the coded values of the relation 
gr,. There are R, g x g sociomatrices, one for each relation defined 
for the actors in JV. In fact, one can view these R sociomatrices as 
the layers in a three-dimensional matrix of size g x g x R. The rows 
of these sociomatrices index the sending actors, the columns index the 
receiving actors, and the layers index the relations. Sometimes, this 
matrix is referred to as a super-sociomatrix, representing the information 
in a multirelational network. 

Consider again our example, consisting of a collection of g = 6 
children and R = . 3 relations: 1) Friendship at beginning of the school 
year; 2) Friendship at end of the school year; and 3) Lives near. All 
three relations are dichotomous, so that C1 = C, = C3 = 2. These three 
relations are pictured in a single multivariate or multirelational sociogram 
in Figure 3.2. In Table 3.1 below, we give the three 6 x 6 dichotomous 
sociomatrices for the three relations. Note how in Figure 3.2, a "1" in 
entry (i, j) for the rth sociomatrix indicates that ni -> nj on relation gr, 
(or, ni � nj, for short). 

To illustrate, look at the first relation and the first arc in :.e 1. In Section 
3.1, we said that this arc is 11 = <Allison, Drew>. Allison -> Drew is 
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Table 3.1 .  Sociomatrices for the six actors and three relations of Figure 
3.2 

Friendship at Beginning of Year 
Allison Drew Eliot Keith Ross Sarah 

Allison 1 0 0 1 0 
Drew 0 1 0 0 1 
Eliot 0 1 0 0 0 
Keith 0 0 0 1 0 
Ross 0 0 0 0 1 
Sarah 0 1 0 0 0 

Friendship at End of Year 
Allison Drew Eliot Keith Ross Sarah 

Allison 1 0 0 0 
Drew 0 1 0 1 
Eliot 0 0 0 0 
Keith 0 1 0 0 
Ross 0 0 0 1 1 
Sarah 0 1 0 0 0 

Lives Near 
Allison Drew Eliot Keith Ross Sarah 

Allison 0 0 0 1 1 
Drew 0 1 0 0 0 
Eliot 0 1 0 0 0 
Keith 0 0 0 1 1 
Ross 1 0 0 1 
Sarah 1 0 0 

represented by the arc h. Thus, there is an arc from Allison to Drew in 
the sociogram for the first relation, indicating that Allison chooses Drew 
as a friend at the beginning of the school year. The first entry in £'1 is 
exactly this arc. This arc is how this tie is denoted by graph theoretic 
notation. Consider now how this single tie is coded with sociometric 
notation. Consider the first sociomatrix in Table 3.1. Consider the entry 
which quantifies Allison (nI) as a sender (the first row) and Drew (n2) as 
a receiver (the second column) on relation :?CI. This entry is in the (1, 2) 
cell of this sociomatrix, and contains a 1 indicating that 

XI2l the value of the tie from nI to n2 on relation :?CI 

1. 

Note also that X211 = 0, indicating that Drew does not choose Allison 
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as a friend at the beginning of the school year; that is, Drew -/-> Allison. 
This friendship is clearly one-sided, and is not reciprocated. 

As one can see, sociometric notation is simple:, once one gets used to 
reading information from two-dimensional sociomatrices. Also note how 
the diagonals of all three sociomatrices in Table 3.1 are undefined - by 
design, children are not allowed to choose themselves as friends, and we 
do not record whether a child lives near himself or herself. 

These sociomatrices are the adjacency matrices for the two directed 
graphs and one undirected graph for the three dichotomous relations. 
The graphs and the sociomatrices represent exactly the same information . 

. In graph theoretic notation, there are two sets of arcs and one set of 
lines, !l! 1> !l! 2, !l! 3, which list the ordered pairs of children that are tied 
for the first two relations and the pairs of children that are tied for the 
third. If an ordered pair is included in the first or second !l! set, then 
there is an arc drawn from the first child in the pair (the sender) to the 
second (the receiver). And if an unordered pair of actors is included in 
the third line set, then there is a line between the two children in the 
pair. In sociometric notation, the entry in the corresponding cell of the 
sociomatrix is unity. 

We also want to note that the third relation in this network data set 
is nondirectional; that is, there is a line from n, to nj whenever there 
is a line from nj to n" and vice versa. Note how we were able to code 
this relation in the sociomatrix given in Table 3.1. Also note that the 
sociomatrix for a nondirectional relation is syl111hetric ; that is, xij = Xji. 
One very nice feature of sociometric notation is that it can easily handle 
both directional and nondirectional relations. 

3.2.3 Summary 

As we have stated in this section, sociometric notation is the oldest, and 
perhaps the easiest, way to denote the ties among a set of actors. A 
single two-dimensional sociomatrix is defined for each relation, and the 
entries of this matrix code the ties between pairs of actors. Generalizing 
to valued relations is also easy - the entries in a sociomatrix are the 
values of the ties, not simply O's and 1 's. 

Sociometric notation is very common, the notation of choice for net
work computing, and will be our first choice of a notational scheme 
throughout this book. However, as we have mentioned, there are net
work data sets for which sociometric notation is more difficult to use 
- specifically, those which contain information on the attributes of the 
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actors. For example consider onr second-graders. If we knew their eth
nicity (coded on some nominal scale), it would be difficult to include this 
information in the three sociomatrices (but see Frank and Harary 1982, 
for an alternative representational scheme). 

To conclude, we will frequently use sociomatrices to present network 
data. These arrays are very (;unvenient (and space-saving l) devices to 
denote network data sets. 

3.3 0 Algebraic Notation 

Let us now focus on relations in multirelational networks. In order 
to present algebraic methods and models for multiple relations (such 
as relational algebras) in Chapters 11 and 12, it is useful to employ a 
notation that is different from, though consistent with, the sociometric 
and graph theoretic notations that we have just discussed. We will refer 
to this scheme as algebraic notation. Algebraic notation is most useful 
for multirelational networks since it easily denotes the "combinations" 
of relations in these networks. However, it can also be used to describe 
data for single relational networks. 

There are two major differences between algebraic notation and socio
metric notation. First, one refers to relations with distinct capital letters, 
rather than with subscripted ft's. For example, we could use F to denote 
the relation "is a friend of" and E for the relation "is an enemy of." 
Second, we will record the presence of a tie from actor i to actor j on 
relation F as iF j. This is a shorthand for the sociometric and graph 
theoretic notation. Rather than indicating ties as i ..... j, we will replace 
the ..... with the letter label for the relation. 

In general, X'jF = 1 if ", ..... nj on the relation labeled ft F (or F for 

short). This tie will be denoted by i !., j, or shortened even further to 
iF j. This latter notation, iF j, is algebraic. 

Referring to our example, we label the relation "is a friend of at the 
beginning of the school year" as F. We would record the tie implied by 
"child i chooses child j as a friend at the beginning of the school year" 
as iF j. In sociometric notation, iF j means that X'jF = 1, and implies that 
there is a "1" in the cell at row i and column j of the sociomatrix for 
this relation. 

Algebraic notation is especially useful for dichotomous relations, since 
it codes the presence of ties on a given relation. Extensions to valued re
lations can be difficult. However, the limitation to dichotomous relations 
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presents no problem for us, since the models that use algebraic notation 
are specific to dichotomous relations. The advantages of this notation 
are that it allows us to distinguish several distinct relations using letter 
designations, and to record combinations of relations, such as "friends' 
enemy," or " mother's brother," or a "friend's neighbor." Unfortunately, 
this notational scheme can not handle valued relations or actor attributes. 

3.4 OTho Sets of Actors 

A network may include two sets of actors. Such a network is a two
mode network, with each set of actors constituting one of the modes. A 
researcher studying such a network might focus on how the actors in one 
set relate to each other, how the actors in the other set relate to each 
other, and/or how actors in one set relate to the actors in the other set. 
In this situation, we need to distinguish between the two sets of actors 
and the different types of ties. We note that relations defined on two 
sets of actors often yield complicated network data sets. It is thus quite 
complicated to give "hard-and-fast" notation rules to apply to every and 
all situations. We recommend that for multirelational data sets one make 
an inventory of measured relations and modify the rules given below to 
apply to the situation at hand. 

There are many social networks that involve two sets of actors. For 
example, we might have a collection of teachers and students who are 
interacting with each other. Consider the relations "is a student of" and 
"attends faculty meetings together." The relation "is a student of" can 
only exist between a student and a teacher. The relation "attends faculty 
meetings together" is defined only for pairs of teachers. 

We will call the first actor in the pair the sender and the second 
actor the receiver. Other authors have called these actors originators and 
recipient, or simply, actors and partners. With this understanding, we can 
distinguish between the two actors in the pair. If the relation is defined 
on a single set of actors, both actors in the pair can be senders and both 
can be receivers. The interesting "wrinkle" that arises if there are two 
sets of actors is that the senders might come only from the first set and 
the receivers only from the second. 

We will let % refer to the first set of actors and .A refer to the second 
set. The set % contains g actors and the second set .A contains h actors. 
The set .A contains elements {mj,m2, . . .  ,mh}, so that m, is a typical 
actor in the second set. Further, there are m dyads that can be formed 
from actors in .A. 
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In Ihis sec lion, we will first discuss the two types of pairs that can 
arise when relations are measured on two (or even more) sets of actors. 
We present only sociometric notation, since it is sufficient. 

To illustrate the notation, we return to our collection of six second
grade children, and now consider a second set of actors, .A, consisting 
of h = 4 adults. We define mj = Mr . .Tones, m2 = Ms. Smith, m, = 
Mr. White, and m4 = Ms. Davis. In total, we have ten actors, which are 
grouped into these two sets. Considering just the actors in Jft, there are 
4(4 - 1)/2 = 6 additional unordered pairs. 

3.4.1 (j9Dijferent Types of Pairs 

With two sets of actors, there can be two types of pairs - those that 
consist of actors from the same set and those that consist of actors 
from different sets. We will call the former homogeneous and the latter 
heterogeneous. Thus, in homogeneous pairs the senders and receivers are 
from the same set, while in heterogeneous pairs actors are from different 
sets. We discuss each of these types, beginning with homogeneous pairs. 

We can further distinguish between two kinds of homogeneous pairs 
by noting that there are two sets from which the actors can come. The 
two kinds of homogeneous pairs are: 

• Sender and Receiver both belong to % 
• Sender and Receiver both belong to Jft 

In a data set with just one set of actors, the pairs are all homogeneous. 
However, when there are two sets of actors, there are two kinds of 
homogeneous pairs. 

Of more interest when there are two sets of actors are the pairs that 
contain one actor from each set. These heterogeneous pairs are also of two 
kinds, depending on the sets to which the sender and receiver belong. 
Assuming the relation for the heterogeneous pairs is directional, the 
originating actor must belong to a different set than the receiving actor. 
Since there are two sets of actors, we get two kinds of heterogeneous 
pairs: 

• Sender belongs to % and Receiver belongs to Jft 
• Sender belongs to Jft and Receiver belongs to % 

It is important to distinguish between these two collections of het
erogeneous pairs. Relations defined on the first collection of pairs can 
be quite different from those defined on the second. For example, if 
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% is a set of major corporations in a large city and J!t is a set of 
non-profit organizations (such as churches, arts organizations, charitable 
institutions, etc.), then we could study how the corporations in % make 
charitable contributions to the non-profits in J!t. Such a relation would 
not be defined for the other collection of heterogeneous pairs, since it is 
virtually impossible for non-profits to contribute money to the welfare 
of the corporations. 

3.4.2 OSociometric Notation 

We now turn our attention to sociometric notation and sociomatrices 
for the relations defined for both homogeneous and heterogeneous pairs. 
The notation will have to allow for the fact that the sending and receiving 
actors could come from different sets. We assume that we have a number 
of relations. The measurements for a specific relation can be placed into 
a sociomatrix, and there is one sociomatrix for each relation. 

A sociomatrix is indexed by the set of originating actors (for its rows) 
and the set of receiving actors (for its columns) and gives the values 
of the ties from the row actors to the column actors. If the relation is 
defined for actors from different sets, then in general, its sociomatrix will 
not be square. Rather, it will be rectangular. 

Let us pick one of the relations, say PI" and suppose that it is defined 
on a collection of heterogeneous pairs in which the originating actor is 
from .K and the receiving actor is from J!t. The sociomatrix X" giving 
the measurements on PI" has dimensions g x h. The (i,j)th cell of this 
matrix gives the measurement on this rth relation for the pair of actors 
(n" mj). The (i,j)th entry of the sociomatrix X, is defined as: 

Xij, the value of the tie from ni to mj 

on the relation PI,. (3.3) 

The actor index i ranges over all integers from I to g, while j ranges over 
all integers from 1 to h, and r = 1, 2, . . .  , R. As with relations defined 
on a single set of actors, xij, takes on integer values from 0 to C, - 1 .  

Here, i can certainly equal j, since these two indices refer to different 
sets. The value of Xii, is meaningful. 

When there are two sets of actors, there are four possible types of 
sociomatrices, each of which might be of a different size. The rows 
and columns of the sociomatrices will be labeled by the actors in the 
sets involved: the rows for the sending actor set and the columns for 
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Table 3.2. The sociomatrix for the relation "is a student of" defined for 
heterogeneous pairs from .;V and ..$I 

Allison 
Drew 

.,.y' Eliot 
Keith 
Ross 
Sarah 

Mr. Jones Ms. Smith Ms. Davis Mr. White 

1 
o 
o 
o 
o 
o 

o 
1 
o 
o 
o 
1 

o 
o 
1 
o 
1 
o 

o 
o 
o 
1 
o 
o 

the receiving actor set. We will denote the sociomatrices by using their 
sending and receiving actor sets, so, for example, the sociomatrix X.¥ JI 
contains measurements on a relation defined from actors in JV to actors 
in ..$I. These sociomatrices and their sizes are: 

• X{, dimensions = g x g 
• X'/t, dimensions = h x h 
• x{ At, dimensions = g x h 
• X-:'K, dimensions = h x g 

The second two types are, in general, rectangular. As always, in each 
sociomatrix, xij' is the value of the tie from actor i to actor j on the rth 
relation of that particular type. 

Clearly, this notational scheme can accommodate multiple relations. 
However, since there may be a different number of relations defined for 
the four different types of pairs of actors, there may be different numbers 
of sociomatrices of each type. 

To illustrate, consider an example with two sets of actors : students 
and teachers. Suppose there are four adults, second-grade teachers at the 
elementary school that is attended by six children. Define a relation, "is 
a student of." This relation is defined for heterogeneous pairs of actors 
for which the sender belongs to .;V and the receiver belongs to ..$I; that 
is, a child "is a student of" an adult teacher, but not vice versa. Table 3.2 
gives the sociomatrix for the two-mode relation "is a student of" from 
our network of second-grade children. This relation is defined for the 
heterogeneous pairs consisting of a child as the sender and an adult as a 
receiver. This is a dichotomous relation (C = 2), and is measured on the 
6 X 4 = 24 heterogeneous pairs of children and teachers. 

Note that there is only one 1 in every row of this matrix, since a 
child can have only one teacher. The entries in a specific column give the 
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children that are taught by each teacher. Note how easily this array codes 
the information in the directional relation between two sets of actors. It 
is important to note that with sociometric notation all we need is one 
sociomatrix (with the proper dimensions) for each relation. 

3.5 Putting It All Together 

We conclude this chapter by pulling together all three notations into a 
single, more general framework. To begin, we note that the collection 
of actors, the relational information on pairs of actors, and possible 
attributes of the actors constitute a collection of data that can be referred 
to as a social relational system. Such a system is a conceptualization of 
the actors, pairs, relations, and attributes found in a social network. 

As we have shown in this chapter, the data for a social relational 
system can be denoted in a variety of ways. It is important to stress that 
when dichotomous relations are considered, the three notational systems 
discussed in this chapter are capable of representing the entire data set. 

We will use the symbols "ni ----7 n/, as shorthand notation for ni 
"chooses" nj on the single relation in question; that is, the arc from n, to 
nj is contained in the set !.E, sO that there is a tie present for the ordered 
pair < n" nj >. If this arc is an element of !.E, then there is a directed line 
from node i to node j in the directed graph or sociogram representing 
the relationships between pairs of actors on the relation. Sometimes we 
will replace "ni -4 n/' with "j � j" if no confusion could arise. With 
algebraic notation, if we label this relation by, say, F, we can also state 
that iF j. And with sociometric notation, we record this tie as xij = 1 in 
the proper sociomatrix. 

As we have mentioned in our discussion of graph theoretic notation, 
if one has a single set of g actors, %, then there are g(g - 1) ordered 
pairs of actors. In addition to %, the set !.E contains the collection of 
ordered pairs of actors for which ties are present. 

Some social network methodologists refer to the set of actors and the 
set of arcs as the algebraic structure S = <%, !.E> (Freeman 1989). S is 
the standard representation of the simplest possible social network. For 
us, this is the graph theoretic representation. 

One can define a graph from S by stating that the directed graph C§ d 
is the ordered pair <%, !.E>, where the elements of % are nodes in the 
graph, and the elements of !.E are the ordered pairs of nodes for which 
there is a tie from n, to nj (n, --> nj). 
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Nodes and arcs are the basic building blocks for graph theoretic 
notation. To relate these concepts to the elements of sociometric notation, 
we consider again the collection of all ordered pairs of actors in JV. 
Sometimes this collection is denoted JV x Ar, a Cartesian product of 
sets. We define a binary quantity X'j to be equal to 1 if the ordered pair 
< ni, nj > is an element of 2 (that is, if there is a tie from ni to nj) and 
equal to 0 if the ordered pair is not an element of 2. This quantity is a 
mapping from the elements of the collection of ordered pairs to the set 
containing just 0 and 1. These quantities are exactly the elements of the 
binary g x g sociomatrix X. 

A relation is the collection of all ordered pairs for which n, --> nj. It 
is thus a subset of JV x JV. In algebraic notation, capital letters (such 
as F) are used to refer to specific relations and to denote which ties are 
present. A relation is thus the set of all pairs of actors for which n, --> nj, 
or xij = 1, or iFj. 

Thus, one can see the equivalence between the graph theoretic notation, 
and the sociometric notation (built on sociomatrices), and the algebraic 
notation (dependent on relations such as F). Freeman (1989) views 
the triple consisting of the algebraic structure S, the directed graph or 
sociogram 'Y d, and the adjacency matrix or sociomatrix X as a social 
network: 

g =  < S, 'Yd, X > .  

This triple provides a nice abstract definition of the central concept of 
this book. And, it shows how these notational schemes are usually viewed 
together as providing the three essential components of the simplest form 
of a social network: 

• A set of nodes and a set of arcs (from graph theoretic notation) 
• A sociogram or graph (produced from the sets of nodes and 

arcs) 
• A sociomatrix (from sociometric notation) 

It is important to note that most of the generalizations of this simple 
social network g, such as to valued relations, multiple relations, more 
than one set of actors, and relations measured over time, can be viewed 
in just the same way as the situation described here (single dichotomous 
relation measured on a single set of actors). The only wrinkle is that 
actor attributes are not easily quantified by using these concepts. The 
best one can do is to define a new matrix, A, of dimensions (number 
of actors) x (number of attributes) to hold the measurements on the 
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attribute variables. One could even include this information in the 
social network definition, so that a more complicated social network is 
!I' = < S, '#d, X, A >. 

Lastly, we should note that nowhere in this chapter did we discuss 
affiliation relations. We have introduced affiliation networks in Chapter 
2, and will defer a mathematical description until Chapter 8. 



4 
Graphs and Matrices 

by Dawn Iacobucci 

This chapter presents the terminology and concepts of graph theory, and 
describes basic matrix operations that are used in social network analysis. 
Both graph theory and matrix operations have served as the foundations 
of many concepts in the analysis of social networks (Hage and Harary 
1983; Harary, Norman, and Cartwright 1965). In this chapter, the 
notation presented in Chapter 3 is used, and more concepts and ideas 
from graph theory are described and illustrated with examples. The 
topics covered in this chapter are important for the methods discussed in 
the remaining chapters of the book, but they are especially important in 
Chapter 5 (Centrality, Prestige, and Related Actor and Group Measures), 
Chapter 6 (Structural Balance, Clusterability, and Transitivity), Chapter 
7 (Cohesive Subgroups), and Chapter 8 (Affiliations, Co-memberships, 
and Overlapping Subgroups). 

We start this chapter with a discussion of some reasons why graph 
theory and graph theoretic concepts are important for social network 
analysis. We then define a graph for representing a nondirectional 

relation. We begin with simple concepts, and progressively build on 
these to achieve more complicated, and more interesting, graph theoretic 
concepts. We then define and discuss directed graphs, for representing 
directional relations. Again, we begin with simple directed graph concepts 
and build to more complicated ideas. Following this, we discuss signed 
and valued graphs. We then define and discuss hypergraphs, which are 
used to represent affiliation networks. In the final section of this chapter 
we define and illustrate basic matrix operations that are used in social 
network analysis, and show how many of these matrix operations can 

92 
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be used to study the graph theoretic coucepts discussed in the earlier 
sections of this chapter. 

4.1 Why Grapbs? 

Graph theory has been useful in social network analysis for many rea
sons. Among these reasons are the following (see Harary, Norman, and 
Cartwright 1965, page 3). First, graph theory provides a vocabulary 
which can be used to label and denote many social structural properties. 
This vocabulary also gives us a set of primitive concepts that allows us 
to refer quite precisely to these properties. Second, graph theory gives us 
mathematical operations and ideas with which many of these properties 
can be quantified and measured (see Freeman 1984; Seidman and Foster 
1978b). Last, given this vocabulary and these mathematics, graph theory 
gives us the ability to prove theorems about graphs, and hence, about 
representations of social structure. Like other branches of mathematics, 
graph theory allows researchers to prove theorems and deduce testable 
statements. However, as Barnes and Harary (1983) have noted, "Net
work analysts . . .  make too little use of the theory of graphs" (page 235). 
Although the representation of a graph and the vocabulary of graph 
theory are widely used by social network researchers, the theorems and 
derivations of graph theory are less widely used by network methodolo
gists. Some notable exceptions include the work of Davis, Everett, Frank, 
Hage, Harary, Johnsen, Peay, Roberts, and Seidman, among others. 

In addition to its utility as a mathematical system, graph theory gives 
us a representation of a social network as a model of a social system 
consisting of a set of actors and the ties between them. By model we 
mean a simplified representation of a situation that contains some, but 
not all, of the elements of the situation it represents (Roberts 1976; Hage 
and Harary 1983). When a graph is used as a model of a social network, 
points (called nodes) are used to represent actors, and lines connecting 
the points are used to represent the ties between the actors. In this sense, 
a graph is a model of a social network, in the same way that a model 
train set is a model of a railway system. 

Graphs have been widely used in social network analysis as a means 
of formally representing social relations and quantifying important so
cial structural properties, beginning with Moreno (1934), and developed 
further by Harary (Harary 1959a; Harary 1959b; Harary 1969; Hage 
and Harary 1983; Harary, Norman, and Cartwright 1965) and others 
(for example, Frank 1971 ;  Seidman and Foster 1978a, 1987b; Foster 
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and Seidman 1982, 1983, 1984). Graph theory has been used heav
ily in anthropology (Mitchell 1980; Hage 1973, 1976a, 1976b, 1979; 
Hage and Harary 1983; Abell 1970; Barnes 1969b; Barnes and Harary 
1983; Zachary 1977), social psychology (Heider 1944, 1946, 1958; Davis 
1967; Bavolas 1948, 1950; Leavitt 195 1 ;  Freeman 1977, 1979; Freeman, 
Roeder, and Mulholland 1980), communications, business, organizational 
research, and geography (Pitts 1965, 1979). 

The visual representation of data that a graph or sociogram offers 
often allows researchers to uncover patterns that might otherwise go 
undetected (Moreno 1934; Hoaglin, Mosteller, and Tukey 1985; Tukey 
1977; Velleman and Hoaglin 1981). 

Matrices are an alternative way to represent and summarize network 
data. A matrix contains exactly the same information as a graph, but is 
more useful for computation and computer analysis. Matrix operations 
are widely used for definition and calculation in social network analysis, 
and are the primary representation for most computer analysis packages 
(GRADAP, UCINET, STRUCTURE, SNAPS, NEGOPY). However, only 
the program GRADAP is explicitly graph theoretic. 

We will illustrate the graph theoretic concepts discussed in this chapter 
on small, simple social networks. Most of these examples will consist of 
hypothetical data created to demonstrate specific properties of graphs. 
We will also refer to the data collected by Padgett on the marital alliances 
between sixteen families in 15th century Florence, Italy. 

In the following section, we describe properties of graphs, where a line 
between two nodes is nondirectional. Graphs are used for representing 
nondirectional relations. Following the discussion of graphs, we describe 
properties of directed graphs, where a line is directed from one node 
to another. Directed graphs, or digraphs, are used for representing 
directional relations, where the tie has an origin and a destination. 

4.2 Graphs 

A graph is a model for a social network with an undirected dichotomous 
relation ; that is, a tie is either present or absent between each pair of 
actors. Nondirectional relations include such things as co-membership 
in formal organizations or informal groups, some kinship relations such 
as "is married to," "is a blood relative of," proximity relations such as 
"lives near," and interactions such as "works with." In a graph, nodes 
represent actors and lines represent ties between actors. In graph theory, 



4.2 Graphs 95 

the nodes are also referred to as vertices or points, and the lines are also 
known as edges or arcs. 

A graph '!J consists of two sets of information : a set of nodes, JV = 
{n" n" . . .  ,ng}, and a set of lines, !E = {/, , /2, . . .  , /d between pairs of 
nodes. There are g nodes and L lines. In a graph each line is an 
unordered pair of distinct nodes, lk = (ni, nj). Since lines are unordered 
pairs of nodes, the line between nodes n, and n j is identical to the line 
between nodes nj and n, (lk = (n" nj) = (nj, n,)). We will exclude the 
possible line between a node and itself, (n" n,). Such lines are called loops 
or reflexive ties. Also, we do not allow an unordered pair of nodes to 
be included more than once in the set of lines. Thus, there can be no 
more than one line between a pair of nodes. A graph that has no loops 
and includes no more than one line between a pair of nodes is called a 
simple graph. Unless we note otherwise, the graphs that we consider in 
this chapter are simple graphs. 

In a graph of a social network with a single nondirectional dichotomous 
relation, the nodes represent actors, and the lines represent the ties that 
exist between pairs of actors on the relation. A line Ik = (n" n j) is included 
in the set of lines, !E, if there is a tie present between the two actors in 
the network who are represented by nodes n, and nJ in the graph. 

Taken together, the two sets of information (nodes and lines) may be 
used to refer formally to a graph in terms of its node set and its line 
set. Thus we can denote a graph with node set JV and line set !E as 
'!J(JV, !E). However, when there is no ambiguity about the node set and 
the line set, we will refer to a graph simply as '!J. 

Two nodes, ni and nj, are adjacent if the line Ik = (n" nj) is in the set of 
lines !E. A node is incident with a line, and the line is incident with the 
node, if the node is one of the unordered pair of nodes defining the line. 
For example, nodes n, and n2 are incident with line I, = (n" n2). Each 
line is incident with the two nodes in the unordered pair that define the 
line. 

A graph that contains only one node is trivial: all other graphs are 
nontrivial. A graph that contains g nodes and no lines (L = 0) is empty. 
Trivial and empty graphs are of little substantive interest. In social 
networks, these graphs would correspond to a network consisting of only 
one actor (the trivial graph) and a network consisting of more than one 
actor, but no ties between the actors (the empty. graph). 

A graph '!J(JV,!E) can also be presented as a diagram in which points 
depict nodes, and a line is drawn between two points if there is a line 
between the corresponding two nodes in the set of lines, !E. The location 
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Actor 
", Allison 
", Drew 
·3 Eliot 
"4 Keith 
., Ross 
", Sarah 

It = (nl , ns) 
lz = (nt, n6) 
l3 = (m,n3) 
14 = (n4, ns) 
Is = (n4,n6) 

16 = (ns,n6) 

Lives near: 
Ross, Sarah 
Eliot 
Drew 
Ross. Sarah 
Allison, Keith, Sarah 
Allison, Keith, Ross 

nl = Allison 

us= Ross 

I

·,= Drew 

n3 = Eliot 

n4 = Keith 

Fig. 4.1. Graph of "lives near" relation for six children 

of points on the page is arbitrary, and the length of the lines between 
points is meaningless. The only information in the graph is the set of 
nodes and presence or absence of lines between pairs of nodes. In social 
network analysis, such a diagram is frequently referred to as a sociogram. 

An example of a graph is given in Figure 4.1. We begin with a small 
graph so that all of its elements may be easily identified. The sets of 
nodes and lines are also listed. In this example, we can take the six nodes 
to represent the six children and the undirected relation "lives near," 
discussed in Chapter 3. In this example there are g = 6 nodes and L = 6 
lines. A line between two nodes indicates that the children represented 
by these nodes live near each other. For examI?le, Sarah, n6; and Allison, 
nt, live near each other so the line (nt, n6) is included in the set of lines. 
Allison and Eliot, n3, do not live near each other, so the line (nt, n3) is 
not in the set of lines. 
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Social networks can be studied at several levels: the actor, pair or 
dyad, triple or triad, subgroup, and the group as a whole. In graph 
theoretic teTIns, these levels correspond to different subgraphs. Many 
social network methods consider subgraphs contained in a graph. For 
example, dyads and triads are (very small) subgraphs. 

4.2.1 Subgraphs, Dyads, and Triads 

Subgraphs. A graph 'fi., is a subgraph of 'fi if the set of nodes 
of 'fi, is a subset of the set of nodes of 'fi, and the set of lines in 'fi, is 
a subset of the lines in the graph 'fi. If we denote the nodes in 'fi, as 
%, and the lines in 'fi, as 2" then 'fi, is a subgraph of 'fi if .,v.< <;: % 
and 2, <;: 2. All lines in 2, must be between pairs of nodes in %,. 
However, since 2, is a subset of 2, there may be lines in the graph 
between pairs of nodes in the subgraph that are not included in the set 
of lines in the subgraph. 

Figure 4.2 gives an example of a graph and some of its subgraphs. In 'fi, 
the set of nodes consists of % = {nj , n2, n" n" n5} and 2 = {l,, /Z, I" I,}. 
In the subgraph in Figure 4.2b the set of nodes is %, = {nj , n" n,} and 
the set of lines is 2, = {l2}. Notice that the subgraph does not include 
the line I, = (n" n,). 

Any generic subgraph may not include all lines between the nodes in 
the subgraph. There are (at least) two special kinds of subgraphs that can 
be derived from a graph. One can take a subset of nodes and consider 
all lines that are between the nodes in the subset. Such a subgraph is 
node-generated, since the subset of nodes has produced the subgraph. Or, 
one can take a set of subset of lines, and consider all nodes that are 
incident with the lines in the subset. Such a subgraph is line-generated. 
We discuss each of these below. 

Node- and Line-Generated Subgraphs. First consider node
generated subgraphs. A snbgraph, 'fi" is generated by a set of nodes, 
%" if 'fi, has node set %" and line set 2" where the set of lines, 
2" includes all lines from 2 that are between pairs of nodes in %,. 
Whereas a subgraph does not necessarily include all of the lines from 2 
that are between nodes in %" a subgraph generated by node set %, 
must include all lines from !I! that are present between pairs of nodes in 
%,. 

In social network analysis, a node-generated subgraph results if the 
researcher considers only a subset of the g members of the network. Some 
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h. subgraph 

.!VS = {nI n3 n4} 
2, � {I,} 

.----.n, 

'----. n, 

c. subgraph generated 
by nodes nI n3 114 
.#"s = {ni n3 n4} 
2, � {I, I,} 

Fig. 4.2. Subgraphs of a graph 

a. 

ff = {ni n2 n3 H4 nS} 
.Ie = {II 12 13 14} 
II = (nI nz) 
12 = (n} n3) 

iJ = (ni ns) 
14 = (n3 n4) 

d. subgraph generated 
by lines II 13 

.A"'s = {nI n2 ns} 
2, � {II I,} 

relational data might be missing for some of the network members, and 
thus the researcher can only study ties among the remaining actors. In a 
longitudinal study in which a network is studied over time, some actor, 
or subset of actors, might leave the network. Analyses of the network 
might have to be restricted to the subset of actors for whom data are 
available for all time points. Node-generated subgraphs are widely used 
in the aoalysis of cohesive subgroups in networks (see Chapter 7). These 
methods focus on subsets of actors among whom the ties are relatively 
strong, numerous, or close. 

Now consider line-generated subgraphs. A subgraph, '§" is generated 
by a set of lines, !l?" if '§, has line set !l?" and node set .IV" where the 
set of nodes, .ff" includes all nodes from ..¥ that are incident with lines 
in !l?,. Figure 4.2c shows the subgraph generated by the set of nodes 
..¥, = {nJ , n3,n4}. In this subgraph both lines h = (nJ, n3) and I, = (n3,n4) 
are included, since a node-generated subgraph includes all lines between 
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the nodes in the graph. Figure 4.2d shows the subgraph generated by the 
set of lines 2, = {h, 13} . The set of nodes in this subgraph includes all 
nodes incident with lines h and 13, so JII", = (nt,n2,ns). 

So there are two special kinds of subgraphs that we will consider. 
Throughout the book, most of the subgraphs we consider will be node
generated subgraphs. 

An important feature of a subgraph is whether it is maximal with 
respect to some property. A subgraph is maximal with respect to a given 
property if that property holds for the subgraph 'fJ" but does not hold 
if any node or nodes are added to the subgraph. We will return to this 
property and illustrate it later in this chapter. 

Dyads. A dyad, representing a pair of actors and the possible 
tie between them, is a (node-generated) subgraph consisting of a pair of 
nodes and the possible line between the nodes. In a graph an unordered 
pair of nodes can be in only one of two states: either two nodes are 
adjacent or they are not adjacent. Thus, there are only two dyadic states 
for an undirected " relation represented as a graph; either the actors in the 
dyad have a tie present, or they do not. 

Triads. Triadic analysis is also based on subgraphs, where the 
number of nodes is three. A triad is a subgraph consisting of three nodes 
and the possible lines among them. In a graph, a triad may be in one 
of four possible states, depending on whether, zero, one, two, or three 
lines are present among the three nodes in the triad. These four possible 
triadic states are shown in Figure 4.3. 

There has been much theoretical research on triads. For example, 
Granovetter (1973) refers to the triad with two lines present and one line 
absent as the forbidden triad. He argues that if lines represent strong ties 
between actors, then if actor i has a strong tie with actor j, and actor j 
in turn has a strong tie with actor k, it is unlikely that the tie between 
actor i and actor k will be absent. This type of triad, with only two lines, 
is forbidden in Granovetter's model. 

Both dyads and triads are node-generated subgraphs, since they are 
defined as a subset of nodes and all lines between pairs of nodes in the 
subset. 

We now consider properties of nodes and graphs that can be defined 
using the concepts of adjacency and incidence for the nodes and lines in 
a graph. 
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• 

• • 
o lines 

I .  L b. 
1 line 2 lines 3 lines 

Fig. 4.3. Four possible triadic states in a graph 

4.2.2 Nodal Degree 

The degree of a node, denoted by d(ni)' is the number of lines that are 
incident with it. Equivalently, the degree of a node is the number of 
nodes adjacent to it. The degree of a node is a count that ranges from a 
minimum of 0, if no nodes are adjacent to a given node, to a maximum 
of g - 1, if a given node is adjacent to all other nodes in the graph. A 
node with degree equal to 0 is called an isolate. 

The degree of a node, d(ni)' may be obtained by counting the number 
of lines incident with it. In the example in Figure 4.1, the degrees of 
the nodes are: d(ntJ = 2, d(n,) = l, d(n3) = l, d(n4) = 2,d(n,) = 3, and 
d(n6) = 3. 

Degrees are very easy to compute, and yet can be quite informative in 
many applications. For example, if we observe children playing together, 
and represent children by nodes, and instances of pairs of children 
playing by lines in a graph, then a node with a small degree would 
indicate a child who played with few others, and a node with a large 
degree would indicate a child who played with many others. Or, in the 
study of Padgett's Florentine families, and the relation of marriage, a 
node with a large degree represents a family that has many marital ties 
to other families in the network. The degree of a node is a measure of 
the "activity" of the actor it represents, and is the basis for one of the 
centrality measures that we discuss in Chapter 5. 

In many applications, it is informative to summarize the degrees of 
all the actors in the network. The mean nodal degree is a statistic that 
reports the average degree of the nodes in the graph. Denoting the mean 
degree as d, we have 

d = 2::7-1 d(ni) = 2L 
g g 

(4.1) 

One might also be interested in the variability of the nodal degrees. 
If all the degrees of all of the nodes are equal, the graph is said to be 
d-regular, where d is the constant value for all the degrees (d(ni) = d, 



4.2 Graphs 101 

for all i and some value d). d-regularity can be thought of as a measure 
of uniformity. We will discuss d-regularity in more detail below in the 
context of directed graphs. If a graph is not d-regular, the nodes differ in 
degree. The variance of the degrees, which we denote by slJ, is calculated 
as: 

slJ = LT 1 (d(n;) -d)2 
g 

(4.2) 

A graph that is d-regular has slJ = O. Variability in nodal degrees means 
that the actors represented by the nodes differ in "activity," as measured 
by the number of ties they have to others. The variability of nodal degrees 
is one measure of graph centralization that we discuss in Chapter 5. 

The nodal degrees are an important property of a graph, and we 
will often want to control for or condition on the set of nodal degrees 
in a graph when we use statistical models to study tendencies toward 
higher-order network properties (such as reciprocity). We return to this 
idea in our discussion of digraphs, below. Statistics for degrees (means, 
variances, and so forth) and statistical distributions and inference are 
discussed in more detail in Chapters 5 and 13. 

4.2.3 Density of Graphs and Subgraphs 

Degree is a concept that considers the number of lines incident with each 
node in a graph. We can also consider the number and proportion of 
lines in the graph as a whole. A graph can only have so many lines. 
The maximum possible number is determined by the number of nodes. 
Since there are g nodes in the graph, and we exclude loops, there are 
m = g(g - 1)/2 possible unordered pairs of nodes, and thus g(g - 1)/2 
possible lines that could be present in the graph. This is the maximum 
number of lines that can be present in a graph. 

Consider now what proportion of these lines are actually present. The 
density of a graph is the proportion of possible lines that are actually 
present in the graph. It is the ratio of the number of lines present, L, to 
the maximum possible. The density of a graph, which we denote by �, is 
calculated as: 

� =  L 
g(g - 1)/2 

2L 
(4.3) 

g(g - 1) ' 

The density of a graph goes from 0, if there are no lines present (L = 0), 
to 1, if all possible lines are present (L = g(g - 1)/2). 
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a. Empty 
(L = 0) 

n ]  n2 
ns n3 

", 

h. Complete 
(L =g(g-l) /2 = 10) 

� ns n3 

'-.........!" � 4 
Fig. 4.4. Complete and empty graphs 

c. Intermediate 
(O<L<g(g-l) /2; here L = 4) 

nj-ns 
ns V3 ", 

If all lines are present, then all nodes are adjacent, and the graph is 
said to be complete. It is standard to denote a complete graph with g 
nodes as Kg . A complete graph contains all g(g - 1)/2 possible lines, the 
density is equal to 1, and all nodal degrees are equal to g - 1. 

An example of a complete graph in a social network would be a 
relation such as "communicates with," where all g actors communicated 
with all other actors. 

There is a straightforward relationship between the density of a graph 
and the mean degree of the nodes in the graph. Noticing that the sum of 
the degrees is equal to 2L (since each line is counted twice, once for each 
of the two nodes incident with it - see equation (4.1)), we can combine 
equations (4.3) and (4. 1) to get: 

d Ll = --
(g - 1) " 

(4.4) 

In other words, the density of a graph is the average proportion of lines 
incident with nodes in the graph. 

Figure 4.4 shows an example of an empty graph, a complete graph, 
and a graph with an intermediate number of lines (L = 4) for g = 5. 

We can also define the density of a subgraph, which we will denote by 
Ll,. The density of subgraph <§, is defined as the number of lines present 
in the subgraph, divided by the number of lines that could be present in 
the subgraph. We denote the number of nodes in subgraph <§, as g" and 
the number of lines in the subgraph as L,. The possible number of lines 
in a subgraph is equal to g,(g, - 1)/2. We calculate the density of the 
subgraph as: 

Ll, = 2L, 
g,(g, - 1) 

(4.5) 

The density of a subgraph expresses the proportion of ties that are 
present among a subset of the actors in a network. This measure is 
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used to evaluate the cohesiveness of subgroups (see Chapter 7) and to 
construct blockmodels and related simplified representations of networks 
(see Chapters 9 and 10). 

We now turn to an example to demonstrate nodal degree and graph 
density. 

4.2.4 Example: Padgett's Florentine Families 

Padgett's Florentine families network includes a set of sixteen Italian 
families in the early 15th century. The relation we consider here is 
marriage between pairs of families. Notice that the relation of marriage 
is nondirectional because the statement "a member of family i is married 
to a member of family j" is equivalent to the statement "a member of 
family j is married to a member of family i." In the graph, each family 
is represented as a node and the presence of a marriage between a pair 
of families is represented as a line. We labe1 the sixteen nodes with the 
families' surnames. 

The graph for this example is given in Figure 4.5. There are g = 16 
nodes in this graph, and L = 20 lines between the pairs of nodes. Even 
with as few as sixteen actors and twenty ties, the graph looks rather 
complicated. 

Let us now consider the nodal degrees and density of this social 
network. Notice that the Pucci family, n12, is not related to any of the 
other families by the marriage relation. It is thus an isolate on the 
marriage relation. Note that the degrees sum to 2L = 40. The mean 
nodal degree is d = (40/16) = 2.5, the median is 3.0, and S� = 1.462 

Thus, families have (on average) between two and three marriages to 
other families in this group. Tl1'6 Guadagni and Strozzi families, n7 and 
n15, have slightly more than average since their degrees are 4, and the 
Medici family, n9, has quite a bit more than average with a degree of 6. 
The density of the graph is 20/ 120 = 0.167. 

Substantively, we know that much of the political posturing at this 
time in history centered on the Medici and the Strozzi families. Figure 4.5 
indicates that these families seem to be important ones with respect to 
marital alliances. That is, these families have large degrees, and thus 
many marriages with the other families in this network. However, the 
Guadagni's, n7, also have a large number of marriages. 
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n l l :Peruzzi 

ns:Castellani 

n15:Strozzi 

ng:Lamberteschi 

rlt;:Ginori 

node = Hi degree = d(nj) node = ni 
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Fig. 4.5. Graph and nodal degrees for Padgett's Florentine families, 
marriage relation 
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4.2.5 Walks, Trails, and Paths 

In the previous section we considered the tie between a pair of nodes 
in terms of whether the nodes were adjacent or not. In this section we 
consider other ways in which two nodes can be linked by "indirect" 
routes that pass through the other nodes in the graph. We define and 
illustrate properties that are used to study the connectivity of graphs, to 
define the distance between pairs of nodes, and to identify nodes and 
lines that are critical for the connectivity of the graph. 

These properties are not only important in themselves, but are also 
building blocks for later properties. In particular, walks and paths will 
allow us to calculate the distance between two nodes. We will define 
walks. their inverses. and measurement of the lengths of walks. We 
also describe special types of walks called trails, paths, tours. and cycles. 
Using the definition of paths, we define geodesic distance, diameter. and 
eccentricity. 

In social network studies it is often important to know whether it is 
possible to reach some node n; from another node nj. If it is possible, 
it may also be interesting to know how many ways it can be done, and 
which of these ways is optimal with respect to one of several criteria. For 
example, we might wish to understand the communication of information 
among employees in an organization. An important consideration is 
whether information originating with one employee could eventually 
reach all other employees, and if so, how many lines it must traverse in 
order to get there. One might also consider whether there are multiple 
routes that a message might take to go from one employee to another, 
and whether some of these paths are more or less "efficient." 

Walks in a Graph. A walk is a sequence of nodes and lines, 
starting and ending with nodes, in which each node is incident with the 
lines following and preceding it in the sequence. The listing of a walk, 
denoted by W, is an alternating sequence of incident nodes and lines 
beginning and ending with nodes. The beginning and ending nodes may 
be different. �In addition, some nodes may be included more than once, 
and some lines may be included more than once. The length of a walk is 
the number of occurrences of lines in it. If a line is included more than 
once in the walk, it is counted each time it occnrs. 

Because (simple) graphs have at most one line between each pair of 
nodes, there is no ambiguity about which line is between any two nodes, 
and a walk may be described by just listing the nodes involved and 
excluding the lines. The starting node and the ending node of a walk 
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A walk would be W = nl h n4 13 m 13 n4 

A trail would be W = n4 h m 14 n3 Is n4 lz nl 

A path would be W = nt h n4 h nz 

Fig. 4.6. Walks, trails, and paths in a graph 

are the first and last nodes of W and are referred to as the origin and 
terminus of W. The inverse of a walk, denoted by W-', is the walk W 
listed in exactly the opposite order, using the same nodes and lines. 

Figure 4.6 contains a hypothetical structure of communication ties 
among g = 5 employees. This structure might arise if actors Jeff, Jerry, 
and Jim (n2, n3, n4) all communicate with each other and report through 
Jim (n.) to Jack (nil, who in turn reports to Joe (ns). One possible 
walk through this network would be W = n,hn4/3n2/3n4' For example, 
perhaps Jack (nil passes a memo to Jim (n4)' Jim leaves the memo on 
Jeff's (n2) desk. Jeff does not realize Jim was the one to leave the memo, 

and Jeff thinks he should bring the memo to Jim's attention, so he sends 
the memo back to Jim. 

Notice several properties about this walk. First, not all nodes are 
involved : the message never reached Joe (ns) or Jerry (n3)' Second, some 
nodes were used more than once: Jim (n4) was included in the walk 
twice. Third, some lines were not used (that is, It, 14, [5), and some lines 
were used more than once (that is, 13). The walk W = n, /2n4/3n2/3n4 may 
be written more briefly as W = n,n4n2n4. The origin and terminus in this 
walk are n, and n4. The length of the walk is 3, since there are three 
lines: 1,, 13, /3. The length is 3 even though only two distinct lines are 
contained in this walk, because one of these lines is included twice. The 
inverse of the walk is W-' = n4n2n4n,. 

A walk is the most general kind of sequence of adjacent nodes, since 
there are no restrictions on which nodes and lines may be included (aside 
from adjacency of nodes). Special kinds of walks, which we consider 
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next, are more restrictive in that they require that nodes or lines be used 
no more than once. 

OTraiis and Paths. Trails and paths are walks with special char
acteristics. A trail is a walk in which all of the lines are distinct, though 
some node(s) may be included more than once. In the communications 
example, a trail means no communication tie is used more than once. 
The length of a trail is the number of lines in it. 

A path is a walk in which all nodes and all lines are distinct. For 
example, a path through a communication network means no actor is 
informed more than once. The length of a path is the number of lines in 
it. 

Notice that every path is a trail, and every trail is a walk. So any 
pair of nodes connected by a path is also connected by a trail and by a 
walk. Thus, a walk is the most general and a path is the least general 
kind of "route" through a graph. Since all paths are walks (but without 
repeating nodes or lines) a path is likely to be shorter compared to a 
walk or a trail. In a path in the communications network, no employee is 
informed more than once, and no pair of employees discusses the matter 
more than once. In applications to social networks, we will often focus 
on paths rather than walks. 

One of the trails in Figure 4.6 is n4n2n3n4 (no line is repeated). One of 
the paths is nln4n2 (no line or node is repeated). 

There may be more than one path between a given pair of nodes. For 
example, in Figure 4.6 there are two paths between nl and n2 : nln4n2 
and ntn4n3n2. 

A very important property of a pair of nodes is whether there is a path 
between them, or not. If there is a path between nodes n, and nj, then n, 
and nj are said to be reachable. For example, if we consider a network 
of communications among people in which lines in a graph represent 
channels for transmission of messages between people, then if two actors 
are reachable, it is possible for a message to travel from one actor to the 
other by passing the message through intermediaries. If two actors are 
not reachable, then there is no path between them, and no way for a 
message to travel from one actor to the other. 

DClosed Walks, Tours, and Cycles. Some walks begin and end 
at the same node. A walk that begins and ends at the same node is called 
a closed walk. In Figure 4.7, a closed walk is: 
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Cycles n5 nl n4 n3 n5 

n2 n3 n4 n2 

n2 n4 nl n5 n3 n2 

Fig. 4.7. Closed walks and cycles in a graph 

A cycle is closed walk of at least three nodes in which all lines are 
distinct, and all nodes except the beginning and ending node are distinct. 
A graph that contains no cycles is called acyclic. The graph in Figure 4.6 
is not acyclic, since there is the cycle W = n4n2n3n4. 

A tour is a closed walk in which each line in the graph is used at least 
once. A tour in Figure 4.7 is: 

Cycles are important in the study of balance and clusterability in 
signed graphs (a topic we return to later in this chapter, and discuss in 
detail in Chapter 6). 

Other special closed walks are those that include each and every node, 
or include each and every line. Eulerian trails are special closed trails 
that include every line exactly once (see Biggs, Lloyd, and Wilson 1976). 
Analogous closed walks can be defined in which each node is included 
exactly once. A cycle is labeled Hamiltonian if every node in the graph is 
included exactly once. 
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Connected graph Disconnected graph 

Fig. 4.8. A connected graph and a graph with components 

4.2.6 Connected Graphs and Components 

An important property of a graph is whether or not it is connected. 
A graph is connected if there is a path between every pair of nodes 
in the graph. That is, in a connected graph, all pairs of nodes are 
reachable. If a graph is not connected, then it is disconnected. Consider the 
example of communications among employees in an organization. If the 
graph representing communications among the employees is connected, 
then messages can travel from any employee to each and every other 
employee through the pairwise communication channels. However, if 
the graph representing this network is disconnected, then some pair 
of people cannot send or receive messages from each other using the 
communication channels. 

Components. The nodes in a disconnected graph may be parti
tioned into two or more subsets in which there are no paths between 
the nodes in different subsets. The connected subgraphs in a graph are 
called components. A component of a graph is a maximal connected 
subgraph. Remember that a maximal entity is one that cannot be made 
larger and still retain its property. That is, a component is a subgraph 
in which there is a path between all pairs of nodes in the subgraph {all 
pairs of nodes in a component are reachable), and (since it is maximal) 
there is no path between a node in the component and any node not 
in the component. One cannot add another node to the subgraph and 
still retain the connectedness. If there is only one component in a graph, 
the graph is connected. If there is more than one component, the graph 
is disconnected. 



1 10 Graphs and Matrices 

Consider Figures 4.8a and 4.8b. The graph in Figure 4.8a is connected 
since there is a path between each pair of nodes. However, the graph in 
Figure 4.8b is not connected, since there is no path between n, and n2. The 
graph in Figure 4.8b is disconnected, since there are pairs of nodes that do 
not have a path between them. For the graph in Figure 4.8b, the nodes 
can be partitioned into subsets %1 = {n" n6, n,}, %, = {n" nJ,n,}. The 
subgraphs generated by the different sets, %, and %2 are the components 
of <g. In Figure 4.8b, the graph has two components. 

Note that Padgett's Florentine families' marriage ties produce a dis
connected graph because the Pucci family, represented by node n12, is an 
isolate (that is, d(n12) = 0). The two components in this graph are the 
subgraphs generated by the subsets : 

• %2 = {n12} 

4.2.7 Geodesics, Distance, and Diameter 

Now let us consider the paths between a pair of nodes. It is likely that 
there are several paths between a given pair of nodes, and that these 
paths differ in length. A shortest path between two nodes is referred to 
as a geodesic. If there is more than one shortest path between a pair 
of nodes, then there are two (or more) geodesics between the pair. The 
geodesic distance or simply the distance between two nodes is defined 
as the length of a geodesic between them. We will denote the geodesic 
distance between nodes ni and nj as dei, j). The distance between two 
nodes is the length of any shortest path between them. If there is no path 
between two nodes (that is, they are not reachable), then the distance 
between them is infinite (or undefined). If a graph is not connected, then 
the distance between at least one pair of nodes is infinite (because the 
distance between two nodes in different components is infinite). In a 
graph, a geodesic between n, and nj is also a geodesic between nj and ni. 
Thus the distance between ni and nj is equal to the distance between nj 
and ni; dei, j) = dU, i). 

Consider the graph in Figure 4.9. In this graph, the path nJn,n, is of 
length 2. since it contains two lines. This path is also a geodesic between 
nJ and n,; hence, d(3, 5) = 2 (the path nJn2n,n, is of length 3 and is thus 
not a geodesic). Figure 4.9 also gives the geodesic distances between all 
pairs of nodes in this graph. 
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n, 

Geodesic distances 

d(1,2) � 1  
d(1, 3) � 1 
d(1,4) � 2 
d(1,5) � 3  
d(2, 3) � 1 
d(2,4) � 1 
d(2,5) � 2 
d(3, 4) � 1 
d(3, 5) � 2 
d(4, 5) � 1 

Diameter of graph = max d(i,j) = d(1,5) = 3 

Fig. 4.9 Graph showing geodesics and diameter 

1 1 1  

Distances are quite important in social network analyses, They quantify 
how far apart each pair of nodes is, and are used in two of the centrality 
measures (discussed in Chapter 5) and are an important consideration for 
constructing some kinds of cohesive subgroups (discussed in Chapter 7). 

()Eccentricity of a Node, Consider the geodesic distances be
tween a given node and the olher g - 1 nodes in a connected graph. 
The eccentricity or association number of a node is the largest geodesic 
distance between that node and any other node (Harary and Norman 
1953; Harary 1969). Formally, the eccentricity of node ni in a connected 
graph is equal to the maximum d(i,j), for all j, (or maxj d(i,j)). The 
eccentricity of a node can range from a minirimm of 1 (if a node is 
adjacent to all other nodes in the graph) to a maximum of g - 1. It 
summarizes how far a node is from the node most distant from it in the 
graph. Several measures of centrality, such as the center and the centroid 
of a graph, are based on the eccentricity of the nodes. We discuss these 
in more detail in Chapter 5. 

Diameter of a Graph. Consider the largest geodesic distance 
between any pair of nodes in a graph, that is, the largest eccentricity 
of any node. The diameter of a connected graph is the length of the 
largest geodesic between any pair of nodes (equivalently, the largest 
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nodal eccentricity). Formally, the diameter of a connected graph is equal 
to the maximum d(i,j), for all i and j (or maxj maxj d(i,j)). The diameter 
of a graph can range from a minimum of 1 (if the graph is complete) to 
a maximum of g - 1. If a graph is not connected, its diameter is infinite 
(or undefined) since the geodesic distance between one or more pairs of 
nodes in a disconnected graph is infinite. 

Returning to the example in Figure 4.9 we see that the largest geodesic 
between any pair of nodes is 3 (between nodes n1 and n5). Thus the 
diameter of this graph is equal to 3. 

The diameter of a graph is important because it quantifies how far 
apart the farthest two nodes in the graph are. Consider a communications 
network in which the ties are the transmission of messages. Focus on 
messages sent between all pairs of actors. Then, assuming messages 
always take the shortest routes (that is, via geodesics), we are guaranteed 
that a message can travel from any actor to any other actor, over a path 
of length no greater than the diameter of the graph. 

Diameter of a Subgraph. We can also find the diameter of a 
subgraph. Consider a (node-generated) subgraph with node set JV, and 
line set 2, containing all lines from 2 between pairs of nodes in JV,. 
The distance between a pair of nodes within the subgraph is defined 
for paths containing nodes from JV, and lines from 2,. The distance 
between nodes nj and nj in the subgraph is the length of the shortest path 
between the nodes within the subgraph. Any path, and thus any geodesic, 
induding nodes (and thus lines) outside the subgraph, is not considered. 
The diameter of a sub graph is the length of the largest geodesic within 
the subgraph. 

4.2.8 Connectivity of Graphs 

We now use the ideas of reachability between pairs of nodes, the concept 
of a connected graph, and components in a disconnected graph to 
define nodes and lines that are critical for the connectivity of a graph. 
We also present measures of how connected a graph is as a whole. 
The connectivity of a graph is a function of whether a graph remains 
connected when nodes and/or lines are deleted. We discuss each of these 
in turn. 

Cutpoints. A node, nj, is a cutpoint if the number of components 
in the graph that contains nj is fewer than the number of components 
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Node n1 is a node cut, or cutpoint 

n5 

/--
n6 �_ 

n, n4 
The graph without node ni 

Fig. 4.10. Example of a cutpoint in a graph 

113 

in the subgraph that results from deleting ni from the graph. That is, 
consider graph '!i with node set ,;V which includes node ni, and the 
subgraph '!i, with node set ,;v, � ,;v - n, that results from dropping ni 
and all of its incident lines from graph '!i. Node ni is a cutpoint if the 
number of components in '!i is less than the number of components in 
'!is. 

For example, n, in Figure 4.10 is a cutpoint. This graph has one 
component, but if n, is removed, the graph has two components. In 
a communications network, an actor who is a cutpoint is critical, in 
the sense that if that actor is removed from the network, the remaining 
network has two subsets of actors, between whom no communication 
can travel. 

The concept of a cutpoint can be extended from a single node to a 
set of nodes necessary to keep the graph connected. If a set of nodes 
is necessary to maintain the connectedness of a graph, these nodes are 
referred to as a cutset. If the set is of size k, then it is called a k-node cut. 
A cutpoint is a i-node cut. If a set of nodes is a cutset, then the number 
of components in the' graph that contains the set of nodes is fewer than 
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t>1>< 
n7 n6 

ns 

Line (n2 n3) is a bridge 

t> �  � n5 5 

Graph without line (n2 n3) 

Fig. 4.11. Example of a bridge in a graph 

the number of components in the subgraph that results from deleting the 
set of nodes from the graph. 

Bridges. A notion analogous to that of cutpoint exists for lines. 
A bridge is a line that is critical to the connectedness of the graph. 
A bridge is a line such that the graph containing the line has fewer 
components than the subgraph that is obtained after the line is removed 
(nodes incident with the line remain in the snbgraph). The removal of 
a bridge leaves more components than when the bridge is included. If 
line Ik is a bridge, then the graph <!J with line set !l? including Ik has 
fewer components than the subgraph <!J, with line set !l? � I., the graph 
obtained by deleting line h. 

The line (02, n3) in Figure 4.11  is a bridge. If the line (n2' n3) is removed 
from the graph, there is no path between nodes n) and ns (for example) 
and the graph becomes disconnected. In Figure 4.1 1, if the line (n2, n3) 
were nonexistent, nodes n), n2, and n7 would not be reachable from nodes 
n3, n4, n5. and n6· 

Similarly, an I-line cut is a set of I lines that, if deleted, disconnects the 
graph. A bridge is a i-line cut. In graphs representing social networks, a 
bridge is a critical tie, or a critical interaction between two actors. 
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Example. For the marriage relation for Padgett's Florentine fam
ilies, the Medici family, ng, is a cutpoint. With all sixteen nodes, the graph 
has two components. Without ng, there are now two more components, 
giving four in total. If Family Medici is removed, nlo the Acciaiuoli 
family becomes an isolate, and the Salviati and Pazzi families, n 10 and 
n14, are not reachable from the other families. There are other cutpoints 
in the graph. The marriage between the Salviati and Medici families, 
represented by the line (ng, n,4), is a bridge (since its removal isolates the 
Salviati and Pazzi families). 

One can consider the extent of connectivity in a graph in terms of 
the number of nodes or the number of lines that must be removed in 
order to leave the graph disconnected. The connectivity of a graph is one 
measure of its "cohesiveness" or robustness. 

0Node- and Line-Connectivity. One way to measure the cohe
siveness of a graph is by its connectivity. A graph is cohesive if, for 
example, there are relatively frequent lines, many nodes with relatively 
large degrees, or relatively short or numerous paths between pairs of 
nodes. Cohesive graphs have many short geodesics, and small diameters, 
relative to their sizes. If a graph is not cohesive then it is "vulnerable" to 
the removal of a few nodes or lines. That is, a vulnerable graph is more 
likely to become disconnected if a few nodes or lines are removed. 

We can use the notions of a cutset and a line cut to define two measures 
of the connectivity of a graph. One measure describes the connectivity 
of the graph based on lhe removal of nodes, and lhe other describes the 
connectivity of the graph based on the removal of lines (Harary 1969). 

The point-connectivity or node-connectivity of a graph, K(W), is the 
minimum number K for which the graph has a K-node cut. It is the 
minimum number of nodes that must be removed to make the graph 
disconnected, or to leave a trivial graph (Harary 1969, page 43). If the 
graph is disconnected, then K = 0, since no node must be removed. If 
the graph contains a cutpoint, then K = 1 since the removal of the single 
node leaves the graph disconnected. If a graph contains no node whose 
removal would disconnect the graph, but it contains a pair of nodes 
whose removal together would disconnect the graph, then K = 2, since 
two is the minimum number of nodes that must be removed to make 
the graph disconnected. Thus, higher values of K indicate higher levels 
of connectivity of the graph. 

An example of a 2-node cut is given in Figure 4.12. The 2-node cut 
consists of n2 and n4, because without them n3 would not be connected 
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The graph without n2 and n4 

Fig. 4.12. Connectivity in a graph 

• 
n, 

to the remainder of the graph. In Figure 4.12, K(�) = 2. The graph may 
be disconnected if K :2: 2 nodes are removed, but K = 2 is the minimum. 
That is, the removal of any single node (K = 1) would not result in a 
disconnected graph. In Figure 4.10, K(�) = 1, since there is a node whose 
removal disconnects the graph (n! is a cutpoint). 

The value K is the minimum number of nodes that must be removed 
to make the graph disconnected. Thus, removing any number of nodes 
less than K does not make the graph disconnected. For any value k less 
than K., the graph is said to be k-node connected. 

A complete graph has no cutpoint; all nodes are adjacent to all others, 
so the removal of any one node would still leave the graph connected. In 
order to disconnect a complete graph, one would need to remove g - 1 
nodes, resulting in a trivial graph (g = 1), so K(Kg) = g - 1 . 

The line-connectivity or edge-connectivity of a graph, A(�), is the min
imum number A for which the graph has a A-line cut. The value, A, is 
the minimum number of lines that must be removed to disconnect the 
graph or leave a trivial graph (Harary 1969, page 43). In Figure 4.10, 
A(�) = 1, since line 14 is a bridge. Removing more than one line may 
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also destroy the graph's connectedness, but the minimum number of lines 
whose removal disconnects the graph is I (specifically line 14). If A(�) <': I, 
the graph is said to be I-line connected, since I is the minimum number 
of lines that must be removed to make the graph disconnected. 

The larger the node-connectivity or the line-connectivity of a graph is, 
the less vulnerable the graph is to becoming disconnected. We will return 
to ideas of connectivity in Chapter 7 and discuss how these ideas can be 
used to define cohesive subgroups. 

4.2.9 Isomorphic Graphs and Subgraphs 

Two graphs, q; and Cfj", are isomorphic if there is a one-to-one mapping 
from the nodes of � to the nodes of �' that preserves the adjacency of 
nodes. 

A one-to-one mapping means that each node in � is mapped to one 
(and only one) node in �', and each node in �. is mapped to one (and 
only one) node in �. Let us denote nodes in � as JV = {nlo n2, . . .  , ng} and 
nodes in �' as JV" = {n;, ni, . . .  , n;}. We will use the notation q,(n,) = nZ 
to indicate that node n, in � is mapped to node nk in �". The inverse of 
this mapping, q,-I, is the mapping that maps node nZ in �" to node n, in 
�; q,-I(njJ = n,. Since the mapping is a one-to-one mapping, q,(n,) = nk 
if and only if q,-I(nZ) = n,. 

The mapping preserves adjacency if nodes that are adjacent in � are 
mapped to nodes that are adjacent in �", and nodes that are not adjacent 
in � are mapped to nodes that are not adjacent in �", and vice versa. 
Formally, two graphs are isomorphic if for all n" n j E JV and nZ, nj E JV" 
there exists a one-to-one mapping, q,(n,) = nZ and q,(nj) = ni such that 
1m = (n" nj) E 2 if and only if 10 = (nZ, ni) E 2'. If two nodes are 
adjacent in one graph, then the nodes they are mapped to must also be 
adjacent in the isomorphic graph. 

Consider the two graphs in Figure 4.13. Each graph has g = 6 nodes 
and L = 6 lines, and the nodes in each graph are labeled. A labeled graph 
is a graph in which the nodes have names or labels attached to them. 
The labels may be the names of the actors represented by the nodes, 
or they may be numbers or letters distinguishing the nodes. Isomorphic 
graphs are indistinguishable except for the labels on the nodes. For 
example, Figure 4.13a contains a graph �* that is isomorphic to that in 
Figure 4.13b, �. 

Isomorphisms between graphs are important because if two graphs are 
isomorphic, then they are identical on all graph theoretic properties. For 
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�(nl) = Keith 
�(n,) = Eliot 
�(n3) = Sarah 
¢(n4) = Allison 
¢(ns) = Drew 
¢(n6) = Ross 

Fig. 4.13. Isomorphic graphs 
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example, two isomorphic graphs have the same number of nodes, the 
same number of lines, the same density, the same diameter, and so on. 
Thus, if we know that a particular graph theoretic property holds for 
graph '1J then we know that the property holds for any graph '1J' that is 
isomorphic to '1J. 

It is also important to consider the nodes in isomorphic graphs. If 
two graphs '1J and '1J' are isomorphic, and ni in graph '1J is mapped to 
node nZ in '1J', (</>(ni) = nZ) then ni and nk are identical with respect to all 
graph theoretic properties (they have the same nodal degree, the same 
eccentricity, and so on). This property is quite important in defining 
some kinds of positional equivalences that we discuss in Chapter 12. 

We can also consider isomorphic subgraphs. Two subgraphs, '1J, and 
'1J;, are isomorphic if there is a one-to-one mapping from the nodes of 
'1J, to the nodes of '1J; that preserves the adjacency of nodes (as defined 
above). Subgraphs that are isomorphic belong to the same isomorphism 
class. Studies of dyads (Chapter 14) and triads (Chapter 15) rely on the 
isomorphism of very small subgraphs. 

We now consider graphs with special properties. 
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> �  
a. Cyclic graph b.Tree C. Forest 

Fig. 4.14. Cyclic and acyclic graphs 

4.2.10 OSpecia/ Kinds of Graphs 

Complement. The complement, <g, of a graph, '#, has the same 
set of nodes as '#, a line is present between an unordered pair of nodes 
in <g if the unordered pair is not in the set of lines in '#, and a line is not 
present in <g if it is present in '#. In other words, if nodes n, and nj are 
adjacent in '#, then n, and nj are not adjacent in <g, and if nodes n, and 
nj are not adjacent in '#, then n, and nj are adjacent in <g. The line sets 
for these two graphs have no intersection at all, and their union is the 
set of all possible lines (all unordered pairs of nodes). 

Trees. A graph that is connected and is acyclic (contains no 
cycles) is called a tree. In some ways trees are rather simple graphs, since 
they contain the minimum number oflines necessary to be connected, and 
they do not contain cycles. Several characteristics of trees are particularly 
important. First, trees are minimally connected graphs since every line in 
the graph is a bridge (or line cut). The removal of any one line causes the 
graph to be disconnected. Second, the number of lines in a tree equals 
the number of nodes minus one (L = g - 1). Adding another line adds a 
cycle to the graph, and hence the graph is no longer a tree. Third, there 
is only one path between any two nodes in a tree. If this is not true, the 
graph contains a cycle, which by definition a tree does not contain. 

A graph that is disconnected (has more than one component) and 
contains no cycles is called a forest. In a forest, each component is a tree. 
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Bipartite 

Fig. 4.15. Bipartite graphs 

Complete bipartite 

In general, the number of lines in a tree or forest equals the number 
of nodes minus the number of components of the graph. So, L equals g 
minus the number of components of <'§. For a tree L = g - 1 since the 
number of components for a tree is I. 

The graph in Figure 4.14b is a tree. It is easy to verify that each pair 
of nodes is connected via some path, and the graph is acyclic. The graph 
in Figure 4.14a is not a tree, because it contains a cycle. The graph in 
Figure 4.14c is a forest. In the forest in Figure 4.14c, L = 5, or g minus 
2 components. 

Bipartite Graphs. If the nodes in a graph can be partitioned into 
two subsets, .;V, and .;V 2, so that every line in :t' is an unordered pair 
of nodes in which one node is in .;V, and the other node is in .;V 2, then 
the graph is bipartite. In a bipartite graph there are two subsets of nodes 
and all lines are between nodes belonging to different subsets. Nodes in 
a given subset are adjacent to nodes from the other subset, but no node 
is adjacent to any node in its own subset. 

A complete bipartite graph is a bipartite graph in which every node 
in .;V, is adjacent to every node in ';v2. Complete bipartite graphs are 
usually denoted Kgj,g2' where gl is the number of nodes in .%1, and g2 is 
the number of nodes in .;V 2. 

An example of a bipartite graph and a complete bipartite graph is 
given in Figure 4.15. Nodes n, and n2 belong to .;V, = {nlo n2} and nodes 
n3, n4, nS belong to %2 = {n3,n4,nS}. 

A two-mode network with two sets of actors and a relation linking 
actors in one set to actors in the second set can be represented as a 
bipartite graph. But a bipartite graph may also exist in a one-mode 
network. A graph of an exogamous marriage system is bipartite, if, for 
example, women from clan A take husbands frilm clan B, and men from 
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clan B take wives from clan A. In that case, all marriages unite partners 
from different clans. 

The partitioning of the nodes in a graph can be generalized from two 
subsets %1 and %2 to s subsets %)'%2, " " %" An s-partite graph is 
one in which there is a partitioning of the nodes into s subsets so that all 
lines are between a node in .Af'i and a node in ,¥j, where i + j. All tines 
are between nodes in different subsets and no nodes in the same subset 
are adjacent. 

The notion of a complete bipartite graph can also be extended to a 
complete s-partite graph. A graph is a complete s-partite graph if all 
pairs of nodes belonging to different subsets are adjacent. All possible 
between-subset lines are present, and there are no lines incident with two 
nodes belonging to the same subset (equivalently, no nodes in the same 
subset are adjacent). 

An example of a network that might be described by a bipartite graph 
is the set of monetary donations transacted between corporations in a 
specific geographic area, and the non-profit organizations headquartered 
in this area. We initially place all firms, both corporations and non
profit organizations, into a single actor set, %. We then measure the 
flows of donations among these firms. Since the non-profit organizations 
usually have limited cash resources and thus can not support themselves 
financially, they must rely on the corporations for donations. We find 
that the only lines in this graph connect corporations to non-profit 
organizations. Thus, we have a bipartite graph, with the corporations 
n::siding in sel %1 and non-profit organizations in set %2_ 

Thus far, we have focused our discussion on graphs, where a line 
between nodes is either present or absent. As we have emphasized 
before, graphs are useful for representing nondirectional relations. In the 
next section we discuss directed graphs, which are used for representing 
directional relations. 

4.3 Directed Graphs 

Many relations are directional. A relation is directional if the ties are 
oriented from one actor to another. The import/export of goods between 
nations is an example of a directional relation. Clearly goods go from 
one nation to another; one nation is the source and the other is the 
destination of the goods. In a social network representing trade among 
nations, the ties are directional and the graph representing such ties must 
be directed. Choices of friendships among children are another example 
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of a directional relation. The claim of friendship is directed from one 
child to another child. Child i may choose child j as a friend, but that 
does not necessarily imply child j chooses child i as a friend. 

In this section we define a directed graph and describe those definitions 
and concepts for directed graphs that are most useful for social network 
analysis. We refer the reader to Hage and Harary (1983), Harary, 
Norman, and Cartwright (1965), or other graph theory reference books 
for further discussion of directed graphs. 

A directional relation can be represented by a directed graph, or digraph 
for short. A digraph consists of a set of nodes representing the actors in 
a network, and a set of arcs directed between pairs of nodes representing 
directed ties between actors. The difference between a graph and a 
directed graph is that in a directed graph the direction of the lines is 
specified. Directed ties between the pairs of actors are represented as 
lines in which the orientation of the relation is specified. These oriented 
lines are called arcs. 

A directed graph, or digraph, �d(%, 2), consists of two sets of in
formation: a set of nodes % = {n"n" . . .  , n,}, and a set of arcs, 2 = 
{I" 1" . . . , IL}. Each arc is an ordered pair of distinct nodes, Ik =< ni, nJ >. 
The arc < ni,nj > is directed from ni (the origin or sender) to nj (the 
terminus or receiver). The difference between an arc (in a digraph) and a 
line (in a graph) is that an arc is an ordered pair of nodes (to reflect the 
direction of the tie between the two nodes) whereas a line is an unordered 
pair of nodes (it simply records the presence of a tie between two nodes). 

We let L be the number of arcs in 2. Since each arc is an ordered 
pair of nodes, there are g(g - 1) possible arcs in 2. 

As in a graph, a node is incident with an arc if the node is in the 
ordered pair of nodes defining the arc. For example, both nodes ni and 
nj are incident with the arc h =< nj. nj >. However, in a digraph, since 
an arc is an ordered pair of nodes, we can distinguish the first from the 
second node in the pair. Thus, the concept of adjacency of pairs of nodes 
in a digraph is somewhat more complicated than adjacency of pairs of 
nodes in a graph. We must consider whether a given node is first (sender) 
or second (receiver) in the ordered pair defining the arc. Specifically, 
node nj is adjacent to node nj if < ni, nj >E .P, and node nj is adjacent 
from node nj if < ni, nj >E P. 

When a digraph is presented as a diagram the nodes are represented as 
points and the arcs are represented as directed arrows. The arc < ni, n j > 
is represented by an arrow from the point representing ni to the point 
representing nj. For example, if actor i nominates actor j as a friend, 



4.3 Directed Graphs 

Actor Likes at beginning of year 
"1 Allison Drew Ross 
"2 Drew Eliot Sarah 
., Eliot Drew 
'" Keith Ross 
"5 Ross Sarah 
"6 Sarah Drew 

Allison 

� Sarah • �----,I----------- .  Drew 

Ross . 

�Keith 

it = (nl,nZ) 

h = (nl ,ns) 
13 = (nZ,n3) 
4 � (n2' "6) 

15 = (n3,nz) 
16 = (n4,ns) 
h = (ns,n6) 
18 = (n6, nz) 

• Eliot 

Fig. 4.16. Friendship at the beginning of the year for six children 
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there would be an arc originating at i and terminating at j. If actor 
j returned the friendship choice, there would be another arc, this one 

originating at j and terminating at i. 
To illustrate a directed graph let us consider the choices of friendship 

among our six children at the beginning of the year. These choices 
are represented in the directed graph in Figure 4.16. The g = 6 nodes 
represent the six children, and the arcs represent friendship nominations. 
So, there is an arc from one node to another if the child represented by 

the first node chose the child represented by the second node as a friend. 
For example Ross, ns, chose Sarah, n6, as a friend, so the arc < ns, n6 > 
is included in the graph. 
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Many concepts for graphs (such as subgraph) presented and defined 
earlier in this chapter are inunediately applicable to directed graphs, and 
thus do not require special discussion. However, some concepts, such 
as isomorphism classes for dyads and triads, nodal degree, walks, and 
paths are somewhat different in directed graphs, and thus need special 
discussion. We now turn to these digraph topics. 

4.3.1 Subgraphs - Dyads 

One of the most important subgraphs in a digraph is the dyad, consisting 
of two nodes and the possible arcs between them. Since there may or 
may not be an arc in either direction for a pair of nodes, n, and nj, there 
are four possible states for each dyad. However, there are only three 
isomorphism classes (all dyads are identical to one of these three types). 

The first isomorphism class of a dyad is the null dyad. Null dyads 
have no arcs, in either direction, between the two nodes. The dyad for 
nodes ni and nj is null if neither of the arcs < nj, nj > nor < ni' nj > is 
contained in the set of arcs, 2". The second isomorphism class is called 
asymmetric. An asymmetric dyad has an arc between the two nodes going 
in one direction or the other, but not both. The dyad for nodes n, and 
nj is asymmetric if either one of the arcs < ni, nj > or < nj,ni >, but 
not both, is contained in the set of arcs, 2". Thus, there are two possible 
asymmetric dyads, but they are isomorphic. The third isomorphism 
class is called a mutual or reciprocal dyad. Mutual dyads have two arcs 
between the nodes, one going in one direction and the other going in the 
opposite direction. The dyad for nodes n, and nj is mutual if both arcs 
< ni, nj > and < njl nj > are contained in the set of arcs, 2. Thus the 
three isomorphism classes for dyads are: nulL asynunetric, and mutual. 

If the directed graph represents the friendship relation, a null dyad is 
one in which neither person chooses the other. The asymmetric dyad 

occurs when one person chooses the other, without the choice being 
reciprocated. In a mutual dyad both actors in the pair choose each other 
as friends. 

Figure 4.17 shows the dyads for the example of friendships at the 
beginning of the year among the six children (presented in Figure 4.16). 
Since there are g = 6 children, there are 6(5 - 1)/2 = 15 dyads to 
consider. Figure 4.17 shows the state of each of these 15 dyads. 

The arc with a double-headed arrow between n2 and n3 indicates a 
mutual dyad. Asymmetric dyads are represented by one-way arcs, such 
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n, � n2 (asymmetric) 
n, n, (null) 
n, n4 (null) 
n, � n, (asymmetric) 
n, n, (null) 
n2 +-----> n, (mutual) 
n, n, (null) 
n, n, (null) 
n, +-----> n, (mutual) 
n, n4 (null) 
n, n, (null) 
n, n, (null) 
n4 � n, (asymmetric) 
n4 n, (null) 
n, � n, (asymmetric) 

Fig. 4.17. Dyads from the graph of friendship among six children at 
the beginning of the year 

as from nl to n2. The dyad involving Allison, nl, and Keith, n4, is a null 
dyad, since neither arc is present. 

The kinds of dyads that arise in a directed graph are quite interesting 
and important for describing a social network. Tendencies for reciprocity 
(mutuality) and/or asymmetry in a digraph are often summarized by 
counting the number of dyads in each of the three isomorphism classes. 
Chapter 13 discusses these ideas and presents some models for dyads. 

One could 'tndy 'nhgraph' of any ,ize for a digraph. Dyads are clearly 
subgraphs of size two. Triads, subgraphs of size three, are important for 
studying ideas such as balance, clusterability, and transitivity (which we 
describe in detail in Chapter 6). Cohesive subgroups are also studied by 
focusing on subgroups (see Chapter 7). 

We now discuss how several of the concepts for graphs are applied 
to directed graphs. We will focus on the most important directed graph 
concepts including the nodal degrees, walks, paths, reachability, and 
connectivity. 

4.3.2 Nodal Indegree and OUldegree 

In a graph, the degree of a node is the number of nodes adjacent to it 
(equivalently, the number of lines incident with it). In a digraph, a node 
can be either adjacent to, or adjacent from another node, depending on 
the "direction" of the arc. Thus, it is necessary to consider these cases 
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separately. One quantifies the tendency of actors to make "choices"; the 
other quantifies the tendency to receive "choices." 

The indegree of a node, dl(ni), is the number of nodes that are adjacent 
to ni. The indegree of node ni is equal to the number of arcs of the form 
Ik =< nj, ni >, for all Ik E 2', and all nj E ff. Indegree is thus the 
number of arcs terminating at lli. 

The outdegree of a node, do(ni), is the number of nodes adjacent from 
ni. The outdegree of node ni is equal to the number of arcs of the form 
Ik =< ni,nj >, for all Ik E 2', and all nj E ff. Outdegree is thus the 
number of arcs originating with node ni. 

The indegrees and outdegrees for each node may be obtained by 
considering the arcs in the digraph. Thus, the outdegrees for the six 
nodes, representing children, in Figure 4.16 are : 

• doCn.) = 2 
• do(n2) = 2 
• do(n,) = 1 
• doCn,) = 1 
• doCn,) = 1 
• doCn6) = 1 

The indegrees are: 

• d/(nd = 0 
• d/(n2) = 3 
• d/(n,) = 1 
• d/(n,) = 0 
• d/(n,) = 2 
• d/(n6) = 2 

In social network applications, these degrees can be of great interest. 
The outdegrees are measures of expansiveness and the indegrees are mea
sures of receptivity, or popularity. If we consider the sociometric relation 
of friendship, an actor with a large outdegree is one who nominates 
many others as friends. An actor with a small outdegree nominates 
fewer friends. An actor with a large indegree is one whom many others 
nominate as a friend, and an actor with a small indegree is chosen by 
few others. Outdegrees may be fixed by the data collection design, if, for 
example, a researcher collects data in which each respondent is instructed 
to "name your three closest friends." In such a setting, if all respondents 
in fact named three closest friends, then all outdegrees would equal 3. 
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Indegrees and outdegrees are useful measurements for many different 
types of networks and relations, although the terms "expansive" and 
"popular" may be somewhat inappropriate in some cases. For example, 
consider the countries trade network, and the relation "exports manu
factured goods to" among countries. A country with high outdegree is a 
heavy exporter, and a country with high indegree is a heavy importer. 

In many statistical models we might want to control for, or condition 
on, either the indegrees or the outdegrees of the nodes. For example, if we 
are studying the tendency for mutual choices within a network, we might 
control for the nodal outdegrees ;  that is, we would study the tendency 
for mutuality, given the propensity of our actors to make choices. Such 
statistical conditioning is used in Chapters 13�16. 

It is often useful to summarize the indegrees and! or the outdegrees 
of all the actors in the network using the mean indegree or the mean 
outdegree. As we will see, these two numbers are equal, since they are 
considering the same set of arcs, but from different "directions." We will 
denote the mean indegree as dI , and the mean outdegree as do. These 
are calculated as: 

dI �f�l dI(ni) 
g 

do �f�l do(ni) 
g 

(4.6) 

Since tbe indegrees count arcs incident from the nodes, and the outdegree 
count arcs incident to the nodes, �f�l dI(ni) = �f�l do(ni) = L, and thus 
we can see that dI = do and equations (4.6) simplify to: 

- L do = - . g 
(4.7) 

One might also be interested in the variability of the nodal indegrees 
and outdegrees. Unlike the mean indegree and the mean outdegree, the 
variance of the indegrees is not necessarily the same as the variance of 
the outdegrees. For example, consider a sociometric question in which 
each person is asked to name her three closest friends. If all people in 
fact make three nominations, then there is no variance in the outdegrees 
(all do(n;l = 3). However, it is likely that people will receive different 
numbers of "choices"; thus, there will be variability in the indegrees (the 
dI(ni)'s will differ from each other). The variance of the indegrees, which 
we denote by St" , is calculated as: 



128 Graphs and Matrices 
",g ) - 2 

S2 _ L.d_,(d/(n, - d/) 
D/ - g 

. (4.8) 

Similarly, the variance of the outdegrees, which we denote by SEa' is 
calculated as: 

(4.9) 

Both of these measures quantify how unequal the actors in a network 
are with respect to initiating or receiving ties. These measures are simple 
statistics for summarizing how "centralized" a network is. We return to 
this idea in Chapter 5. 

Types of Nodes in a Directed Graph. The indegrees and outde
grees of the nodes in a directed graph can be used to distinguish four 
different kinds of nodes based on the possible ways that arcs can be 
incident with the node. Recall that the indegree of node n" denoted by 
dI(n,), is equal to the number of nodes adjacent to it, and the outdegree 
of node n" denoted by do(n,), is equal to the number of nodes adjacent 
from it. In terms of the indegree and outdegree there are four possible 
kinds of nodes: the node is an isolate, the node only has arcs originating 
from it, the node only has arcs terminating at it, or the node has arcs 
both to and from it. Graph theorists provide a vocabulary for labeling 
these four kinds of nodes (Harary, Norman, and Cartwright 1965, page 
18 ;  Hage and Harary 1983). According to this classification, a node is 
a(n): 

• Isolate if d/(n,) = do(n,) = 0, 

• Transmitter if d/(n,) = 0 and do(n,) > 0, 

• Receiver if dI(n,) > 0 and do(n,) = 0, 
• Carrier or ordinary if d1(n,) > 0 and do(n,) > 0 

The distinction between a carrier and an ordinary node is that, although 
both kinds have both positive indegree and positive outdegree, a carrier 
has both indegree and outdegree precisely equal to 1, whereas an ordinary 
node has indegree and/or outdegree greater than 1. 

Several authors have argued that this typology, or some variant of 
it, is useful for describing the "roles" or "positions" of actors in social 
networks (Burt 1976; Marsden 1989; Richards 1989a). 
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4.3.3 Density of a Directed Graph 

The density of a directed graph is equal to the proportion of arcs present 
in the digraph. It is calculated as the number of arcs, L, divided by the 
possible number of arcs. Since an arc is an ordered pair of nodes, there 
are g(g - 1) possible arcs. The density, fl, is: 

fl = L 
g(g - 1) 

(4.10) 

The density of a digraph is a fraction that goes from a minimum of 0, 
if no arcs are present, to a maximum of 1, if all arcs are present. If the 
density is equal to 1 ,  then all dyads are mutual. 

4.3.4 An Example 

Now let us illustrate nodal indegree and outdegree, and the density of a 
directed graph on the example of friendships among Krackhardt's high
tech managers. Clearly a directed graph is the appropriate representation 
for these friendship choices, since each choice of friendship is directed 
from one manager to another (and is not necessarily reciprocated). 

Table 4.1 presents the nodal indegrees and outdegrees, the mean and 
variance of the indegrees and outdegrees, and the density of the graph. 
From these results we see that there are no isolates in this network (there 
are no managers with both indegree and outdegree eqnal to 0). However, 
there are two managers (managers 7 and 9) who did not make any 
friendship nominations. The mean number of friendship choices made 
(and received) is equal to 4.86. The density of the relation is equal to 
0.243. 

4.3.5 Directed Walks, Paths, Semipaths 

Walks and related concepts in graphs can also be defined for digraphs, 
but one must consider the direction of the arcs. We first define directed 
walks, directed paths, and semipaths for directed graphs and then define 
closed walks (cycles and semicycles) for directed graphs. 

A directed walk is a sequence of alternating nodes and arcs so that 
each arc has its origin at the previous node and its terminus at the 
subsequent node. More simply, in a directed walk, all arcs are "pointing" 
in the same direction. The length of a directed walk is the number of 
instances of arcs in it (an arc is counted each time it occurs in the walk). 
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Table 4.1. Nodal degree and density for friendships among Krackhardt's 
high-tech managers 

Manager Indegree Outdegree 

L � 102 
g � 21 

1 8 5 
2 10 3 
3 5 2 
4 5 6 
5 6 7 
6 2 6 
7 3 0 
8 5 1 
9 6 0 

10 1 7 
11  6 13 
12 8 4 
13 1 2 
14 5 2 
15 4 8 
16 4 2 
17 6 18 
18 4 1 
19 5 9 
20 3 2 
21 5 4 

dI � do � 102/21 � 4.86 
possible number of arcs : 21(20) � 420 
!J. � 102/420 � 0.243 
S�l = 2.172 
S�o = 4.372 

For example, consider the digraph in Figure 4.18. One directed walk 
in this figure is W = n5nln2n3n4n2n3. 

Recall that a trail in a graph is a walk in which no line is inclnded 
more than once. A directed trail in a digraph is a directed walk in which 
no arc is included more than once. Similarly, a directed path or simply 
a path iIi a digraph is a directed walk in which no node and no arc is 
included more than once. A path joining nodes ni and nj in a directed 
graph is a sequence of distinct nodes, where each arc has its origin at the 
previous node, and its ten:rrinus at the subsequent node. Thus, a path 
in a directed graph consists of arcs all "pointing" in the same direction. 
The length of a path is the number of arcs in it. 
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� 

r .�------e n, 

Directed walk ns nl tiz n3 n4 n2 n3 
Directed path tis »4 m n3 
Semipath nl ti2 tis n4 n3 
Cycle ti2 ti3 »4 n2 
Semicycle nl n2 ns nl 

Fig. 4.18. Directed walks. paths, semipaths, and semicycles 
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Now, consider removing the restriction that all arcs "point" in the 
same direction. We will simply consider walks and paths in which the 
arc between previous and subsequent nodes in the sequence may go in 
either direction. A semiwalk joining nodes n, and nj is a sequence of 
nodes and arcs in which successive pairs of nodes are incident with an 
arc from the first to the second, or by an arc from the second to the first. 
That is, in a semiwalk, for all successive pairs of nodes, the arc between 
adjacent nodes may be either < nj, nj > or < nj. nj >. In a semiwalk 
the direction of the arcs is irrelevant. The length of a semiwalk is the 
number of instances of arcs in it. 

A semipath joining nodes n, and nj is a sequence of distinct nodes, 
where all successive pairs of nodes are connected by an arc from the first

. to the second, or by an arc from the second to the first for all successive 
pairs of nodes (Harary, Norman, and Cartwright 1965; Peay 1975). In a 
semipath the direction of the arcs is irrelevant. The length of a semipath 
is the number of arcs in it. 

Note that every path is a semipath, but not every semipath is a path 
(see Harary, Norman, and Cartwright 1965, for more discussion). 

Closed walks can also be defined for directed graphs. A cycle in a 
directed graph is a closed directed walk of at least three nodes in which 
all nodes except the first and last are distinct. A semicycle in a directed 
graph is a closed directed semiwalk of at least three nodes in which all 
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nodes except the first and last are distinct. In a semicycle the arcs may 
go in either direction, whereas in a cycle the arcs must all "point" in 
the Same direction. Semicycles are used to study structural balance and 
clusterability (see Chapter 6). 

Figure 4.18 gives examples of a directed walk, a directed path, a 
semipath, a cycle, and a semicyc1e. 

4.3.6 Reachability and Connectivity in Digraphs 

Using the ideas of paths and semipaths, we can now define reachability 
and connectivity of pairs of nodes, and the connectedness of a directed 
graph. 

Pairs of Nodes. In a graph a pair of nodes is reachable if there 
is a path between them. However, in order to define reachability in a 
directed graph, we must consider directed paths. Specifically, if there is a 
directed path from n, to nj, then node nj is reachable from node n,. 

Consider now both paths and semipaths between pairs of nodes. We 
can define four different ways that two nodes can be connected by a 
path, or semipath (Harary, Norman, and Cartwright 1965; Frank 197 1 ;  
Peay 1975, 1980). A pair of nodes, n" nj, is: 

(i) Weakly connected if they are joined by a semipath 
(ii) Unilaterally connected if they are joined by a path from n, to n j, 

or a path from nj to nj 

(iii) Strongly connected if there is a path from n, to nj, and a path 
from nj to n,; the path from n, to nj may contain different nodes 
and arcs than the path from nj to n, 

(iv) Recursively connected if they are strongly connected, and the 
path from n, to nj uses the same nodes and arcs as the path 
from nj to nj, in reverse order 

Notice that these forms of connectivity are increasingly strict, and 
that any strict form implies connectivity of any less strict form. For 
example, any two nodes that are recursively connected are also strongly 
connected, unilaterally connected, and weakly connected. Figure 4.19 
illustrates these different kinds of connectivity. In each case nodes nl and 
n4 in the graph demonstrate the different versions of connectivity. 
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• 1 ! • 2 I. 3 ! • 4 Unilateral 

1 �  -<"�2 , � 4 Strong 

1 2 3 •• �'---4.t+. -�'·4.t+. -�,� •• 4 Recursive 

Fig. 4.19. Different kinds of connectivity in a directed graph 
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Digrapb Connec4edness. It is now possible to define four different 
kinds of connectivity for digraphs (Peay 1975, 1980). If a digraph is 
connected, then it is connected by one of these four kinds of connectivity; 
otherwise, it is not connected. Since there are four types of connectivity 
between pairs of nodes in a directed graph, there are four definitions of 
graph connectivity for a digraph. A directed graph is: 

(i) Weakly connected if all pairs of nodes are weakly connected 
(ii) Unilaterally connected if all pairs of nodes are unilaterally con

nected 
(iii) Strongly connected if all pairs of nodes are strongly connected 
(iv) Recursively connected if all pairs of nodes are recursively con

nected 

In a weakly connected digraph, all pairs of nodes are connected by 
a semipath. In a unilaterally connected digraph, between each pair of 
nodes there is a directed path from one node to the other; in other 
words at least one node is reachable from the other in the pair. In a 
strongly connected digraph each node in each pair is reachable from the 
other ; there is a directed path from each node to each other node. In a 
recursively connected digraph, each node, in each pair, is reachable from 
the other, and the directed paths contain the same nodes and arcs, but in 
reverse order. As with the definitions of connectivity for pairs of nodes, 
these are increasingly strict graph connectivity definitions. 

From these definitions it should be clear that every strongly connected 
digraph is unilaterally connected, but the reverse is not true. When 
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maximal subgraphs are derived from digraphs in which the actors are 
unilaterally, or strongly, connected, the subgraph is referred to as a 
unilateral, or strong, component in the digraph. These ideas are used to 
study cohesive subgroups in directed graphs (see Chapter 7). 

4.3.7 Geodesics, Distance and Diameter 

The (geodesic) distance between a pair of nodes in a graph is the length 
of a shortest path between the two nodes, and is the basis for defining 
the diameter of the graph. In a directed graph, the paths from node 
n, to node nj may be different from the paths from node nj to node n, 
(because paths in a directed graph consider the direction of the arcs). 
Thus, the definitions of distance and diameter in a directed graph are 
somewhat more complicated than in a graph. 

Consider the paths from node n, to node nj. A geodesic from node n, 
to node nj is a shortest path from n, to nj. The distance from n, to nj, 
denoted by d(i,j), is the length of a geodesic from n, to nj. It is important 
to note that since the paths from n, are likely to be different from the 
paths from nj to n, (since paths require that all arcs are "pointing" in 
the same direction) the geodesics from n, to nj may be different from 
the geodesics from nj to n,. Thus, the distance, d(i,j), from n, to nj may 
be different from the distance, d(j, i), from nj to n,. For example, in 
Figure 4.18 d(4, 2) = 1 whereas d(2, 4) = 2. If there is no path from n, to 
nj (as might be the case when the graph is only weakly or unilaterally 
connected) then there is no geodesic from n, to nj, and the distance from 
n, to nj is undefined (or infinite). 

Now, consider the diameter of a directed graph. As in a graph, the 
diameter of a directed graph is the length of the longest geodesic between 
any pair of nodes. This definition of geodesic is useful if there is a path 
from each node to each other node in the graph; that is, the graph 
is strongly connected or recursively connected. However, if the graph 
is only unilaterally or weakly connected, then, as noted above, some 
distances are undefined (or infinite). Thus, the diameter of a weakly or 
unilaterally connected directed graph is undefined. 

4.3.8 OSpecia/ Kinds of Directed Graphs 

In this section we describe several kinds of digraphs with important 
properties. We begin by defining digraph complement and digraph 
converse. 



4.3 Directed Graphs 135 

n, n2 n, n2 n, n2 

X rsJ X n, n3 n, n3 n4 n3 

q/d q/d q/' d 
Graph Complement Converse 

Fig. 4.20. Converse and complement of a directed graph 

Complement and Converse of a Digraph. Now let us consider 
two kinds of digraphs that can be derived from a digraph. These derived 
digraphs can be used to represent the opposite and the negation of a 
relation. 

The complement, qjd, of a directed graph, 'lid, has the same set of nodes 
as q; d, but there is an arc present between an ordered pair of nodes in 
qjd if the ordered pair is not in the set of arcs in 'lid, and an arc is not 
present in qjd if it is present in 'lid. In other words, if the arc < n" nj > is 
in '!ld, then the arc < nj, nj > is not in ?gd, and if the arc < ni, nj > is not 
in '!ld, then the arc < nil nj > is in "?gd. 

The converse, 'lid' of a directed graph, 'lid, has the same set of nodes 
as qjd. but the arc < ni,nj > is in <§d only if the arc < nj, nj > is in qjd 
(Harary 1969). The converse, 'lid' is obtained from 'lid by reversing the 
direction of all arcs. The arcs in the converse connect the same pairs of 
nodes as the arcs in the digraph, but all arcs are reversed in direction. 
That is, an arc in the digraph from n, to nj becomes an arc in the 
converse from nj to n,. Figure 4.20 shows a directed graph, its converse, 
and its complement. 

The converse of a directed graph might be helpful in thinking about 
relations that have "opposites." For example, the converse of a digraph 
representing a dominance relation (for example, n, "wins over" nj) would 
represent the submissive relation (nj "loses to" n,). On the other hand, 
the complement of a digraph might be used to represent the absence of 
a tie, or as not the relation. For example, in the digraph representing the 
relation of friendship the arc < n" nj > means i "chooses" j as a friend. 
In the digraph representing the complement of the relation of friendship, 
the arc < ni, n j > means i "does not choose" j as a friend. 
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Tournaments. One other special type of a digraph is a tourna
ment, which mathematically represents a set of actors competing in some 
event(s) and a relation indicating superior performances or "beats" in 
competition (see Moon 1968). If team n; beats team nj, an arc is directed 
from ni toward nj. Of particular interest are round-robin tournaments, 
where each team plays each other team exactly once. Such tourna
ments can be modeled as round robin designs (Kenny 1981 ;  Kenny and 
La Yoie 1984; Wong 1982). These competitive records form a special type 
of digraph, because each pair of nodes is connected by exactly one arc. 
Methodology for such designs is related to the Bradley-Terry-Luce model 
for paired comparisons, which allows for statistical estimation of popu
lation propensities for dominance (Bradley and Terry 1952; Thurstone 
1927; Coombs 195 1 ;  Mosteller 1951 ;  Frank 1981 ;  and David 1988). 

4.3.9 Summary 

Digraphs are the appropriate representation of social networks in which 
relations are dichotomous (ties are either present or absent) and direc
tional. However, many relations are valued; that is, the ties indicate the 
strength or intensity of the tie between each pair of actors. Thus, we need 
to generalize both graphs and directed graphs so that we can represent 
the strength of ties between actors in a network. The graph for a valued 
relation must convey more information by representing the strength of 
an arc or a line. For example, observations of the number of interactions 
between pairs of people in a group require valued relations. Similarly, 
ratings of friendship in which people distinguish between "close personal 
friends," "friends," "acquaintances," and "strangers" must be represented 
by a graph in which the arcs also have a value indicating the strength 
of the tie. In the next sections we define and discuss signed graphs (in 
which the lines or arcs take on a positive or negative sign). In the section 
following that we discuss valued graphs (in which the lines or arcs can 
take on a values from the real numbers). 

4.4 Signed Graphs and Signed Directed Graphs 

Occasionally relations are measured in which the ties can be interpreted 
as heing either positive Or negative in affect, evaluation, or meaning. For 
example, one might measure the relations "loves" and "hates" among the 
people in a group, or the relations "is allied with" and "is at war with" 
among countries. Such relations can be represented as a signed graph, 
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or as a signed directed graph. We begin by defining a signed graph, and 
then generalize to a signed directed graph. Signed graphs and signed 
directed graphs are important in the study of balance and clusterability 
(discussed in Chapter 6). 

4.4.1 Signed Graph 

A signed graph is a graph whose lines carry the additional information 
of a valence : a positive or negative sign. A signed graph consists of three 
sets of information : a set of nodes, .;V = {nl, n2, . . . , ng}, a set of lines, 
:.e = {l1, l2, . . .  , ld, and a set of valences (or signs), l' = {vlo v2, . . .  , vd, 
attached to the lines. As usual, each line is an unordered pair of distinct 
nodes, h = (ni,nj). But now, associated with each line is a valence, Vk 
either "+" or "-". A line, Ik = (ni, nj) is assigned the valence Vk = + 
if the tie between actors i and j is positive in meaning or affect, and a 
valence Vk = - if the tie between the actors represented by the nodes is 
negative. We denote a signed graph as �±(.;V, :.e, 1'), or simply �±. 

For example, we can represent alliances and hostilities among nations 
using a signed graph by letting nodes represent countries, and letting 
signed lines represent whether pairs of countries are at war with each 
other, "-", or have a treaty with each other, "+", 

A complete signed graph is a signed graph in which all unordered pairs 
of nodes are included in the set of lines. Since all lines are present in a 
complete signed graph, and all lines have a valence either "+" or "-", 
each unordered pair of nodes is assigned either "+" or "'-". 

Dyads and Triads. In a signed graph, each dyad is in one of 
three states: There is a positive line between them, there is a negative line 
between them, or there is no line between them. In a complete signed 
graph each dyad is in one of two states, either "+" or "-". 

In a complete signed graph, a triad may be in one of four possible 
states, depending on whether zero, one, two, or three positive (or negative) 
lines are present among the three nodes. 

Cycles. Many properties of signed graphs (such as balance and 
clusterability) depend on cycles and properties of cycles. In this section 
we define the sign of a cycle in a signed graph. Recall that a cycle is a 
closed walk in which all nodes except the beginning and ending node are 
distinct. Notice that each line in a cycle in a signed graph is either "+" 
or "-". In a signed graph, the sign of a cycle is defined as the product of 
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", e'-----f�--\---...,.n2 

n4 

It = (ni nz) VI = -

lz = (nI n3) V2 = + 
h = (nI n4) V3 = + 

4 � (n1 n,) V4 = -

15 = (n2 n3) vS = -

16 = (m ns) V6 = -

17 = (n3 n4) V7 = + 

Cycle Sign of cycle 
nl n2 ns nl - x - x - = -
n3 n4 ni n3 + x + x + = +  
ni n2 n3 ni - x - x + = +  

Fig. 4.21. Example of a signed graph 

the signs of the lines included in the cycle ; where the sign of the product 
is defined as; 

- (+l(+l = + 
- (+l(-) = -
- (-)(-) = + 

In brief, if a cycle has an even number of negative, '"-", lines, then its 
sign is positive. However, if a cycle has an odd number of negative lines, 
its sign is negative. 

Figure 4.21 gives an example of a signed graph and some of its cycles. 

4.4.2 Signed Directed Graphs 

It is straightforward to extend the idea of a signed graph to a signed 
directed graph. A signed directed graph is a directed graph in which 
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g =5 children's friends (+) 
and enemies (-) 

Fig. 4.22. Example of a signed directed graph 
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the arc� have the additional information of a positive or negative sign. 
A signed digraph consists of three sets of information: a set of nodes, 
JV = {nj, n2, . . .  , ng}, a set of arcs, !E = {Ib 12, • . •  , Id, and a set of 
valences, "1' =  {Vj,V2, . . .  , vd, attached to the arcs. In a signed directed 
graph, each arc is an ordered pair of distinct nodes, < n" nj >. Associated 
with each arc is a valence, either "+" or "-", Since the arc lk =< ni, nj > 
is distinct from the arc 1m =< n" nj >, the sign Vk may be different from 
the sign Vm• We can denote a signed directed graph as Wd±(JV, !E, "1'), or 
simply Wd±. 

Claims of friendship and enmity among people can be represented as 
a signed directed graph. Nominations of friends might be represented 
by a "+" and nominations of enemies might be represented by a "-". 
Figure 4.22 contains an example of a signed digraph, which we can take 
to represent such friendship and enmity nominations among people. 

Semicycles. In a signed directed graph the most general cycles 
are usually referred to as semicycles. Recall that a semicycle is a closed 
sequence of distinct nodes and arcs in which each node is either adjacent 
to or adjacent from the previous node in the sequence. Thus a semicycle 
is a cycle in which the arcs may point in either direction. The sign of a 
semicycle is the product of the signs of the arcs in it. 

This idea is important for studying balance and clusterability in signed 
directed graphs (see Chapter 6). 

Signed graphs and signed directed graphs generalize graphs and di
rected graphs by allowing the lines or arcs to have valences. Now, let 
us generalize even further by allowing the lines or arcs to have other 
(usually numerical) values. 
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4.5 Valued Graphs and Valued Directed Graphs 

Often social network data consist of valued relations in which the strength 
or intensity of each tie is recorded. Examples of valued relations include 
the frequency of interaction among pairs of people, the dollar amount 
of trade between nations, or the rating of friendship between people in 
a group. Such relations cannot be fully represented using a graph or 
a directed graph, since lines or arcs in a graph or directed graph are 
only present or absent (dichotomous : 0 or 1). Thus, the next step in 
the generalization of graphs and digraphs is to add a value or magnitude 
to each line or arc. Valued graphs are the appropriate graph theoretic 
representation for valued relations. In this section we define and describe 
valued graphs. 

There are several special valued graphs ; for example, weighted graphs 
and integer weighted graphs (Roberts 1976), nets and networks (Rarary 
1969), and Markov chains. We will briefly describe each. Concepts 
and definitions for valued graphs are not as well developed as they 
are for graphs and directed graphs; thus, our discussion of valued 
graphs will be briefer than our discussion of graphs and directed 
graphs. 

A valued graph or a valued directed graph is a graph (or digraph) in 
which each line (or arc) carries a value. A valued graph consists of three 
sets of information :  a set of nodes, JV = {nl,n2, . . . , ng} , a set of lines (or 
arcs), 2 = {lr, l2, . . .  , ld, and a set of values, 1/" = {vr, V2, · . .  , vd, attached 
to the lines (or arcs). Associated with each line (in a graph) or each arc 
(in a digraph) is a value from the set of real numbers (Flament 1963). We 
denote a valued graph by qjv(JV, 2, 1/"), or simply qjv. Roberts (1976) 
refers to a valued digraph as a weighted digraph. 

A valued graph represents a nondirectional valued relation, such as 
the number of interactions observed between each pair of people in a 
group. The number of interactions between actor i and actor j is the 
same as the number of interactions between actor j and actor i. In a 
valued graph the line between node n, and node nj is identical to the line 
between node nj and node n, (lk = (n" nj) = (nj, n,l), and thus there is 
only a single value, Vb for each unordered pair of nodes. 

A valued directed graph represents a directional valued relation, such 
as the dollar amount of manufactured goods exported from each country 
to each other country. Country i may export a different amount of 
manufactured goods to country j than country j exports to country i. 
In a valued directed graph, the arc from node n, to node nj is not the 
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same as the arc from node nj to node n, (lk =< n" nj >i= 1m =< nj,n, » ,  
and thus there are two distinct values, one for each possible arc for the 
ordered pair of nodes. In general, for Ik =< n" nj > and 1m =< nj, n, >, 
Vk does not necessarily equal Vm. 

Some authors allow the values to be non-numerical (for example, 
letters or colors). Harary, Norman, and Cartwright (1965) refer to such 
a valued graph as a network. 

Special cases of valued graphs and valued directed graphs place re
strictions on the possible values that the lines or arcs can take. Harary 
(1969) refers to a valued graph in which all values are from the positive 
real numbers as a network (note how a variety of authors differ in their 
definition of the term "network"). If all values in a valued digraph are 
from the set of integers, then it is what Roberts (1976) refers to as an 
integer weighted digraph. 

One can also consider a signed graph in which positive lines have the 
value +1 and negative lines have the value -1 as an integer-weighted 
graph, with integer values + 1 and -1. A signed graph is thus a special 
case of a valued graph in which the values are only + 1 and -1. Similarly, 
a graph is a special case of a valued graph in which each and every line 
has a value equal to 1. 

One specific application of valued graphs that has been studied exten
sively is the set of graphs whose values are probabilities. These graphs 
are known as Markov chains, and their corresponding sociomatrices are 
often referred to as transition matrices or stochastic matrices (Harary 
1959b). In a Markov chain the values of all arcs incident from each node 
are constrained to sum to 1, for all n" I: Vk = 1 for all Ik =< n" nj >, 
j = 1 ,2, . . .  , g ;  further, 0 S Vk S 1. 

Often we will restrict our attention to relations that are discrete
valued, and thus can be represented as integer-weighted graphs or integer
weighted digraphs, where the values are from the non-negative integers. 
In this case, the value of an arc in a digraph (or a line in a graph) takes 
on the values rn = 1 , 2, . . .  , C. 

As another example, if nominations of three best friends and three 
worst enemies were requested, ties might be labeled +3 for a best friend, 
+2, + 1, -1, -2, and - 3 for a worst enemy. 

Figure 4.23 gives an example of a valued digraph. This figure lists the 
arcs and their values. For example, the arc 14 =< ns, n2 > has a value of 
3, so V4 = 3. 
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• 
", 

3 

II = < n3,nl > 
12 = < nz,n4 > 
13 = < 1l4, n3 > 
14 = < ns,n2 > 

2 

VI = 2  

V2 = 2 

V3 = 1 
V4 = 3 

n, 
• 

Fig. 4.23. Example of a valued directed graph 

4.5.1 Nodes and Dyads 

Nodes in Valued Graphs. Each node in a valued graph can have 
a number of lines incident with it. Similarly, each node in a valued 
digraph can have a number of arcs incident to it and/or from it. To 
each line or arc is attached a value. In a graph or digraph, nodal degree 
is equal to the number of lines incident with the node or the number 
of arcs incident to it or from it. The idea of degree does not generalize 
well to valued graphs, since one must consider the values attached to the 
lines. 

One way to generalize the notion of degree to valued graphs and 
digraphs is to average the values over all lines incident with a node, or 
all arcs incident to or from a node. Such a measure refieets the average 
value of the lines incident with the node or of the arcs to or from the 
node. 

Dyads in Valued Graphs. A dyad in a valued graph has a line 
between nodes with a specific strength. A dyad in a valued directed 
graph has arcs between the nodes. Each of the two arcs < n,. nj > and 
< nj, n, > has a value, which we denote by Vk and Vm• These values most 
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likely will be different. It is of interest in such settings to compare the Vk 
to Vm. Models for such dyads are discussed in Chapter 15. 

4.5.2 Density in a Valued Graph 

In a graph or digraph. density, LI., is defined as the ratio of the number of 
lines or arcs present to the maximum possible that could arise. Another 
way to view the density of a graph or a digraph is as the average of the 
values assigned to the lines/arcs. Each line or arc is given a value of 1, 
and pairs of nodes for which lines are absent are given a value of O. The 
sum of these values is equal to the number of lines or arcs; one then 
divides this sum by its maximum possible value. 

To generalize the notion of density to a valued graph or digraph, one 
can average the values attached to the lines/arcs across all lines/arcs. 
Thus, for a valued graph/ digraph, the density is LI. = z= Vk/ g(g - l) where 
the sum is taken over all k. This measures the average strength of the 
lines/arcs in the valued graph/digraph. 

4.5.3 OPaths in Valued Graphs 

Walks and paths in valued graphs are defined the same way as they are 
in graphs (as an alternating sequence of nodes and lines beginning and 
ending with nodes). However, in a valued graph (or valued digraph) 
since the lines (or arcs) have values attached to them, concepts such as 
reachabllity of a pair of nodes, length of a path, and distance between a 
pair of nodes become more complicated. In order to define these concepts 
for valued graphs, we must consider the values attached to each of the 
lines (or arcs) in a path. As Peay (1980) has noted, there are a number 
of different, and reasonable, ways to define distance and values for paths 
in a valued graph. The choice of which definition to use depends on the 
interpretation of the lines (arcs) and values in the graph. As in a graph, 
nodes ni and nj are reachable if there is a path between them. In a valued 
graph we can also consider "strengths" or "values" of reachability. 

Value of a Path. The value of a path (semipath) is equal to the 
smallest value attached to any line (arc) in it (Peay 1980). Formally, 
the value of W = I" I" . . .  , lk from ni to nj equals min(v" v" . . .  , Vk). The 
value of a path is thus the "weakest link" in the path. This idea makes 
most sense if larger values indicate stronger ties. For example, if the lines 
represent the amount of communication between each pair of people in 
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a group, then the value of a path between two people represents the 
most "restricted" amount of communication between any pair of people 
in the path. 

Now, for simplicity, consider a valued graph in which the values 
attached to the lines are discrete and ordinal, and take on values 1, 2, . . .  , C 
(this is a simplifying condition that is not necessary). We define a path 
at level c as a path between a pair of nodes such that each and every 
line in the path has a value greater than or equal to c ;  that is, v/ ;e: c 
for all v/ in the path (Doreian 1969, 1974). In general, paths that include 
only lines with large values will have higher path values, whereas paths 
that include lines with small values will have lower path values. Since all 
values in a path at level c are greater than or equal to c, a path at level 
c is also a path at all values less than or equal to c. This concept is used 
to study cohesive subgroups for valued graphs (Chapter 7). 

Reachability. We can generalize reachability for a pair of nodes 
to strengths of reachability in a valued graph (Doreian 1974). Consider 
all paths between a pair of nodes. Each of these paths has a value. 
The higher the value, the "stronger" the lines included in the path. In 
a valued graph, two nodes are reachable at level c if there is a path at 
level c between them. In other words, if two nodes are reachable at level 
c then there is at least one path between them that includes no line with 
a value less than c. If two nodes are reachable at level c, then they are 
reachable at any value less than c. 

Path Length. If the values attached to the lines (or arcs) can be 
thought of as "costs" associated with the tie (such as the amount of time 
required to go from point i to point j), then it is useful to define the 
length of a path as the sum of the values of the lines in it. Flament 
(1963) defines the length of a path in a valued graph as equal to the sum 
of the values of the lines inclnded in the path. If all values are equal to 
1, then this definition is equivalent to the definition of path length for a 
graph or a directed graph since the sum is simply the number of lines 
(arcs) in the path. One possible problem with this quantification of path 
length in a valued graph is that a high value for a path can result either 
if the values of the lines in the path are high, or if the path is long (and 
thus contains many lines). 

Figure 4.24 gives an example of a valued graph. It also gives the 
lengths and values of some paths in this graph. 
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Fig. 4.24. Paths in a valued graph 
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In the previons sections we discnssed graphs (for representing di
chotomous nondirectional relations) and described graphs that generalize 
graphs in two different ways. Directed graphs are used for representing 
directional relations and generalize graphs by considering the direction 
of the arcs between pairs of nodes. Both graphs and directed graphs rep
resent dichotomous relations. The second way to generalize graphs (and 
directed graphs) is to allow the lines (or arcs) to carry values. Signed and 
valued graphs and digraphs generalize graphs by removing the restriction 
that lines (arcs) be either present or absent. A third way to generalize 
graphs and digraphs is to have more than one relation measured on a 
pair of nodes. We consider this generalization next. 

4.6 Multigraphs 

So far, we have discussed simple graphs, where there is at most one line 
between a pair of nodes. A simple graph is the appropriate representation 
for a social network in which a single relation is measured. When there 
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is more than one relation, a multigraph is the appropriate graph theoretic 
representation. A multigraph, or a multivariate (directed) graph is a 
generalization of a simple graph or digraph that allows more than one 
set of lines (Flament 1963). 

If more than one relation is measured on the same set of actors, then 
the graph representing this network must allow each pair of nodes to be 
connected in more than one way. For example, for Krackhardt's high
tech managers, each person was asked with whom they were "friends," 
and from whom they sought advice on the job. That is, two relations 
were measured on the set of actors. 

A mnltigraph r; consists of a set of nodes, % = {n" n" . . .  , ng}, and two 
or more sets of lines, 2!+ = {2!" 2!,, . . .  , 2!R}. We let R be the number 
of sets of lines in the multigraph, and we subscript the lines to denote to 
which set it belongs. If each relation is nondirectional, each line in each 
of the R sets is an unordered pair of distinct nodes, I" = (n;, nj). A pair 
of nodes may be included in more than one set of lines. Since there are 
R sets of lines, each unordered pair of nodes may have from 0 up to R 
lines between them. 

Returning to the definition of a simple graph, a graph is called simple 
if it contains no loops (or self-choices) and if each pair of nodes is joined 
by 0 or I lines. If a graph contains loops and/or any pair of nodes is 
adjacent via more than one line the graph is complex. Much of graph 
theory concentrates on simple graphs, and most of the graph theoretic 
concepts network researchers use pertain to simple graphs. Accordingly, 
most of the methods that we discuss in later chapters focus on simple 
graphs. 

Graphs and directed graphs consider pairs of nodes. Lines and arcs 
are defined as pairs or ordered pairs of nodes. The next generalization 
of graphs is to consider ties among subsets of nodes. 

4.7 0Hypergraphs 

Some social network applications consider ties among subsets of actors 
in a network, such as the tie among people who belong to the same 
club or civic organization. Such networks, called affiliation networks, or 
membership networks, require considering subsets of nodes in a graph, 
where these subsets can be of any size. Hypergraphs are the appropriate 
representations for such networks. 

An affiliation network is a two-mode network consisting of a set of 
actors and a set of events. Each event is a subset of the actors from 
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Fig. 4.25. Example of a hypergraph 

S. Thus, affiliation network data cannot be fully represented in terms 
of pairwise ties, since the subsets can include more than two actors. A 
hypergraph, rather than a graph, is the appropriate representation for 
affiliation network data. 

Formally, a hypergraph consists of a set of objects and a collection of 
subsets of objects, in which each object belongs to at least one subset, 
and no subset is empty (Berge 1989). The objects are called points and 
the collections of objects are called edges. In general, for point set 
.91 = {a" az, . . .  , ag}, and edge set iJiJ = {B" B2, . . .  ,Bh}, the hypergraph is 
denoted by :ff = (.91, iJiJ). 

An important feature of a hypergraph is that it can also be described 
by the dual hypergraph, denoted :/f'*, by reversing the roles of the points 
and the edges. In general, if the hypergraph :ff = (.91, iJiJ) has point set 
.91 and edge set iJiJ, then the dual hypergraph :ff* = (iJiJ, d) has point set 
iJiJ and edge set d. 

To distinguish between points and edges, we introduce the following 
notation. When the elements in .91 are viewed as points and the elements 
in iJiJ are viewed as edges (as in hypergraph :ff = (d,iJiJ)) we will 
denote the elements of d using lowercase letters: {a" az, . . .  , ag}, and the 
edges from set iJiJ using uppercase letters : {B" Bz, . . .  , Bh}' In the dual 
hypergraph, :ff* = (iJiJ, d) with elements in iJiJ as points and elements 
in .91 as edges, we will denote the elements in .91 using uppercase 
letters : {A"Az, . . .  , Ag} and the elements in iJiJ using lowercase letters : 
{b" b" . . .  , bh}. 

The hypergraph in Figure 4.25 has point set .91 = {a" a2,a3,a4}, and 



148 Graphs and Matrices 

edge set t1JI = {B" B2,B3}. This hypergraph could represent four actors 
attending three social events. 

The hypothetical example in Figure 4.25 can be described in terms of 
each edge in t1JI and the subset of points in .d that it includes: 

B, = {a" a2} 
B2 = {a" a4} 
B3 = {a2, a3, a4} 

Alternatively, we can list each element in .d as an edge, and the elements 
in t1JI as the points contained in it: 

A, = {h" h2} 
A2 = {b"h3} 
A3 = {h3} 
A4 = {h2,h3} 

Hypergraphs are more general than graphs. A graph is a special case 
of a hypergraph in which the number of points in each edge is exactly 
equal to two. Any graph can be represented as a hypergraph, by letting 
the nodes in the graph be the points in the hypergraph, and letting each 
line lk = (n" nj) in the graph be an edge in the hypergraph. Each edge 
thus contains exactly two points. 

4.8 Relations 

Social networks are often described using formal mathematical notation 
as mathematical relations (Hage and Harary 1983; Fararo 1973; Pattison 
1993; and others). We now describe this representation of a social 
network. 

4.8.1 Definition 

A mathematical relation focuses on the ordered pairs of actors in a 
network between whom a substantive tie is present. Relations are widely 
used in algebraic methods (Chapter 11). 

Consider a set of objects, % = {n" n2, . . .  , ng}. In a social network 
these objects are the actors. In a graph, these are the nodes. In a social 
network, ties link pairs of actors_ Thus, we focus on ordered pairs of 
objects from %. 

o The Cartesian product of two sets (or of a set with itself) is a useful 
mathematical entity for studying relations. The Cartesian product of two 
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sets, J!t and %, is the collection of all ordered pairs in which the first 
element in the pair belongs to set J!t and the second element belongs to 
set %. We denote the Cartesian product of sets J!t and % as J!t x %. 

If there are h elements in J!t and g elements in %, and each of the h 
elements in J!t is paired with each of the g elements in %, then there are 
h x g elements in tbe Cartesian product of J!t and %. 

Now, consider the Cartesian product of a set with itself; % x %. This 
Cartesian product consists of all ordered pairs of objects from %. If the 
set % is the set of all actors in a network, then the Cartesian product 
% x % is the set of all ordered pairs of actors. Thus, % x % is the 
collection of all ordered pairs of actors for whom substantive ties could 
be present. For example, if we are studying friendship among people, 
and the set of actors is %, then the Cartesian product, % x %, is the 
set of all possible ordered pairs of people, in which the first person could 
choose the second person as a friend. However, friendship ties are usually 
present between only some of the ordered pairs of people. 

A relation, R, on the set % is defined as a subset of the Cartesian 
product % x % (Hage and Harary 1983). In substantive terms, the 
relation R consists of all ordered pairs < n" nj > for whom the substantive 
tie from i to j is present. Relations are conveniently expressed using 
algebraic notation (see Chapter 3). If the ordered pair < n" nj >E R then 
we write iRj. 

4.8.2 Properties of Relatiolls 

There are several important properties of relations; reflexivity, symmetry, 
and transitivity. Unlike a simple graph that excludes loops, a relation 
allows the possible < n" n, > tie to be present. A relation is reflexive 
if all possible < n" n, > ties are present in R; that is, iRi for all i. If 
no < nj, ni > ties are present in R, then the relation is irreflexive. If a 
relation is neither reflexiv�e nor irrefiexive, then it is not reflexive (Fafaro 
1973; and Hage and Harary 1983). A relation that is not reflexive is one 
on which iRi for some but not all i. 

Symmetry is another property of a relation. A relation is symmetric if 
it has the property that iRj if and only if jRi, for all i and j. That is, 
the ordered pair < n" n j >E R if and only if < n j, n, >E R. A symmetric 
relation is one in which all dyads are either mutual or null. 

On some relations the presence of the < n" nj > tie implies the absence 
of the < nj, n, > tie. Such a relation is antisymmetric. An antisymmetric 
relation is one on which iRj implies that not jRi. An example of an 
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antisymmetric relation is the relation "beats" in a sporting tournament 
if each team plays each other team no more than once. If team i beats 
team j, then it cannot be the case that team j beats team i (if they play 
only once and no ties are allowed). 

A relation that is neither symmetric nor antisymmetric is called not 
symmetric, non-symmetric, or asymmetric. A relation that is not symmetric 
is one for which iRj and jRi, for some but not all i and j. 

A third important property of a relation is whether or not it is 
transitive. A relation is transitive if whenever iRj and jRk, then iRk, 
for all i, j, and k: Substantively, transitivity captures the notion that "a 
friend of a friend is a friend." If person i "chooses" person j as a friend, 
and person j in turn "chooses" person k as a friend, then, if friendship 
is transitive, person i will "choose" person k as a friend. 

We will return to these important properties below and show how 
matrices can be used to study symmetry, reflexivity, and transitivity in 
social networks. 

4.9 Matrices 

The information in a graph W may also be expressed in a variety of ways 
in matrix form. There are two snch matrices that are especially useful. 
The first is the sociomatrix, first introduced in Chapter 3. The second is 
the incidence matrix. We will begin by describing these matrices for a 
single nondirectional relation (or graph), and then generalize to matrices 
for ilirectional relations (digraphs), valued relations (valued graphs), and 
hypergraphs. 

4.9.1 Matrices for Graphs 

The Sociomatrix. The primary matrix used in social network 
analysis is called the adjacency matrix, or sociomatrix, and is denoted by 
X. Graph theorists refer to this matrix as an adjacency matrix because 
the entries in the matrix indicate whether two nodes are adjacent or not. 
In the study of social networks, the adjacency matrix is usually referred 
to as a sociomatrix. Sociomatrix is the term we will use most often. 

A sociomatrix is of size g x g (g rows and g columns) for one·mode 
networks. There is a row and column for each node, and the rows and 
columns are labeled 1, 2, . . .  , g. The rows and columns index nodes in 
the graph, or actors in the network, in identical order. The entries in 
the sociomatrix, Xij, record which pairs of nodes are adjacent. In the 
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Table 4.2. Example of a sociomatrix: "lives near" relation for six children 
X 

"1 "2 n3 n, n, n, 

"1 0 0 0 1 1 
n2 0 1 0 0 0 
nJ 0 1 0 0 0 
n, 0 0 0 1 1 
", 1 0 0 1 1 
", 1 0 0 1 1 

sociomatrix, there is a 1 in the (i, j)th cell (row i, column j) if there is a 
line between n, and nj, and a 0 in the cell otherwise. In other words, if 
nodes ni and nj are adjacent, then xij = 1, and if nodes nj and nj are not 
adjacent, then X'j = O. 

For the present, we are focusing on graphs where the lines are not 
directed and are neither signed nor valued. That is, a line between two 
nodes is either present or it is absent. If a line is present, it goes both 
from nj to nj and from nj to ni; thus, xij = 1, and Xji = 1. 

The sociomatrix for a graph (for a nondirectional relation) is symmetric. 
A matrix is symmetric if xij = xji for all i and j; thus the entries in 
the upper right and lower left triangles are identical. The entries on the 
diagonal, values of Xii, are udefined, if we do not allow loops in the 
graph. 

The sociomatrix for a complete graph contains 1'8 in all off-diagonal 
cells. Since all nodes are adjacent, X'j = Xj' = 1 for all i f j. The 
sociomatrix for an empty graph contains O's everywhere, since no nodes 
are adjacent. 

For example in Figure 4.1, nodes n2 and n3 are adjacent, since the line 
II = (n2,n3) is in the set of lines st. Thus, X23 = 1 and X32 = 1 in the 
sociomatrix. Nodes nl and n3 are not adjacent, since there is no line 
between the two, therefore X!3 = 0 and X31 = O. 

The sociomatrix for the graph in Figure 4.1 is given in Table 4.2. Note 
that the diagonal entries are undefined, since' we are focusing on simple 
graphs, those without loops; that is, Xii is undefined if there are no loops. 
Also note the entries are binary, since a line is either present, Xij = 1, 
or absent, xij = 0, between any two bodes. Thus, the sociomatrix for a 
graph contains only l's and O's, since pairs of nodes are either adjacent, 
or not. Finally, note the matrix is symmetric, since a line between n, and 
nj is also a line between nj and ni, so xij = Xji. 
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Table 4.3. Example of an incidence matrix : "lives near" relation for six 
children 

I 
11 I, I, I, I, 16 

111 1 1 0 0 0 0 
"2 0 0 1 0 0 0 
11, 0 0 1 0 0 0 
11, 0 0 0 1 1 0 
11, 1 0 0 1 0 1 
116 0 1 0 0 1 1 

In summary, the sociomatrix records for each pair of nodes whether 
the nodes are adjacent or not. The next matrix we describe records which 
nodes are incident with which lines. 

The Incidence Matrix. The second matrix that can be used to 
present the information in a graph is called the incidence matrix, I, or I(�), 
and records which lines are incident with which nodes. The incidence 
matrix has nodes indexing the rows, and lines indexing the columns. 
Since there are g nodes and L lines, the matrix I is of size g x L;  there is 
a row for every node, and a column for every line. The matrix entry I;j 
equals 1 if node 11; is incident with line Ij, and equals 0 if node n; is not 
incident with line Ij. Since the line Ik = (11;, nj) is incident with the two 
nodes n; and I1j, each column in I has exactly two l's in it, recording the 
two nodes incident with the line. 

The incidence matrix is binary, since a line is either incident with a 
node or it is not. However, it is not necessarily square. 

The incidence matrix for the graph in Figure 4.1 is given in Table 4.3. 
Note that since there are g = 6 nodes and L = 6 lines, I is 6 x 6. 

The sociomatrix and the incidence matrix both contain all the infor
mation in a graph. The set of nodes and lines in a graph is completely 
described by the information in either matrix. 

4.9.2 Matrices for Digraphs 

The sociomatrix, X, of a digraph has elements X;j equal to 1 if there is 
an arc from row noue ni to column node nj, and 0 otherwise. The value 
in cell Xu is equal to 1 if the arc < 11;, nj > is in !.t. That is, the entry in 
the (�j)th cell of X is equal to 1 if the actor represented by row node n; 
"chooses" the actor represented by column node nj. Since the "choice" 
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Table 4.4. Example of a ,odomatrix for a directed graph: friendship at 
the beginning of the year for six children 

X 
Il, 11, Il, n, 11, n6 

III 1 0 0 1 0 
11, 0 1 0 0 1 
", 0 1 0 0 0 
Il, 0 0 0 1 0 
Il, 0 0 0 0 1 
116 0 1 0 0 0 

from i to j is substantively different from the "choice" from j to i, the 
entry in Xi) may be different from the entry in Xii. For example, if actor 
i "chose" actor j, but j did not reciprocate, there would be a I in the Xu 
cell, and a 0 in the x p cell. 

The ,ociomatrix for the digraph in Figure 4.16 (the relation is friend
ship at the beginning of the school year) is given in Table 4.4. Note 
that, for example, the mutual choices between actors Drew (n2) and 
Sarah (n.) are represented by a 1 in both the X2. and X62 cells of this 
sociomatrix. 

4.9.3 Matrices for Valued Graphs 

A valued graph can also be represented as a sociomatrix. The entry in 
cell Xi) is the value associated with the line between node ni and node n) 
in a valued graph, or the value associated with the arc from ni to nj in a 
valned directed graph. 

The sociornatrix for a valued graph (representing a valued nondirec
tional relation) has entries, xu' that record the value Vk associated with 
the line or arc Ik between ni and nj. For an undirected valued graph, 
there is a single value, Vk, associated with the line Ik = (ni' nj), and thus 
the value in cell (i,j) is equal to the value in cell (j, i); Xi) = X)i = Vi). 
However, for a directed valued graph the arc Ik =< n" n) > with value 
Vk and the arc 1m =< nj, ni > with value Vm are distinct. Thus, Xij = Vk 
and Xji = Vm, which may differ. The entry in cell (i, j) of X records the 
strength of the tie from actor i to actor j. 
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4.9.4 Matrices jor Two-Mode Networks 

For two-mode networks the sociomatrix is of size g x h, where the rows 
label the nodes in % = {nl, n2, . . .  , ng} and the columns label the nodes 
in .A = {mt, m2, . . .  , mh}. 

4.9.5 OMatrices jOl' Hypergraphs 

The matrix for a hypergraph, denoted by A, is a g by h matrix that 
records which points are contained within which edges. For the hy
pergraph, .Jt'(%, .#), with point set % = {nj, 1l2, . . . ,ng} and edge set 
.# = {Mj, M2, . . •  , Mh}, the matrix A = {ll;j} has an entry aU = 1 if point 
n, is in edge Mj, and 0 otherwise. The matrix A has heen called the 
incidence matrix for the hypergraph (Berge 1989), since it codes which 
points are incident with which edges. 

The sociomatrix is the most common form for presenting social net
work data. It is especially useful for computer analyses. In addition, it is 
a very flexible representation since graphs, directed graphs, signed graphs 
and digraphs, and valued graphs and digraphs can all be represented as 
sociomatrices. 

4.9.6 Basic Matrix Operations 

In this section we describe and illustrate basic matrix operations that are 
used in social network analysis. 

Vocabulary. The size of a matrix (also called its order) is defined 
as the number of rows and columns in the matrix. A matrix "lth g rows 
and h columns is of size g by h, or equivalently g x h. A sociomatrix for 
a network with a single set of actors and one relation has g rows and g 
columns, and is thus of size g x g. If a matrix has the same number of 
rows and columns, it is square. Otherwise, it is rectangular. A sociomatrix 

for a single set of actors and a single relation is necessarily square. 
Each entry in a matrix is called a cell, and is denoted by its row index 

and column index. So, cell X'j is in row i and column j of the matrix. 
For a square matrix, the main diagonal of the matrix consists of the 

entries for which the index of the row is equal to the index of the column, 
that is, i = j. Thus, the main diagonal contains the entries in the Xii cells, 
for i = 1, 2, . . .  ,g. In a sociomatrix, the entries on the main diagonal are 
the self-"choices" of actors in the network, or the loops in the graph. If 
these are undefined, as they are when we exclude loops from a graph or 
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do not measure self-choices of actors in the network, then the entries on 
the main diagonal of a sociomatrix are undefined. In this instance, we 
will put a "-" in the (i, i)th diagonal entry of a sociomatrix. 

An important property of a square matrix is whether it is symmetric. 
A matrix is symmetric if xij = Xj;, for all cells. If this is not true, 
then the matrix is not symmetric, that is, if there are some cells where 
Xi) '" Xji. The sociomatrix for a graph (representing a nondirectional 
relation) is symmetric, since the line (ni, nj) is identical to the line (nj, nil, 
and thus Xij = xji for all i and j. However, the sociomatrix for a digraph 
(representing a directional relation) is not necessarily symmetric, since 
the arc < ni,nj > is not the same as the arc < nb nj >, and thus the entry 
in cell xij is not necessarily the same as the entry in cell Xji. 

We now turn to some important matrix operations, including matrix 
permutation, the transpose of a matrix, matrix addition and subtraction, 
matrix multiplication, and Boolean matrix multiplication. 

Matrix Permutation. In a graph the assignment of numbers to 
the nodes is arbitrary. The only information in the graph is which pairs 
of nodes are adjacent. Similarly, in a sociomatrix, the order of the rows 
and columns indexing the actors in the network or the nodes in the 
graph is arbitrary, so long as the rows and columns are indexed in the 
same order. Any rearrangement of rows, and simultaneously of columns, 
of the sociomatrix does not change the information about adjacency of 
nodes, or ties between actors. Sometimes it is useful to rearrange the rows 
and columns in the sociomatrix to highlight patterns in the network. For 
example, if the relation represented in a sociomatrix is advice-seeking 
among managers in several departments in a corporation, then it might 
be useful to place managers in the same department next to each other in 
the rows and columns of the sociomatrix in order to study advice-seeking 
within departments. 

A permutation of a set of objects is any reordering of the objects. If a 
set contains g objects, then there are g !  = g x (g - 1) x (g - 2) x . . . x 1 
possible permutations of these objects. For example, there are 3 x 2 x 1 = 
6 permutations of the integers {l , 2, 3}. Thus, there are six ways to 
rearrange the rows and columns of a sociomatrix for three actors, simply 
by relabeling (simultaneously) the rows and columns. 

Matrix permutations can be used in the study of cohesive subgroups 
(Chapter 7), and are especially important in constructing blockmod
els (Chapter 10), and in evaluating the goodness-of-fit of blockmodels 
(Chapter 16). Matrix permutations are also useful if the graph is bipaf-
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Table 4.5. Example of matrix permutation 
X 

n, n2 n, n, n, 

n, 0 1 0 1 
n2 0 0 1 0 
n3 1 0 0 1 
n4 0 1 0 0 
n, 1 0 1 0 

X permuted 
n, n, n3 n2 n, 

n, 1 1 0 0 
n, 1 1 0 0 
n, 1 1 0 0 
n2 0 0 0 1 
n4 0 0 0 1 

tite. Recall that the nodes in a bipartite graph can be partitioned so 
that all lines are between nodes in different subsets. Thus, it is helpful to 
permute the rows and columns of the sociomatrix so that nodes in the 
same subset are in rows (and columns) that are next to each other in the 
sociomatrix. 

Sometimes the patterns of ties between actors is not clear until we 
permute both the rows and the columns of the matrix. For example in 
Table 4.5, an arbitrary labeling of nodes might have ordered the rows 
(and columns) n" n2, n3,n4,nS, as in the sociomatrix at the top of the 
table. However, the permutation at the bottom of the table has the nodes 
in the order: 5, 1, 3, 2, 4, there are now l's in the upper left and lower right 
corners of the sociomatrix. With this new order of rows and columns, it 
is clear that ties are present among the nodes represented by rows and 
columns 5, 1, and 3 and among nodes represented by rows and columns 
2 and 4, but there are no ties between these two subsets. This pattern of 
two separate subsets was difficult, if not impossible, to see in the original 
sociomatrix. 

Transpose. The transpose of a matrix is constructed by inter
changing the rows and columns of the original matrix. For matrix X we 
denote its transpose as X' with entries {xij}' For matrix X, the elements 
of its transpose X' are X�j = x ji. 

If a matrix, X, is symmetric, then X and its transpose, X', are identical; 
X = X'. Thus, the matrix for a graph (representing a nondirectional 



4.9 Matrices 157 

Table 4.6. Transpose of a sociomatrix for a directed relation: friendship 
at the beginning of the year Jor six children 

X' 
n, '2 n, n, n, n, 

n, 0 0 0 0 0 
n2 1 1 0 0 1 
n, 0 1 0 0 0 
n, 0 0 0 0 0 
n, 1 0 0 1 0 
n, 0 1 0 0 

relation) is always identical to its transpose, since xij = Xji for all i and 
j. However, the matrix for a digraph (representing a directional relation) 
is not necessarily identical to its transpose, since the sociornatrix for a 
directional relation is not, in general, symmetric. 

The transpose of a sociomatrix is substantively interesting since it is 
analogous to reversing the direction of the ties betweeu pairs of actors. 
In a sociomatrix, an entry of 1 in cell (i,j) indicates that there is a tie 
from row actor i to column actor j. In the transpose of the sociomatrix, a 
1 in cell (i,j) indicates that row actor i received a tie from column actor j. 
For a directional relation represented as a directed graph, the transpose 
of the sociomatrix represents the converse of the directed graph; X;j = 1 
if xji = 1. 

Table 4.6 gives the transpose of the sociomatrix in Table 4.4. 

Addition and Subtraction. The addition of two matrices of the 
same size (the same number of rows and columns) is defined as the sum 
of the elements in the corresponding cells of the matrices. For matrices 
X and Y, both of size g by h, we define Z = X + Y, where Zij = xij + Yij. 

Similarly we can define matrix subtraction as the difference between 
the elements in the corresponding cells of the matrices. For matrices X 
and Y, both of size g by h, we define Z = X - Y, where zij = xij - Yij' 

Matrix Multiplication. Matrix multiplication is a very important 
operation in social network analysis. It can be used to study walks and 
reachability in a graph, and is the basis for compounding relations in the 
analysis of relational algebras (see Chapter 11). 

Consider two matrices: Y of size g x h, and W of size h x k. The 
number of columns in Y must equal the number of rows in W. We define 
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W 
YW � Z  

Y 
1 0 1 
1 3 2 

OJJ2 
1 1 
2 3 

z 

I25l 
� 

z" � (1 x 0) + (0 x 1) + (1 x 2) � 0 + 0 + 2 � 2  
Z12 � ( 1  x 2) + (0 x 1) + (1 x 3) � 2 + 0 + 3 � 5 
Z21 � (1 x 0) + (3 x 1) + (2 x 2) � 0 + 3 + 4 � 7 
z" � (1 x 2) + (3 x l) + (2 x 3) � 2 + 3 + 6 � 1 1  

Fig. 4.26. Example of matrix multiplication 

the product of two matrices as Z = YW where the elements of Z = {zij} 
are equal to: 

h 
Zij = LYi/Wlj. /-1 (4. 1 1) 

The matrix product Z has g rows and k columns. The value in cell (i,j) 
of Z is equal to the sum of the products of corresponding elements in 
the ith row of Y and the jth column of W. 

Figure 4.26 gives an example of matrix multiplication. The first matrix 
in the product, Y, is of size 2 x 3, and the second matrix, W, is of size 
3 x 2. Hence, the product, Z, is of size 2 x 2. 

Powers of a Matrix. Now, consider the sociomatrix X of size g 
by g. We denote the product of a matrix times itself, XX as X', with 
entries xl}l. Since there are g rows and g columns in X there are also g 
rows and g columns in X2. 

Multiplying X2 by the original sociomatrix, X, yields the matrix X3 = 
XXX. In general, we define XP (X to the pth power) as the matrix product 
of X times itself, p times. 

Table 4.7 shows a matrix and some of its powers. 

Boolean Matrix Multiplication. The result of multiplying two 
matrices, say X and Y, is a new matrix, Z, with entries whose values 
are defined by equation (4.11) .  In many social network applications it 

is sufficient to consider only whether these entries are non-zero. Such 
arithmetic is usually referred to as Boolean. Boolean matrix multiplication 
yields the Boolean product of two matrices, which we. denote by Z® = 
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X ® Y. The entries of a Boolean product are either 0 or 1, and are defined 
as: 

z� = { 1  if �t�, Yi/Wlj > 0 
} 0 lf �'�l Yi/wlj = O. 

Thus Boolean matrix multiplication results in values that are equal to 1 
if regular matrix multiplication results in a non-zero entry, and equal to 0 
otherwise. Boolean multiplication is the basis for constructing relational 
algebras (Chapter 1 1), and can be used to study walks and reachability 
in graphs. 

4.9.7 Computing Simple Network Properties 

' .  Now, let us see how these matrix operations can be used to study 
some graph theoretic concepts. We will first describe how to use matrix 
multiplication to study walks and reachability in a graph and then show 
how properties of matrices can be used to quantify nodal degree and 
graph density. 

Walks and Reachability. Matrix operations can be used to study 
walks and reachability in both graphs and directed graphs. 

Graphs. first, let us consider the sociomatrix for a graph (repre
senting a nondirectional relation). As defined in equation (4. 1 1), the value 
xlP = �%�l X;kXkj. The product X;kXkj, one term in this sum, is equal to 
1 only if both X'k = 1 and Xkj = 1 . In terms of the graph, X'kXkj = 1 
only if both lines (n"nk) and (nk, nj) are present in 2'. If this is true, 
then the walk n,nknj is present in the graph. Thus, the sum �f�l X;kXkj 
counts the number of walks of length 2 between nodes n, and nj, for all 
k. The entries of X2 = {xi;]} give exactly the number of walks of length 
2 between nj and nj. 

Similarly, we can consider walks of any length by studying powers of 
the matrix X. For example, elements of X3 count the number of walks 
of length 3 between each pair of nodes. Such multiplications can be used 
to find walks of longer lengths. In general, the entries of the matrix XP 
(the matrix X raised to the pth power) give the total number of walks of 
length p from node n, to node nj. 

Recall that two nodes are reachable if there is a path (and thus, a walk) 
between them. Since every path is a walk, we can study reachability of 
pairs of nodes by considering the powers of the matrix X that count 
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walks of a given length. Also, recall that the longest possible path in a 
graph is equal to g - 1 (any path longer than g - 1 must include some 
node(s) more than once, and so is not a path). Thus, if two nodes are 
reachable, then there is at least one path (and thus at least one walk) of 
length g - 1 or less between them. 

Consider now whether there is a walk of length k or less between two 
nodes, n, and nj. !f there is a walk of length k or less, then, for some value 
of p ,,; k, the element x�l will be greater than or equal to 1 .  One way 
to determine whether two nodes are reachable is to examine all matrices, 
{XP, 1 ,,; p ,,;  g - I} . If two nodes are reachable, then there is a non-zero 
entry in one or more of the matrices of this set. When these product 
matrices are summed, for p = 1, 2, . . .  , (g - 1), we obtain a matrix, 

X[El = X + X' + Xl + . . .  + Xg�l 

whose entries give the total number of walks from n, to nj, of any length 
less than or equal to g - 1. Since any two nodes that are reachable are 
connected by a path (and thus a walk) of length g - 1 or less, non-zero 
entries in the matrix X[El indicate pairs of nodes that are reachable. A 0 
in cell (i,j) of X[El means that there is no walk between nodes n, and nj, 
and thus these two nodes are not reachable. 

It is useful to define a reachability matrix, X[Rl = (xfJl ), that simply 
codes for each pair of nodes whether they are reachable, or not. The 
entry in cell (i,j) of X[Rl is equal to 1 if nodes n, and nj are reachable, 
and equal to 0 otherwise. We can calculate these values by looking at the 
elements of XlLl, and noting which ones are non-zero. Non-zero elements 
of XlL1 indicate reachability ; hence, we define 

x[Rl = { I  if xf71 � 1 
!J 0 otherwise. 

(4.12) 

The elements of X[R] indicate whether nodes ni and nj are reachable or 
not. 

Directed Graphs. Now, consider matrix products of sociomatrices 
for directed graphs. These products will allow us to study directed walks 
and reachability for directed graphs. 

FiTst, look at the entries in X2. If X is a SOc1omatrix for. a directed 
graph, then xij = 1 means that the arc < n" nj > is in !E. As usual, the 
value of the product X,kXkj is equal to 1 if both Xik = 1 and Xkj = 1 .  In 
the directed graph, X,kXkj = 1 only if both arcs < n" nk > and < nk, nj > 



4.9 Matrices 161 

are present in !£'. If this is true, then the directed walk n, -+ nk -+ nj 
is present in the graph. The sum 2:1�1 X,kXkj thus counts the number 
of directed walks of length 2 beginning at node n, and ending at node 
nj' for a1l k. Thus, the entries of X2 = {x,�]} give exactly the number of 
directed walks of length 2 from n, to n j. 

Similarly, we can consider directed walks of any length by studying 
powers of the matrix X. In general, the entries of the matrix XP (the 
pth power of the sociomatrix for a directed graph) give the total number 
of directed walks of length p beginning at row node n, and ending at 
column node nj. 

As with the powers of the sociomatrix for a graph, when the product 
matrices, XP, are summed, for p = 1,2, . . .  , (g - 1), we obtain a matrix, 
denoted by Xl"], whose entries give the total number of directed walks 
from row node n, to column node nj, of any length less than or equal to 
g -1. 

We can also define the reachability matrix for a directed graph, X[R] = 
{xW]}, that codes for each pair of nodes whether they are reachable, or 
not. The entry in ce1l (i, j) of X[R] is equal to 1 if there is a directed 
path from row node n, to column node nj, and equal to 0 otherwise. If 
xlf] = 1 then node nj is reachable from node n,. Since directed paths 
consist of arcs a1l "pointing" in the same direction, there may be a 
directed path from node n, to node nj (thus xlf] = 1), without there 

necessarily being a directed path from node nj to node", (thus xJf] could 
= 0). Thus, the reachability matrix for a directed graph is not, in general, 
symmetric. 

Geodesics and Distance. The (geodesic) distance from n, to n j 
can be found by inspecting the power matrices. The distance from one 
node to another is the length of a shortest path between them. In a 
graph, this distance is the same from n, to nj as it is from nj to ni. In a 
digraph. these distances can be different. 

These distances are sometimes arrayed in a distance matrix, with ele
ments d(i,j). To find these distances using matrices, focus on the (i,j) 
elements of the power matrices, starting with p= 1. When p = 1, 
the power matrix is the sociomatrix, so that if X'j = 1, the nodes are 
adjacent, and the distance between the nodes equals 1. If X'j = 0 and 
xl;] > 0, then there is a shortest path of length 2. And so forth. Con
sequently, the first power p for which the (i,j) element is non-zero gives 
the length of the shortest path and is equal to d(i,j). Mathematically, 

d(") . [P] 0 l, ] = mznpxij > . 
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Table 4.7. Powers of a sociomatrix for a directed graph 
X 

"[ n2 n, ", ns n, 

n[ 0 0 1 0 
n, 0 1 0 0 1 
n, 0 1 0 0 0 

", 0 0 0 1 0 
n, 0 0 0 0 1 

", 0 1 0 0 0 

X' 
n[ n, n, n, n, n, 

"[ 0 0 1 0 0 2 
n2 0 2 0 0 0 0 

", 0 0 1 0 0 1 
n, 0 0 0 0 0 1 
n, 0 1 0 0 0 0 

", 0 0 1 0 0 1 

X' 
"[ n, n, ", ns "' 

n[ 0 3 0 0 0 0 
n, 0 0 2 0 0 2 
n, 0 2 0 0 0 0 

114 0 1 0 0 0 0 

", 0 0 1 0 0 1 
n, 0 2 0 0 0 0 

X' 
n[ n, n, n, ", n, 

"[ 0 0 3 0 0 3 

" 2  0 4 0 0 0 0 

", 0 0 2 0 0 2 
n4 0 0 1 0 0 1 
n, 0 2 0 0 0 0 
n, 0 0 2 0 0 2 

X' 
nt n2 ", 114 ns ", 

"[ 0 6 0 0 0 0 
n2 0 0 4 0 0 4 
n, 0 4 0 0 0 0 
n, 0 2 0 0 0 0 

", 0 0 2 0 0 2 

", 0 4 0 0 0 0 
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The diameter of a graph or digraph is the length of the largest geodesic 
in the graph or digraph. If the graph is connected or if the digraph 
is at least strongly connected, the diameter of the graph is then the 
largest entry in the distance matrix; otherwise, the diameter is infinite or 
undefined. 

Computing Nodal Degrees. In this section we describe how to 
calculate nodal degree from the matrices associated with graphs and 
directed graphs. We first describe calculations of nodal degree for a 
graph, and then nodal indegree and outdegree for a directed graph. 

Graphs. Recall that the degree of a node, d(n,), is equal to the 
number of lines incident with the node in the graph. Nodal degrees may 
be found by summing appropriate elements in either the sociomatrix or 
in the incidence matrix. In the incidence matrix I, with elements {Iij}, the 
degrees of the nodes are equal to the row sums, since the rows correspond 
to nodes and the entries are 1 for every line incident with the row node. 
Specifically, 

L 
d(n,) = 2:)ij. 

j=l 
Each row contains as many l's as there are lines incident with the node in 
that row. Thus, summing over columns (that is, lines) gives the number 

of lines incident with the node. 
In the sociomatrix X for a graph (representing a nondirectional rela

tion) the nodal degrees are equal to. either the row sums or the column 
sums. The ith row or column total gives the degree of node n,: 

g g 
d(ni) = LXij = LXij = Xj+ = x+j. 

j=l i=1 
(4.13) 

Directed Graphs. Now consider the indegrees and outdegrees of 
nodes in a directed graph. Recall that the indegree of a node is the 
number of nodes incident to the node (the number of arcs terminating 
at it) and the outdegree of a node is the number of arcs incident from 
the node (the number of arcs originating from it). Notice that row i of 
a sociomatrix contains entries xij = 1 if node nj is incident from node 
i. The number of l's in row i is thus the number of nodes incident from 
node n" and is equal to the outdegree of node n,. Similarly, the entries in 
column i of a sociomatrix contain entries Xj' = 1 if node nj is incident to 
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node ni. Thus, the number of l's in column i is equal to the indegree of 
node ni. The row totals of X are equal to the nodal outdegrees, and the 
column totals of X are equal to the nodal indegrees. Formally, 

and 

g 
do(ni) = L xij = Xi+, 

j=l 

g 
df(n,) = LXji = X+i· 

j=l 

(4.14) 

(4.15) 

Computing Density. The density of a graph, digraph, or valued 
(di)graph can be calculated as the sum of all entries in the matrix, divided 
by the possible number of entries: 

I:g I:g x-. 
d = i�l j�l 'J 

(4.16) 
g(g - l) 

. 

4.9.8 Summary 

We have showed how many of the graph theoretic properties for nodes, 
pairs of nodes, and the graph as a whole can be calculated using matrix 
representations. These representations are quite useful, as Katz (1947) 
first realized. 

4.10 Properties of Graphs, Relations, and Matrices 

In this chapter we have noted three important properties of social net
works: reflexivity, symmetry, and transitivity. In this section, we show 
how they can be studied by examining matrices, relations, and graphs. 

4.10.1 Reflexivity 

In our discussion of graphs we have focused on simple graphs, which, 
by definition, exclude loops. Thus, a simple graph is irreflexive, since no 
< ni, nj > are present. On occasion, however, one may wish to allow 
loops. In that case, if all loops are present, the graph represents a reflexive 
relation. In a sociomatrix loops are coded by the entries along the main 
diagonal of the matrix, Xii for all i. A relation is reflexive if, in the 
sociomatrix, Xii = 1 for all i. An irreflexive relation has entries on the 
main diagonal of the sociomatrix that are undefined. Finally, a relation 
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that is not reflexive (also not irreflexive) has some, but not all, values of 

Xii = 1. In terms of a directed graph, some, but not all, < ni, ni > arcs 
are present. 

4.10.2 Symmetry 

A relation is symmetric if, whenever i Hchooses" j, then j also "chooses" 
i; thus, iRj if and only if jRi. A nondirectional relation (represented 
by a graph) is always symmetric. In a directed graph symmetry implies 
that whenever the arc Ik =< n" nj > is in the set of lines 2, the arc 
1m =< nj, ni > is also in 2. In other words, dyads are either null or 
mutual. The sociomatrix for a symmetric relation is symmetric; xij = X ji 
for all distinct i and j. If the matrix X is symmetric, then it is identical 
to its transpose, X'; xij = X;j for all i and j. 

4.10.3 Transitivity 

Transitivity is a property that considers patterns of triples of actors in a 
network or triples of nodes in a graph. A relation is transitive if every 
time that iRj and jRk, then iRk. If the relation is "is a friend of," then 
the relation is transitive if whenever i "chooses" j as a friend and j 
"chooses" k as a friend, then i "chooses" k as a friend. 

Transitivity can be studied by considering powers of a sociomatrix. 
Recall that X[2] 

= XX codes the number of walks of length 2 between 
each pair of nodes in a graph; thus, an entry xl]] � 1 if there is a walk 
nj ---+ nk ---+ nj for at least one node nk. Thus, in order for the relation to 
be transitive, whenever xfJl ;;::: 1, then xij must equal 1. 

One can check for transitivity of a relation by comparing the square 

of a sociomatrix with the sociomatrix. Thus, a transitive relation is 
noteworthy in that ties present in X are a subset of the ties present in X2. 

4.11 Summary 

Graph theory is a useful way to represent network data. Actors in a 
network are represented as nodes of a graph. Nondirectional ties between 
actors are represented as lines between the nodes of a graph. Directed ties 
between actors are represented as arcs between the nodes in a digraph. 
The valences of ties are represented by a "+" or "-" sign in a signed 
graph or digraph. The strength associated with each line or arc in a 
valued graph or digraph is assigned a value. Many of the concepts 
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of graph theory have been used as the foundation of many theoretical 
concepts in social network analysis. 

There are many, many references on graph theory. We recommend the 
following texts. Harary (1969) and Bondy and Murty (1976) are excel
lent mathematical introductions to graph theory, with coverage ranging 
from proofs of many of the statements we have made, to solutions to a 
variety of applied problems. The excellent text by Frank (1971) is more 
mathematically advanced and focuses on social networks. Similarly, the 
classic text by Harary, Norman, and Cartwright (1965) is also focused 
on directed graphs, and is quite accessible to beginners. Roberts (1976, 
1978) and Hage and Harary (1983) provide very readable, elementary 
introductions to graph theory, with many concepts illustrated on anthro
pological network data. In their introduction to network analysis, Knoke 
and Kuklinski (1982) also describe some elementary ideas in graph the
ory. Ford and Fulkerson (1962), Lawler (1976), Tuite (1971), and others 
give mathematical treatments of special, advanced topics in graph theory, 
such as theories of matroids and optimization of network configurations. 
The topic of tournaments is treated in the context of paired comparisons 
by David (1988). A more mathematical discussion of tournaments can 
be found in Moon (1968). Berge (1989) discusses hypergraphs in detail. 



Part III 
Structural and Locational Properties 





5 
Centrality and Prestige 

One of the primary uses of graph theory in social network analysis is 
the identification of the "most important" actors in a social network. 
In this chapter, we present and discuss a variety of measures designed 
to highlight the differences between important and non-important ac
tors. Definitions of importance, or synonymously, prominence, have been 
offered by many writers. All such measures attempt to describe and 
measure properties of Hactor location" in a social network. Actors who 
are the most important or the most prominent are usually located in 
strategic locations within the network. As far back as Moreno (1934), 
researchers have attempted to quantify the notions of sociometric "stars" 
and "isolates." 

We will discuss the most noteworthy and substantively interesting 
definitions of importance or prominence along with the mathematical 
concepts that the various definitions have spawned. Among the defi
nitions that we will discuss in this chapter are those based on degree, 
closeness, betweenness, information, and simply the differential status or 
rank of the actors. These definitions yield actor indices which attempt to 
quantify the prominence of an individual actor embedded in a network. 
The actor indices can also be aggregated across actors to obtain a single, 
group-level index which summarizes how variable or differentiated the 
set of actors is as a whole with respect to a given measure. We will show 
how to calculate both actor and group indices in this chapter. 

Throughout this chapter, we will distinguish between relations that 
are directional (yielding directed graphs) and those that are not (yielding 
undirected graphs). The majority of the centrality concepts discussed in 
this chapter are designed for graphs (and thus, symmetric sociomatrices), 
and most of these, just for dichotomous relations. The notion of prestige, 
however, can only be quantified by using relations for which we can 
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distinguish "choices" sent from choices received by the actors, and there
fore, can only be studied with directed graphs. With directional relations, 
measures such as outdegree and indegree are quite likely to be different, 
and (as we will see in this chapter) prestigious actors are usually those 
with large indegrees, or "choices" received. Both centrality and prestige 
indices are examples of measures of the prominence or importance of 
the actors in a social network. We will consider definitions of prestige 
other than the indegree of an actor, and show that prestigious actors 
not only are chosen or nominated by many actors, but the actors who 
are doing the choosing must also be prestigious. So, the chapter will be 
split into two main parts: the first, presenting centrality measures for 
nondirectional relations, and the second, discussing both centrality and 
prestige lneasures for directional relations. 

The substantive nature of the relation under study clearly determines 
which types of measures are appropriate for the network. Directional 
relations give two types of actor and group measures, based on both 
centrality and prestige, while nondirectional relations give just one type, 
based on centrality alone. We describe four well-known varieties of 
centrality in this chapter, illustrating and defining them first for nondi
rectional relations. We will then discuss directional relations, and not 
only show how these four centrality measures can be extended to such 
relations, but also define three measures of prestige, based on degree, 
proximity, and status or rank. This latter measure of status or rank has 
been shown to be quite useful in practice. 

All these measures are first defined at the level of the individual actor. 
The measures can then be aggregated over all actors to obtain a group
level measure of either centralization or group prestige. Such aggregate 
measures are thus defined at the level of the entire set of actors. They 
attempt to measure how "centralized" or "prestigious" the set of actors 
is as a whole. We will present several methods for taking the individual 
actor indices, and combining them to arrive at a single, group-level index. 
These methods are as simple as variances, and as complicated as ratios 
of the average difference of the actor index from its maximum possible 
value to the maximum of this average difference. The group-level indices 
are usually between 0 and 1, and thus are not difficult to interpret. 

Throughout the chapter, we will apply the actor and group measures to 
a variety of data, both real and artificial. Three artificial graphs that very 
nicely highlight the differences among the measures we describe are shown 
in Figure 5.1. These graphs, all with g = 7, will be labeled the star graph 
(Figure 5.1a), the circle (Figure 5.1b), and the line graph (Figure 5.1c; see 
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*-
0 1 1 1 1 1 1 
1 0 0 0 0 0 0 

n, (a) Star graph 1 0 0 0 0 0 0 

n6 n3 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 
1 0 0 0 0 0 0 
1 0 0 0 0 0 0 n4 

n, 

Q 
0 1 0 0 0 0 1 
1 0 1 0 0 0 0 

n, 0 1 0 1 0 0 0 

. "z (b) Circle graph 0 0 1 0 1 0 0 
0 0 0 1 0 1 0 

n, 0 0 0 0 1 0 1 

n, 1 0 0 0 0 1 0 

n4 
0 1 1 0 0 0 0 
1 0 0 1 0 0 0 
1 1 0 0 1 0 0 

• • • • • • • (c) Line graph 0 1 0 0 0 1 0 
0 0 1 0 0 0 1 n6n4 n2 n, n3 n, n7 
0 0 0 1 0 0 0 
0 0 0 0 1 0 0 

Fig. 5.1. Three illustrative networks for the study of centrality and 
prestige 

Freeman 1980a). We will refer to these graphs or networks frequently, 
since the centrality of the actors in these graphs varies greatly, as does the 
centralization of the graphs. Just a quick glauce at these figures shows 
that the nodes in the graphs are quite different. For example, all nodes 
in the circle are interchangeable, and hence should be equally central. 
One node in the star completely outranks the others, while the other six 
themselves are interchangeable. In the line graph, the nodes' centrality 
clearly decreases from that for nj, to n2 and n3, and so on, to n6 and n7, 
who are peripheral in this graph. 

Many graph theoretic centrality concepts are discussed in Hage and 
Harary (1983) and in the other general references given in Chapter 4. 
Based on our understanding of the major concepts of graph theory, 
as presented in Chapter 4, it should be clear that we can define (maybe 
even invent) many graph theoretic centrality notions, such as the "center" 
and "centroid" of a graph, with the goal of quantifying importance or 
prominence. But the major question still remains unanswered: Are the 
nodes in the graph center and/or in the graph centroid and/or with 
maximal degree the most "central" nodes in a substantive sense - that 
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is, does the center, or centroid, of a graph contain the most important 
actors? In part, this is a question about the validity of the measures 
of centrality - do they really capture what we substantively mean be 
"importance" or "prominence"? Can we simply focus on the actors 
who are "chosen" the most to find the most important actors? Of 
course, unless we define what we mean by the terms "important" and 
"prominent," these questions are not answerable. 

Thus, we first will define prominence or importance, and discuss how 
the terms "central" and "prestigious" quantify two important aspects of 
prominence. We will then answer questions about which actors are the 
most important, and will find that the best centrality notions are first 
based primarily on substantive theory, and then use graph theory to be 
quantified. 

5.1 Prominence: Centrality and Prestige 

We begin by assuming that one has measurements on a single. di
chotomous relation. although some of the measures discussed here are 
generalizable to other types of network data. We will not be concerned 
here with a signed or multirelational situation, even though such sit
uations are very interesting (both methodologically and substantively). 
These types of relations have not been studied using the ideas discussed 

in this chapter. 
We will consider an actor to be prominent if the ties of the actor 

make the actor particularly visible to the other actors in the network. 
This equating of prominence to visibility was made by Knoke and Burt 
(1983). Hubbell (1965) and Friedkin (1991) note that prominence should 
be measured by looking not only at direct or adjacent ties, but also at 
indirect paths involving intermediaries. This philosophy is maintained 
throughout. To determine which of the g actors in a group are prominent, 
one needs to examine not only all "choices" made by an actor and all 
"choices" received, but indirect ties as well. 

If a relation is nondirectional, the ith row of the sociomatrix X, 
(Xil,X", ... ,Xig), is identical to the ith column (Xli,X", ... ,Xg,). Thus, 

actor i's prominence within a network is based on the pattern of these 
g - 1 possible ties or entries in the sociomatrix, defining the location of 
actor i. If the relation is directional, the ith row of the sociomatrix differs 
from the ith column, so that actor i's prominence is based on the 2(g - 1) 
entries in the sociomatrix involving i. Some of the specific definitions 
of prominence will also consider choices made through intermediaries, 
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or third parties, but such choices will almost always be of secondary 
concern. 

This definition of prominence is still rather vague. Are prominent actors 
the objects of many "choices" from followers, while non-prominent actors 
(or followers) are not? What properties of these "choices" make an actor 
more visible than the other actors or the "object of" many ties? And 
what shall we do about indirect choices? This definition is also relative 
to the nature of the "choices" made by the other actors. Prominence is 
difficult to quantify, since many actor indices that are functions of just 
the ith row and column of the sociomatrix would qualify as measures of 

prommence. 
To allow researchers to define better the important actors as those 

with more visibility and to understand better the meaning of the concept, 
Knoke and Burt distinguish two types of visibility, or to us, two classes 
of prominence - centrality and prestige. Both these types are based on 
the relational pattern of the row and column entries of the sociomatrix 
associated with each actor. This dichotomy is very useful and a very 
important contribution to the extensive literature on prominence. Let us 
now define both these versions of prominence, after which we will show 
how they can be quantified first for nondirectional relations, and then 
for directional ones. 

5.1.1 Actor Centrality 

Prominent actors are those that are extensively involved in relation�hips 
with other actors. This involvement makes them more visible to the 
others. We are not particularly concerned with whether this prominence 
is due to the receiving (being the recipient) or the transmission (being 
the source) of many ties - what is important here is that the actor 
is simply involved. This focus on involvement leads us to consider first 
nondirectional relations, where there is no distinction between receiving 
and sending. Thus, for a nondirectional relation, we define a central 
actor as one involved in many ties. However, even though oentrality 
seems most appropriate for nondirectional relations, we will, later in this 
chapter, show how such indices can also be calculated for directional 
relations. 

This definition of centrality was first developed by Bavelas ( 1948, 1950). 
The idea was applied in the late 1940's and early 1950's in laboratory 
experiments on communication networks (rather than from observed, 
naturally occurring networks) directed by Bavelas and conducted by 
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Leavitt (1949, 1951), Smith (1950), and Bavelas and Barrett (1951). 
As Freeman (1979) reports, these first experiments led to many more 
experiments in the 1950's and 1960's (see Burgess 1968, Rogers and 
Agarwala-Rogcrs 1976, and the citations in Freeman 1979, for reviews). 
In recent research, Freeman (1977, 1979, 1980a) has advocated the use 
of centrality measures to understand group structure, by systematically 
defining the centrality notions we discuss below. At the same time, he 
introduced a new centrality measure based on betweenness (see below). 

As Knoke and Burt (1983) point out, sociological and economic con
cepts such as access and control over resources, and brokerage of infor
mation, are well suited to measurement. These concepts naturally yield 
a definition of centrality since the difference between the source and the 
receiver is less important than just participating in many interactions. 
Assuming that one is studying a relevant relation (such as communica
tion), those actors with the most access or most control or who are the 
most active brokers will be the most central in the network. 

We will employ a simple notation for actor centrality measures, first 
used by Freeman (1977, 1979). We let C denote a particular centrality 
measure, which will be a function of a specific ni. There will be a variety 
of measures introduced in this chapter, so we will subscript C with an 
index for the particular measure under study. If we let A be a generic 
measure, then one of the actor centralities defined below will be denoted 
by CA(ni). We will use a variety of different values for A to distinguish 
among the different versions of centrality. As usual, the index i will range 
over the integers from 1 to g. 

5.1.2 Actor Prestige 

Suppose we can make a distinction between ties sent and ties received, 
as is true for directional relations. We define a prestigious actor as one 
who is the object of extensive ties, thus focusing solely on the actor as 
a recipient. Clearly, prestige is a more refined concept than centrality, 
and cannot always be measured The prestige of an actor increases 
as the actor becomes the object of more ties but not necessarily when 
the actor itself initiates the ties. In other words, one must look at ties 
directed to an actor to study that actor's prestige. Since indegrees are 
only distinguishable from outdegrees for directional relations, we will not 
be able to quantify prestige of an actor unless the relation is directional, 
a point that we discuss in more detail below. 
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Quantification of prestige, and the separation of the concept from 
centrality, is somewhat analogous to the distinction frequently made 
between outdegrees and indegrees (which, as the reader will see, are 
simple measures of centrality and prestige, respectively). One must look 
at ties directed to an actor to study that actor's prestige. Since indegrees 
are only distinguishable from outdegrees for directional relations, we will 
not be able to quantify prestige unless the relation is directional. 

We should note that the term "prestige" is perhaps not the best label 
for this concept (in some situations). For example, if the relation under 
study is one of negative affect, such as "despises" or "do not want as a 
friend," then actors who are prestigious on this relation are not held in 
very high regard by their peers. Such actors are certainly renowned, but 
it is for negative feelings, rather than positive. Further, if the relation 
is "advises," the actors considered prestigious by their peers might be 
those that are senders, rather than receivers. Nevertheless, the term has 
become established in the literature, and we will use it, keeping in mind 
that the substantive nature of the measured relation is quite important 
when interpreting the property. 

Prestige has also been called status by authors such as Moreno (1934), 
Zeleny (1940a, 1940b, 1941, 1960), Proctor and Loomis (1951), Katz 
(1953), and Harary (1959c). We will introduce several status measures 
later in this chapter. But we will label these indices rank measures, since 
the term "status" has been used extensively in other network methodology 
(see Chapters 9 and 10). All these actor prestige measures attempt to 
quantify the rank that a particular actor has within a set of actors. Other 
synonyms include deference, and simply popularity. Recently, Bonacich 
(1972a, 1972b, 1987) has generalized Katz's (1953), Hubbell's (1965), and 
Taylor's (1969) ideas, and presented a new family of rank measures. All 
these rank (or status) indices are examples of prestige measures, and we 
will discuss them in detail later in the chapter. 

We let P denote a particular prestige measure, which will be defined 
for a specific actor, ni. There will be three measures introduced in this 
chapter, so we will subscript P with an index for the particular measure 
under study. 

5.1.3 Group Centralization and Group Prestige 

We should note that even though the focus of this chapter is on measures 
for actors that primarily allow us to quantify importance, one can take 
many of the measures and combine them across actors to get a group-
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level measure. These group-level measures allow us to compare different 
networks easily. When possible in this chapter, we will give formulas 
for group centralization or prestige measures, although most research on 
these measures is restricted to centralization. 

We should first ask exactly what a group-level index of centralization 
is measuring. The general index that we introduce below has the property 
that the larger it is, the more likely it is that a single actor is quite central, 
with the remaining actors considerably less central. The less central actors 
might be viewed as residing in the periphery of a centralized system. Thus, 
this group-level quantity is an index of centralization, and measures how 
variable or heterogeneous the actor centralities are. It records the extent 
to which a single actor has high centrality, and the other<, low centrality. 
It also can be viewed as a measure of how unequal the individual 
actor values are. It is (roughly) a measure of variability, dispersion, or 
spread. Early network researchers interested in centrality, particularly 
Leavitt (1951), Faucheux and Moscovici (1960), and Mackenzie (1966a), 
proposed that group-level indices of centralization should reflect such 
tendencies. Nieminen (1974) and Freeman (1977) also adopt this view, 
and discuss group centralization measurement. 

One can view such a centralized network in Figure 5.1. The star graph 
is maximally central, since its one central actor has direct contact with 
all others, who are not in contact with each other. Examining the other 
two graphs in this figure should indicate that the degree of centralization 
can vary just by changing a few ties in the network. 

Freeman (1979) adopts a convenient, general mathematical definition 
for a group-level index of centralization. Recall that CA(ni) is an actor 
centrality index. Define CA(n') as the largest value of the particular 
index that occurs across the g actors in the network; that is, CA(n') = 
maXi CA(ni). 

From these quantities, I:r�dCA(n') - CA(ni)] is the sum of the dif
ferences between this largest value and the other observed values, while 
max I:r�l[CA(n') - CA(n;)] is the theoretical maximum possible sum of 
differences in actor centrality, where the differences are taken pairwise 
between actors. This latter maximum is taken over all possible graphs, 
with g actors. As we will see, this maximum occurs for the star graph. 

The sum of differences becomes the numerator, while the theoretical 
maximum possible sum becomes the denominator in Freeman's index. 
The denominator is a theoretical quantity, and is not computed by 
looking at a specific graph; rather, it is calculated by considering all 
possible networks, with a fixed g, and then determining analytically 
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how large the sum of differences can actually be. We have the general 
centralization index: 

C _ D-J [CA(n') - CAn,)] 
A - max :Lf�J [CA(n') - CA(n,)]· 

(5.1) 

The index will always be between 0 and 1. CA equals 0 when all actors 
have exactly the same centrality index (that being CA(n')), and equals 1 
if one actor, "completely dominates or overshadows" the other actors. 

Yet another view of graph centralization is offered by H0ivik and 
Gleditsch (1975), who view centralization in a graph more simply than 
Freeman as the dispersion in a set of actor centrality indices. Later in 
this chapter, we show how such a view is related to Freeman's approach. 

We note that one could also construct group-level prestigious measures, 
but the theoretical maximum values needed in the denominator are 

usually not calculable (except in special cases). Thus, we usually use 
something simpler (as we note later in this chapter) like a variance. 

In addition to centralization measures, other researchers have proposed 
graph-level indices based on the compactness of a graph. Bavelas (1950), 
Flament (1963), Beauchamp (1965), and Sabidnssi (1966) state that very 
centralized graphs are also compact, in the sense that the distances 
between pairs of nodes are small. These authors also proposed an index 
of actor centrality based on closeness (that is, small distances), as we will 

discuss later in this chapter. 
We will illustrate the quantities defined in this chapter using two 

examples. First, we will continue to use Padgett's Florentine family 
network as an example of a network with a nondirectional relation. 
Second, we introduce the countries trade network as an example of 

a network of nations, with trade of basic manufactured goods as a 
directional relation. 

5;2 Nondirectional Relations 
Suppose that we have a single set of actors, and a single, dichotomous 
nondirectional relation measured on the pairs of actors. As usual, we 
let X refer to the matrix of social network data. For such data, the ith 
row of the sociomatrix is identical to the ith column. An example of 
such a matrix can be found in Appendix B, and discussed in Chapter 2. 
These data measure the alliances among families in 15th century Florence 
formed by interfamilial marriages. The corresponding sociogram is shown 
in Chapter 3, where it is discussed at length as an example of a graph 
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with 16 nodes. In order to find the most important actors, we will look 
for measures reflecting which actors are at the "center" of the set of 
actors. We will introduce several definitions of this center, including 
actors with maximum degree, betweenness, closeness, and information. 

5.2.1 Degree Centrality 

The simplest definition of actor centrality is that central actors must be 
the most active in the sense that they have the most ties to other actors 
in the network or graph. Nowhere is this easier to see than by comparing 
a graph resembling a star to one resembling a circle, shown in Figure 5.1 

for networks with g= 7 actors. A star graph has the property that exactly 
one actor has ties to all g - lather actors, and the remaining g - 1 

actors have only their single tie to the first actor. The first actor is clearly 
the most active, and one could view this high level of activity as a large 
amount of centrality. This very active actor should thus have a maximal 
centrality index. Here, we measure activity simply as degree. Contrast 
this star graph with the circle graph also shown in Figure 5.1. A circle 
has no actor more active than any other actor; indeed, all actors are 
interchangeable, so all actors should have exactly the same centrality 
index. Note also that this type of centrality focuses only on direct or 
adjacent choices. Prominence here is equated to "activity" or simply 
"degree." 

Actor Degree Centrality. The degree of an actor is important; 
thus, a centrality measure for an individual actor should be the degree of 
the node, d(n;). Thus, following suggestions made by Proctor and Loomis 
(1951) and Shaw (1954), and then many other researchers (Glanzer and 
Glaser 1959; Faucheux and Moscovici 1960; Garrison 1960; Mackenzie 
1964, 1966a; Pitts 1965; Nieminen 1973, 1974; Czepiel 1974; Rogers 
1974; and Kajitani and Maruyama 1976; and reviewed by Freeman 
1979), we define CD(n;) as an actor-level degree centrality index. We let 

CD(n;) = d(n;) = X;+ = LX;j = LXj;. j j 
(5.2) 

We need not comment on the properties of this measure; it is discussed 
in detail in Chapter 4. We do note that one problem with this measure is 
that it depends on the group size g; indeed, its maximum value is g - 1. 

Consequently, a proposed standardization of the measure 
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C' ( ) _ d(ni) 
D ni - -g-1 
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(5.3) 

is the proportion of nodes that are adjacent to ni. C�(ni) is independent 
of g, and thus can be compared across networks of different sizes. 

Donninger (1986) considers the distribution of equation (5.3), using 
the probabilistic graph models of Erdos and Renyi (1960). He gives an 
approximation to the distribution of degrees, which can then be used 
to place confidence intervals on both the actor- and group-level degree 
indices. 

A related index, one for "ego density," is given by Burt (1982) and 
Knoke and Kuklinski (1982). An ego density for a nondirectional relation 
is simply tbe ratio of tbe degree of an actor to the maximum number of 
ties that could occur. Kapferer (1969, 1973) generalizes this, and defines 
another index, the "span" of an acto!, as the percentage of ties in the 
network that involve the actor or the actors that the primary actor is 
adjacent to. Thus, the central actor in a star graph has a span of unity. 

Refer to the three graphs of Figure 5.1. The degrees for the seven 
actors in the star graph are 6 (for nl) and 1 (for n2 - n7)' Thus, the 
denominator for the standardized actor-level indices C�(ni) is g - 1= 6. 
The standardized indices have values {1.0,0.167, . . .  , 0.167} - clearly 
there is one maximally central actor, and six peripheral actors. The 
degrees for the circle graph are all d(ni) = 2, so that the indices are 
all equal: C�(ni) = 0.333, indicating a low-moderate level of centrality, 
constant across all actors. Lastly, contrast this network to the line graph, 
in which nl - ns all have C�(ni) = 0.333 also, but the last two actors are 
less central: C�(n6) = C�(n7) = 0.167. The absence of the line between 
n6 and m (which is the difference between the circle graph and the line 
graph) has forced these two actors to be less central than the other five. 
These centralities and standardized centralities were calculated by hand, 
although the program UCINET calculates these quantities as standard 
output of its centrality subprogram. 

An actor with a high centrality level, as measured by its degree, is 
"where the action is" in the network. Thus, this measure focuses on 
the most visible actors in the network (as required by Knoke and Burt's 
(1983) definition of prominence). An actor with a large degree is in direct 
contact or is adjacent to many other actors. This actor should then begin 
to be recognized by others as a major channel of relational information, 
indeed, a crucial cog in the network, occupying a central location. In 
contrast, and in accordance with this centrality definition, actors with 
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low degrees are clearly peripheral in the network. Snch actors are not 
active in the relational process. In fact, if the actor is completely isolated 
(so that din;) = 0), then removing this actor from the network has no 
effect on the ties that are present. 

Group Degree Centralization. We now present several degree
based measures of graph centralization. A centralization measure quan
tifies the range or variability of the individual actor indices. The set of 
degrees, which represents the collection of actor degree indices, can be 
summarized in a variety of ways. Freeman (1979) recommends use of the 
general index (5.1). Applying his general formula for graph centralization 
here we find 

C _ 2:1-1 [CD("') - CD(n,)] D 
- max 2:1�1 [CD(n' ) - CD(n,)]' (5.4) 

The {CD(n,)} in the numerator are the g actor degree indices, wltile 
CD(n') is the largest observed value. The denominator of this index can 
be calculated directly (see Freeman 1979), and equals (g-l)(g -2). Thus, 

CD = 2:1�1 [CD(n') -CD(n,)] (5.5) 
[(g - 1)(g - 2)] 

can be used as an index to determine how centralized the degree of the 
set of actors is. The index is also a measure of the dispersion or range 
of the actor indices, since it compares each actor index to the maximum 
attained value. 

This index reaches its maximum value of 1 when one actor chooses all 
other g -1 actors, and the other actors interact only with this one, central 
actor. This is exactly the situation in a star graph. The index attains 
its minimum value of 0 when all degrees are equal, indicating a regular 
graph (as defined in Chapter 4). This is exactly the situation realized 
in the circle graph. Graphs that are intermediate to these two (such as 
the line graph of Figure 5.1) have indices between 0 and 1, indicating 
varying amounts of centralization of degree. In fact, the line graph has 
a CD = 0.277. 

Another standard statistical summary of the actor degree indices is the 
variance of the degrees, 

S£, = [t(CD(n,l-CD)2] /g, (5.6) 

where CD is the mean actor degree index. The variance is .recommended as 
a group-level index of centrality by Snijders (1981a, 1981b), reflecting the 
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view of H"ivik and Gleditsch (1975) that centralization is synonymous 
with the dispersion or heterogeneity of an actor index. This index attains 
its minimum value of 0 when all degrees are equal or when the graph is 
regular. 

The maximum value of sf, depends on g and the entire set of de
grees. Snijders (198Ia, 1981b) recommends that one normalize sf, by the 
maximum possible variance given the set of degrees actually observed, 
to obtain a dimensionless index. The formulas for undirected graphs are 
complicated; we refer those interested to Snijders (198Ia, 198Ib). The 
formulas for directed graphs are easier to report, and we do so later 
in this chapter when we discuss directional relations. One can also test 
statistically whether a graph is more heterogeneous (with regard to its 
degree distribution) than expected by chance. Tests such as this one will 
be described in general in Chapter l3 .  

Coleman (1964) also recommends the use of sf, as a measure of 
"hierarchization" (similar to centralization). In fact, Coleman goes on 
to suggest that one use a more general function of the degrees for this 
measure; in particular, he chooses the function xlog(x), which yields 
an information- or entropy-based measure of hierarchization, not unlike 
those proposed by Mackenzie (1966b) or Stephenson and Zelen (1989) 
(see below). 

There are simpler group-level degree indices. In fact, recognizing that 
the simplest actor-level index is the degree of the actor, one can take 
the average of the degrees to get the mean degree, CD = I: CD(n,)/g = 
I: x,+/g. This quantity varies between 0 and g -I, so to standardize it, 
one should divide by g-l. This average degree, divided by g -I , is exactly 
the density of the graph: I: CD(n,)/g(g - I) = I: GJ,(n,)/g = ,.,. Thus, 
mathematically, the density is also the average standardized degree. The 
densities of the three graphs in Figure 5.1 are 0.286 (star), 0.333 (circle), 
and 0.286 (line). 

The density of a graph is perhaps the most widely used group-level 
index. It is a recommended measure of group cohesion (see Blau 1977), 
and its use can be traced back at least as far as Kephart (1950) and 
Proctor and Loomis (1951). Bott (1957) used densities to quantify network 
"knittedness," while Barnes (1969b) used them to determine how "close
knit" empirical networks were. It is very important in blockmodels 
and other role-algebraic techniques (see Part IV, particularly Chapter 
10). Density takes on values between 0 (empty graph) and I (complete 
graph), and is the average of the standardized actor degree indices, 
{Ch(n,)), as well as the fraction of possible ties present in the network 
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for the relation under study. Friedkin (1981) studies the use of density as 
a summarization tool in network analysis, and concludes that densities 
can be misleading, especially if the values are small. This result is often 
due to the fact that as group sizes increase, network density decreases if 
actor degrees remain unchanged. Friedkin recommends that both density 
and group size be considered simultaneously, especially if the graph 
shows tendencies toward subgrouping (see Chapter 7). 

The density of a graph is, thus, an overly simplified version of a group
level degree index, constructed by taking the actor degree indices and 
ignoring Freeman's two principles for group-level indices. It is also an 
average. As is quite common in data analysis, averages are sometimes 
difficult to interpret. One also needs information on how dispersed the 
numbers that make up the average are. So, one frequently computes the 
variance of these numbers, and reports it along with the average. We 
therefore recommend the simultaneous use of centralization measures 
such as S� and CD along with average degree and graph density. 

It is important to note, however, that indices such as average degree 
and density are not really centralization measures. As mentioned earlier, 
centralization should quantifY the range or vaIiability of the individ
ual actor indices. Thus, S�, and of course CD are valid centralization 
measures, while the average degree or the graph density, which are 
quantifications of average actor tendencies rather than variability, are 
not. 

Example. Tnrn now to Padgett's network of Florentine families 
and examine the marriage relation. The standardized actor degree cen
tralities are shown in the first column of Table 5.1 (along with other 
actor-centrality and centralization indices which will be discussed later 
in this chapter). These centralities were calculated using UCINET. 

One can see that the Medici family (Og) is the most central family, with 
respect to degree. For this actor, C�(ng) = 0.400, an index considerably 
larger than the next most central actors (Guadagni and Strozzi families), 
with Chin,) =Ch(n15) = 0.267. Six of the families have an index of 
0.200; the remaining seven families have small indices. The group-level 
degree centralization index is CD = 0.267, a rather small value, indicating 
that the difference between the largest and smallest actor-level indices 
is not very great. There is little variability. The average degree is 
CD = 40/16 = 2.50, quite small, but not surprising given the nature 
of the relation (marital ties, something not particularly common). We 
also note that the variance of the degrees (not the standardized actor 
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Table 5.1. Centrality indices for Padgett's Florentine families (. Actor and 
centralization indices calculated by dropping n12 = Pucci from the actor 
set.) 

With g = 16 actors With g = 15 actors 

C1(nd C�(ni) C�(nil* C�(na· C�{nd· C;(nd* 
Acciaiuoli 0.067 0.000 0.071 0.368 0.000 0.049 
Albizzi 0.200 0.184 0.214 0.483 0.212 0.074 
Barbadori 0.133 0.081 0.143 0.438 0.093 0.068 
Bischeri 0.200 0.090 0.214 0.400 0.104 0.074 
Castellani 0.200 0.048 0.214 0.389 0.055 0.070 
Ginori 0.067 0.000 0.071 0.333 0.000 0.043 
Guadagni 0.267 0.221 0.286 0.467 0.255 0.081 
Lamberteschi 0.067 0.000 0.071 0.326 0.000 0.043 
Medici 0.400 0.452 0.429 0.560 0.522 0.095 
Pazzi 0.067 0.000 0.071 0.286 0.000 0.033 
Peruzzi 0.200 0.019 0.214 0.368 0.022 0.069 
Pucci 0.000 0.000 - - - -
Ridolfi 0.200 0.098 0.214 0.500 0.114 0.080 
Salvati 0.133 0.124 0.143 0.389 0.143 0.050 
Strozzi 0.267 0.089 0.286 0.438 0.103 0.070 
Tornabuoni 0.200 0.079 0.214 0.483 0.092 0.080 

Centralization 0.267 0.383 0.257 0.322 0.437 -

degree centrality indices) S� = 2.125, and the density of this relation 
(which is the average standardized degree) is 0.167, indicating (as noted) 
a relatively sparse sociomatrix. The density of this relation is quite a bit 
less than that for the three hypothetical graphs in Figure 5.1, for instance. 

5.2.2 Closeness Centrality 

The second view of actor centrality is based on closeness or distance. The 
measure focuses on how close an actor is to all the other actors in the 
set of actors. The idea is that an actor is central if it can quickly interact 
with all others. In the context of a communication relation, such actors 
need not rely on other actors for the relaying of information, an idea 
put forth by Bavelas (1950) and Leavitt (1951). As noted by Beauchamp 
( 1965), actors occupying central locations with respect to closeness can 
be very productive in communicating information to the other actors. If 
the actors in the set of actors are engaged in problem solving, and the 
focus is on communication links, efficient solutions occur when one actor 
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has very short communication paths to the others. Thus, this closeness 
view of centrality relies heavily on economic considerations. 

Hakimi (1965) and Sabidussi (1966) quantified thls notion that cen
tral actors are close, by stating that central nodes in a network have 
"minimum steps" when relating to all other nodes; hence, the geodesics, 
or shortest paths, linking the central nodes to the other nodes must be 
as short as possible. With this explanation, researchers began equating 
closeness with minimum distance. The idea is that centrality is inversely 
related to distance. As a node grows farther apart in distance from other 
nodes, its centrality will decrease, since there will be more lines in the 
geodesics linking that node to the other nodes. 

Examine the star network in Figure 5.1. The node at the center of thls 
star is adjacent to all the other nodes, has the shortest possible paths to 
all the other actors, and hence has maximum closeness. There is exactly 
one actor who can reach all the other actors in a minimum number .of 
steps. This actor need not rely on the other actors for its interactions, 
since it is tied to all others. 

Actor Closeness Centrality. Actor centrality measures reflecting 

how close an actor is to the other actors in the network have been de
veloped by Bavelas (1950), Harary (1959c), Beauchamp (1965), Sabidussi 
(1966), Moxley and Moxley (1974), and Rogers (1974). As reviewed 
by Freeman (1979), the simplest measure is that of Sabidussi (1966), 
who proposed that actor closeness should be measured as a function of 
geodesic distances. As mentioned above, as geodesics increase in length, 
the centrality of the actors involved should decrease; consequently, dis
tances, which measure the length of geodesics, will have to be weighted 
inversely to arrive at Sabidllssi's index. Note how this type of centrality 
depends not only on direct ties, but also on indirect ties, especially when 
any two actors are not adjacent. 

We let din"� nj) be the number of lines in the geodesic linking actors 
i and j; that is, as defined in Chapter 4, d(., .) is a distance function. 
The total distance that i is from all other actors is I:J�l din"� n j), where 
the sum is taken over all j of i. Thus, Sabidussi's (1966) index of actor 
closeness is 

g �1 
Cdn,) = [Ld(n,. n)] 

J=l 
(5.7) 

The subscript C is for "closeness." As one can see, the index is simply the 
inverse of the sum of the distances from actor i to all the other actors. 
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At a maximum, the index equals (g - 1)-1, which arises when the actor is 
adjacent to all other actors. At a minimum, the index attains the value of 
o in its limit, which arises whenever one or more actors are not reachable 
from the actor in question. A node is said to be reachable from another 
node if there is a path linking the two nodes; otherwise, the nodes are 
not reachable from each other. Thus, the index is only meaningful for a 
connected graph. 

To verify this assertion, suppose that the graph is disconnected -
specifically, let there be one isolated node, with degree O. The geodesics 
from all the other nodes to this specific node (nk) are infinitely long 
(d(n" nd = 00 for all i '" k), since the node is not reachable. Hence, the 
distance sum for every actor is 00, and the actor closeness indices are all 
O. This is a large drawback of this index. 

As we have noted, the maximum value attained by this index depends 
on g; thus, comparisons of values across networks of different sizes are 
difficult. Beauchamp (1965) made the suggestion of standardizing the 
indices so that the maximum value equals unity. To do this, we simply 
multiply Cc(n,) by g - 1 :  

g - 1  
[ I:)�1 d(n" nj)j 

= (g - I)Cc(n,). (5.8) 

This standardized index ranges between 0 and 1, and can be viewed as 
the inverse average distance between actor i and all the other actors. It 
equals unity when the actor is adjacent to all other actors; that is, when 
the actor is maximally close to all other actors. 

Graph theorists have simplified this concept of centrality, and talked 
about the center of a graph, using the graph-theoretic notion of distance 
(see Chapter 4). Specifically, the Jordan center (see Jordan 1869) of a 
graph is the subset of nodes that have the smallest maximum distance 
to all other nodes. To find such a center, one can take a g x g matrix 
of geodesic distances between pairs of nodes (where the entries are the 
lengths of the shortest paths or geodesics between all pairs of nodes), 
and then find the largest entry in each row. These distances (which are 
sometimes called eccentricities) are the maximum distances from every 
actor to their fellow actors. One then simply finds the smallest of these 
maximum distances. All nodes that have this smallest maximum distance 
are part of the center of the graph. 

A related notion is the centroid of a graph (see Sylvester 1882), which 
is based on the degrees of the nodes and which is most appropriate 
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for graphs that are trees. The idea is to consider all branches or paths 
emanating from each node, and define the weight of each branch as the 
number of lines in it. The weight of a node is the maximum weight of 
any branch at the node. The centroid is thus the snbset of all nodes that 
have the smallest weight. 

All the graphs in Figure 5.1 are connected, so that all geodesic distances 
are finite; therefore, the closeness indices can be calculated. For the 
star graph, Ci;(n,) = 1.0, while the other actors all have indices equal 
to 0.545. For the circle graph, the actor indices are all equal to 0.5. 
For the line graph, the indices vary from Ci;(nll = 0.50 to a low of 
CC(n6) = CC(n7) = 0.286. 

We note that there are clever algorithms for finding the geodesics in 
a graph, and then computing their lengths. We refer the reader to (for 
example) Flament (1963), and Harary, Norman, and Cartwright (1965). 
Such algorithms are standard in network computing programs such as 
UCINET and SNAPS (see Appendix A). 

Group Closeness Centralization. We now consider how to mea
sure group centralization using actor closeness centralities. We first report 
Freeman's (1979) index, which uses the general graph centralization in
dex, (5.1), given above. We then will consider alternative group closeness 
indices. 

Freeman's general group closeness index is based on the standardized 
actor closeness centralities, shown in equation (5.8). This index has 
numerator 

g 
2)Cc(nO) - Cc(n,)], 
i=l 

where C�(nO) is the largest standardized actor closeness in the set of ac
tors. Freeman shows that the maximum possible value for the numerator 
is [(g - 2)(g - 1)]/(2g - 3), so that the index of group closeness is 

Cc = 

L:f-l [Cc(nO) - Cc(n,)] 
[(g - 2)(g - 1)]/(2g - 3) · 

(5.9) 

This index, as with the group degree centralization index, reaches its 
maximum value of unity when one actor "chooses" all other g - 1 actors 
(that is, has geodesics of length 1 to all the other actors), and the other 
actors have geodesics of length 2 to the remaining (g - 2) actors. This is 
exactly the situation realized by a star graph. The proof of this fact is 
rather complicated, and must be done by induction. We refer the reader 
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to Freeman (1979). The index can attain its minimum value of 0 when 
the lengths of geodesics are all equal, for example in a complete graph 
or in a circle graph. For the line graph of Figure 5.1, the index equals 
0.277, a relatively small value. 

Bolland (1988) proposes a measure (for both actors and groups) that 
utilizes both degree and doseness of actors. His "continuing flow" 
centrality index is based on the number of paths (of any length) that 
originate with each actor. Thns, the measure considers all paths, those of 
length 1 (that are the focus of CD) and those indirect (whose distances 
are reflected in the magnitude of Cc). We discuss this measure in more 
detail at the end of this chapter. 

There are other group�level closeness indices. We filay simply sum
marize the set of g actor-level closeness centralities {CC(ni)} by a single 
statistic, reflecting the tendency toward closeness manifested by all the 
actors in the set of actors. Such a statistic, to be an effective index, should 
reach its extremes in the cases of the circle graph (equal distances), and 
the star graph (one minimally distant actor). 

We recommend that one calculate the variance of the standardized 
actor closeness indices, 

s� = [t(Cc(ni) -cd] /g, (5.10) 

which summarizes the heterogeneity among the {CC(ni)} . We note that 
average normed closeness, Cc = 2: C(,(ni)/g, is simply the mean of 
the actor-level closeness centralities. The variance attains its minimum 
value of 0 in a network with equal actor indices (in this case, equal 
distances between all nodes). Such a network need not be complete 
(have maximal degree). This index grows as the network becomes less 
homogeneous (with respect to distances), and thus more centralized. The 
average normed closeness, Ce, together with S1:, provide simple summary 
statistics for the entire set of actor closeness indices. 

The Example Again. Consider again Padgett's network data, dis
cussed earlier. Actor n12 = Pucci (as can be seen from the actor degree 
centrality value of Cn(n12) = 0) is an isolate. Consequently, the distances 
to this actor from all other actors are infinite, and thus, family Pucci is 
not reachable and the graph is not connected. Actor closeness centrality 
indices are then also infinite, and cannot be calculated. 

Thus, we dropped family Pucci from the set of actors, giving us a 

smaller network of g -1 = 15 families, but now we have (for the purpose 
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of demonstrating the calculations of closeness centralities) a connected 
graph. The actor centralities and centralization indices calculated for this 
smaller network are shown in Table 5.1 and are indexed with asterisks 
to distinguish them from indices calculated for the full set of actors. The 
actor closeness centralities are shown in Column 4, while the actor degree 
centralities for the smaller set of actors (sans family Pucci) are shown 
in Column 3. Once again family Medici is the most central actor, but 
several families are almost as central: Albizzi, Guadagni, Ridolfi, and 
Tornabuoni. 

Note that family Strozzi, which had a rather large actor degree central
ity index, has a relatively small actor closeness centrality index. Strozzi 
has apparently married into a moderately large number of other families, 
but is not particularly close to the other families; that is, there are many 
"steps" in the marital linkages from Strozzi to the others. 

The closeness indices are much larger than the degree indices, and 
none of the families have small values. Families Acciaiuoli, Ginori, 
Lamberteschi, and Pazzi are still the least central. These indices also 
vary less than the degree indices (from 0.326 to 0.560, as opposed to 
0.071 to 0.429 for degree centralities), indicating a much more uniform 
spread of closenesses. The closeness centralization index is Cc = 0.322, 
calculated for the smaller network, and the average closeness centrality 
and variance are Cc = 0.415 and s1: = 0.0056. This is a small variance, 
indicating once again the small range of the actor closeness centralities. 

5.2.3 Betweenness Centrality 

Interactions between two nonadjacent actors might depend on the other 
actors in the set of actors, especially the actors who lie on the paths be
tween the two. These "other actors" potentially might have some control 
over the interactions between the two nonadjacent actors. Consider now 
whether a particular actor might be able to control interactions between 
pairs of other actors in the network. For example, if the geodesic between 
actors n, and n3 is n,nln4n3 - that is, the shortest path between these 
actors has to go "through" two other actors, nl and n4 - then we could 
say that the two actors contained in the geodesic might have control 
over the interaction between n2 and n3. Glance again at our star network 
in Figure 5.1, and note that the most central actor lies on all fifteen 
geodesics linking the other six actors. This "actor in the middle," the one 
between the others, has some control over paths in the graph. A look at 
the line network in Figure 5.1 shows that the actors in the middle of this 



5.2 Nondirectional Relations 189 

graph might have control over some of the paths, while those at the edge 
might not. Or, one could state that the "actors in the middle" have more 
"interpersonal influence" on the others (see Freeman 1979, or Friedkin 
1991). 

The important idea here is that an actor is central if it lies between 
other actors on their geodesics, implying that to have a large "between
ness" centrality, the actor must be between many of the actors via their 
geodesics. 

Several early centrality researchers recognized the strategic importance 
of locations on geodesics. Both Bavelas (1948) and Shaw (1954) sug
gested that actors located on many geodesics are indeed central to the 
network, while Shimbel (1953) and Cohn and Marriott (1958) noted that 
such central actors play important roles in the network. None of these 
researchers, however, were able to quantify this notion of betweenness. 
It took roughly twenty years, however, until Anthonisse (1971), and later 
Freeman (1977) and Pitts (1979), suggested that the the locations of 
actors on geodesics be examined. 

Actor Betweenness Centrality. Let us simply quote from Shimbel 
(1953), reiterated by Pitts (1979), who stated the importance of geodesics 
and the actors they contain for measuring betweenness and network 
control: 

Suppose that in order for [actor] i to contact [actor] j, [actor] k must 
be used as an intermediate station. [Actor] k in such a network has 
a certain "responsibility" to [actors] i and j. If we count all of the 
minimum paths which pass through [actor] k, then we have a measure 
of the "stress" which [actor] k must undergo during the activity of the 
network. (page 507) 

Here, actors who have sufficient stress also possess betweenness, accord
ing to this rather political view of network flows. 

Specifically, one shonld first count the number of geodesics linking 
actors j and k (all these geodesics will be of the same length, d(nj, nd), 
and then determine how many of these geodesics contain actor i, for all 
distinct indices i, j, k. Shimbel goes on to state that 

A vector giving this [count of minimum paths] for each [actor] of the 
network would give us a good idea of the stress conditions throughout 
the system. (page 507; emphasis is ours) 

Shaw (1954) was the first to recognize that this stress was also be
tweenness, noting that, in the case of a communication relation where 
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actors could not form new lines, central actors could refuse to pass along 
messages. Anthonisse (1971) and Freeman (1977) first quantified this 
idea. 

We want to consider the probability that a "communication," or simply 
a path, from actor j to actor k takes a particular route. We assume that 
lines have equal weight, and that communications will travel along the 
shortest route (regardless of the actors along the route). Since we are 
just considering shortest paths, we assume that such a communication 
follows one of the geodesics. When there is more than one geodesic 
between j and k, all geodesics are equally likely to be used. Freeman 
estimates this probability as follows: Let gjk be the number of geodesics 
linking the two actors. Then, if all these geodesics are equally likely to be 
chosen for the path, the probability of the communication using any one 
of them is simply l/gjk. We also consider the probability that a distinct 
actor, i, is "involved" in the communication between the two actors. We 
let gjk(n,) be the number of geodesics linking the two act'lTS that contain 
actor i. Freeman then estimates this probability by gjk(n,)/gj" making 
the critical assumption that geodesics are equally likely to be chosen for 
this path. (We comment on this assumption later in the chapter.) 

The actor betweenness index for n, is simply the sum of these estimated 
probabilities over all pairs of actors not including the ith actor: 

CB(n;) = :L:.>jk(n,)/gjk (5. 1 1 ) 
j<k 

for i distinct from j and k. So, this index, which counts how "between" 
each of the actors is, is a sum of probabilities. It has a minimum of 
zero, attained when n, falls on no geodesics. Its maximum is clearly 
(g - 1)(g -2)/2, which is the number of pairs of actors not including n,. 
The index reaches the maximum when the ith actor falls on all geodesics. 
Since the index's values depend on g, we standardize it just like the other . 
actor centrality indices: 

C�(ni) = CB(n,)/[(g - 1)(g - 2)/2] . (5.12) 

Standardized in this way, it now takes on values between 0 and 1, and 
can easily be compared to the other actor indices, as well as across 
networks and relations. Unlike the closeness indices, these betweenness 
indices {C�(n;)} can be computed even if the graph is not connected. This 
is certainly an advantage. As with our other actor indices, algorithms for 
first finding the geodesics in a graph, and then counting how many of 
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them contain each of the actors, are available, and are implemented in 
network computer programs such as UCINET. 

The quantities summed on the right-hand side of equation (5.11) are 
discussed in more detail in Freeman (1980a). Specifically, if we sum 
the gjk (n,)/gjk estimated probabilities over k, we obtain measures of the 
pair-dependency of actor j on actor i. These values, which can also 
be viewed as indices of how much "gatekeeping" n, does for nj, are 
crucial components of both the {CB(nj)) and the {Cc(nj)). Gatekeeping 
of one actor for another is simply the act of being on geodesics from 
the latter actor to all other actors, regardless of where the geodesics are 
going. Actors on whom others are "locally dependent" are central in 
the network. One can measure the level of gatekeeping for every pair 
of actors in the network, focusing on how much gatekeeping the second 
actor does for the first. 

Returning again to the graphs of Figure 5.1, we find that for the 
star graph, C�(n, ) = 1.0, while C�(n2) = . . .  = C�(n7) = O. This is an 
idealized situation, since only actor 1 lies on any of the geodesics. The 
actor betweenness indices in the circle graph are all equal to 0.2, and 
for the line graph, vary from C],(nl) = 0.6 to C�(n6) = C�(m) = O. 
In this last graph, actors n, and n3 are almost as central as n1. since 
C�(n2) = C�(n3) = 0.533. 

Group Betweenness Centralization. Group centralization indicies 
based on betweenness allow a researcher to compare different networks 
with respect to the heterogeneity of the betweenness of the members of 
the networks. We first report Freeman's (1979) index for quantifying the 
overall level of betweenness in the set of actors, which summarizes the 
actor betweenness indices given in equation (5.11). 

Freeman's group betweenness centralization index has numerator 
I:;�l [CB(n') - CB(n,)], where CB(n') is the largest realized actor between
ness index for the set of actors. The reason for using the nonstandardized 
indices rather than the standardized ones (see equation (5.12)) will fol
low. Freeman shows that the maximum possible value for this Sum is 
(g - 1)'(g - 2)/2, so that the index of group betweenness is 

CB = 
2 I:f-l [CB(n') - CB(n,)] 

[(g - 1)2(g . 2)] 
(5.13) 

Freeman (1979) shows that this simplifies to the index given in Freeman 
(1977) : 
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C _ 2:f-1 [C�(n') - C�(ni)l . B - (g - l) 
, (5.14) 

that is, the calculation can also be made equivalently with the standard
ized indices. Freeman (1977) also demonstrates that the index reaches its 
maximum value (unity) for the star graph. Its minimum value (0) occurs 
when all actors have exactly the same actor betweenness index - that 
is, in a network in which all actors are equal in betweenness. The line 
graph of Figure 5.1 has CB = 0.311 .  

There are additional group-level betweenness indices, for example the 
variance of the actor-level betweenness indices. Such centralization in
dices provide additional summaries of the heterogeneity or variability of 
betweenness in the entire set of actors. 

The Example, Once Again. Actor betweenness centralities are 
given for Padgett's Florentine families and the marriage relation in Ta
ble 5.1, Columns 2 and 5. The second column gives the betweenness 
centralities calculated for the network consisting of all actors, and the 
fifth column, for the network without the Pucci family. Note how many 
actors have 0 indices - families Acciaiuoli, Ginori, Lamberteschi, Pazzi, 
and of course Pucci - the same actors that had the smallest actor close
ness centrality indices. The betweenness indices allow the Medici family, 
and, to a lesser extent, the Guadagni family, to stand out, just as with 
the actor degree centralities. 

Clearly, families Medici and (perhaps) Guadagni are the most central 
families in this set of actors on this marital relation. The betweenness 
centralization index is CB = 0.437, larger than the other centralization 
indices, reflecting the fact that the Medici family is much more central 
than any of the other families. 

Note how these betweenness indices compare to the other two actor 
centrality indices. Some actors with moderately large closeness and 
degree scores have small betweenness indices - families Barbadori and ' 
especially Tornabuoni. Family Strozzi, which has a large degree index; has 
a small betweenness index. Such differences indicate that the betweenness 
indices can be quite different measures of actor centrality than degree
and closeness-based indices. 

5.2.4 ®Injormation Centrality 

Of all these indices, Freeman's centrality measure based on betweenness 
of actors on geodesics has found the most use, because of its general-
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ity. But. this index assumes that all geodesics are equally likely when 
estimating the critical probability that an actor falls on a particular 
geodesic. That is, if there are gij geodesics between actors i and j, then 
the probability that a particular geodesic is "chosen" for the "flow of 
information" between these two actors is simply l/gij. While this is a 
justifiable assumption for some purposes, it may not be appropriate here. 

Suppose we focus on the actors "contained" in these geodesics. Free
man ignores the fact that if some actors on the geodesics have large 
degrees, then the geodesics containing these expansive actors are more 
likely to be used as shortest paths than other geodesics. That is, if an 
actor has a degree of, say, 10, and this actor is on a geodesic, then 
this actor is more likely than actors with smaller degrees to be on other 
geodesics, simply because of its expansiveness. Freeman's assumption is 
reasonable only if all actors have equal degrees. For such regular graphs, 
it is not unreasonable to assume that all geodesics between a pair of 
nodes are equally likely to be "used" for a path. Relaxing this assump
tion is difficult, and requires a more sophisticated statistical model that 
allows for unequal probabilities. 

A second, more important generalization can also be considered. Free
man, in considering betweenness counts, focuses only on geodesics. That 
is, paths with distances greater than the minimum path length attained 
by the geodesics are ignored. Substantively, this might not be realistic. 
For example, if we consider communication relations, there may be good 
reasons for actors to choose paths for their communications that are 
longer than the geodesics. We quote: 

It is quite possible that information will take a more circuitous route 
either by random communication or [by being] channeled through many 
intermediaries in order to "hide" or "shield" information. (Stephenson 
and Zelen 1989, page 3) 

So, it may make sense to generalize the notion of betweenness centrality 
so all paths between actors, with weights depending on their lengths, are 
considered when calcnlating betweenness counts. 

The index of centrality developed by Stephenson and Zelen (1989) 
does exactly this. One considers the combined path from one actor to 
another, by taking all paths, including the geodesics, and assigning them 
weights. A weighted function of this combined path is then calcnlated, 
using as weights the inverses of the lengths of the paths being combined. 
The weights assigned to the paths making up the combined path are 
determined so that the "information" in the combined path is maximized. 
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Geodesics are usually given weights of unity, while paths with lengths 
longer than the geodesic length receive smaller weights based on the 
i�formation that they contain. The information of a path is defined quite 
simply as the inverse of its length. 

Mackenzie (1966b) was the first to propose the use of information 
theory for the study of centrality, particularly in commnication networks. 
He defined a "Total Participation Index" for actors in a network, but his 
rather mathematical presentation has prevented wider adoption of the 
idea. Bolland's (1988) index of continuing flow also considers all paths 
originating with each actor, but does not consider betweenness counts. 

The concept of information is quite old, and has a rich tradition in 
statistics (Shannon and Weaver 1949; Khinchin 1957; Kullback 1959 ; 
Gokhale and Kullback 19n; see also Coleman 1964; Theil 1967; and 
Allison 1978, for applications in economics and sociology). It is used 
extensively in estimation theory and categorical data analysis. Informa
tion is usually defined as the inverse of the variance of an estimator. If 
an estimator has a small variance, it has large information, and thus is 
considered "good." The opposite is also true: poor estimators with large 
variances have little information. We can apply this approach to central
ity by extending betweenness on geodesics to all possible paths, weighting 
according to the information that these paths contain. The betweenness 
counts are then generalized to reflect the information contained in all 
paths. 

Stephenson and Zelen (1989) give a nice discussion of the use of 
information in statistical estimation as applied to the paths between 

nodes in a graph. In brief, the length of any path is directly related to 
the variance of transmitting a signal from one node to another; thus, the 
information contained in this path is the reciprocal of this variance. Thus, 
any path (and hence, each and every combined path) has an "information 
content." Lastly, the information of a node is the harmonic average of 
the information for the combined paths from the node to all other nodes. 

Actor Information Centrality. This version of centrality focuses 
on the information contained in all paths originating with a specific actor. 
The information of an actor averages the information in these paths, 
which, in turn, is inversely related to the variance in the transmission of 
a signal from one actor to another. 

To calculate information centrality indices, Stephenson and Zelen rec
ognized that the information contained in an incidence matrix (see Chap
ter 4), which codes the nodes and the links between them, is exactly the 
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same as the information contained in the data vector and incidence ma

trix for an incomplete block design with two treatments per block (see 

Cochran and Cox 1957). This exact equality allowed Stephenson and 

Zelen to adopt a statistical model, common in the statistical design of 
experiments (see St. John and Draper 1975; Box, Hunter, and Hunter 

1978; Silvey 1981), designed for such incomplete block designs. The 

model focuses on all the "signals" flowing between all pairs of nodes 

("r pairs of rows of the incidence matrix). One estimates the strengths 

of these signals, and calculates their variances. If Vjk is the variance of 

the estimate of the signal for the path linking nodes nj and n" then the 

information associated with this path is simply I/Vjk. The information 

for an actor is a function of all the information for paths flowing out 

from the actor. The chosen function is the harmonic average. We refer 

the reader to the appendix of Stephenson and Zelen (1989) for more 

mathematical details. 
To apply this idea to graphs, the actor information indices are functions 

of a simple g x g matrix. We give the most general formulation of 

the index, which assumes that the relation is nondirectional, but not 

necessarily dichotomous. A crucial component of the formula is the sum 

of the strengths or values for the lines incident with a node. This sum is 
simply a row total (or column total) of the sociomatrix. The sum is the 
degree of a node when the measured relation is dichotomous, or the sum 
of the strengths of all ties incident to a node when the relation is valued. 

The calculation begins as follows. One first creates a g x g matrix A, 
which has diagonal elements 

a" = 1 + sum of values for all lines incident to n, 

and off-diagonal elements 

aij = { I 
I - Xij 

if nodes n, and nj are not adjacent 

if nodes n, and nj are adjacent. 

(5.15) 

(5.16) 

As usual, xij is the value of the tie between actors i and j, so that 
the elements of A are easily calculated from the sociomatrix. One next 

calculates the inverse of A: C = A-I, which has elements {cij}. 
We should note that not every A matrix can be inverted. In fact, if the 

sociomatrix has one (or more) rows (and hence columns) full of zeros, 

the corresponding C is not defined. In this instance, actor information 

centralities cannot be computed. We recommend that the actors who are 

isolates be dropped from the set of actors, and indices calculated just for 

the non-isolates. 
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To get the information indices, one needs two intermediate quantities. 
These are sums of elements of C: T = 2:f�1 eii and R = 2:5�1 cij' T is 
simply the trace or the sum of the diagonal entries of the matrix, while 
R is any one of the row sums (all the row sums are equal). With these 
two quantities, and the elements of C, one lastly calculates 

1 
Cl (n;) = -�=-,,--� C" + (T - 2R)/g 

as the information centrality index for actor i. 

(5.17) 

This index measures how much information is contained in the paths 
that originate (and end) at a specific actor. The index has a minimum 
value of 0, but no maximum value; indeed, if T = 2R, and Cji = 0, the 
index would equal 00. Stephenson and Zelen (1989) recommend that One 
use relative information indices, obtained by dividing each index Cl(ni) 

by the total of all indices : 

, Cl(n;) 
Cl(ni) = 2:i Cl (ni) ' (5.18) 

The relative information indices, {C;(niJ}, are bounded by 0 and 1, and 
sum to unity. These indices can be interpreted as the proportion of total 
"information" flow in a graph controlled by an individual actor. The 
constraint that the indices sum to unity is unique to this index, and 
makes comparisons with the other actor-level centrality indices difficult. 
Necessary calculations are not complicated, and involve manipulations of 
the sociomatrix, and then a single matrix inversion. One can "program" 
them with SAS PROC IML or GAUSS. 

Return once again to the graphs of Figure 5.1. We find that for 
the star graph, C;(nIl = 0.2340, while C;(n2) = . . .  = C�(n7) = 0.1277. 
Notice that even though only node nl lies on any of the geodesics, the 
information centralities for the other six nodes are not zero. The actor 
information indices in the circle graph are all equal to 0.1429, and for the 
line graph, vary from C;(nl) = 0.1822 to q(n,) = C�(n7) = 0.1041. In 
this last graph, nodes n2 and n3 are almost as central as nl, since C�(n2) = 
C�(n3) = 0.1682. Remember that the actor information centralities are 
normed differently from the other actor centralities � they must sum to 
unity, so that if one actor has a large index, the other actors must have 
smaller indices. 

Use of this information index has been limited. Stephenson (1989) 
and Stephenson and Zelen (1989) apply this methodology to networks of 
baboons, while Stephenson (1989) and Frey (1989) use this index (and 
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others) to study a network of forty AIDS patients, linked by sexual 

contact (Auerbach, Darrow, Jaffe, and Curran 1984; Klovdahl 1985; see 

also Laumann, Gagnon, Michaels, Michael, and Coleman 1989; Morris 

1989, 1990). Marsden (1990b) has used information indices in a study 

of the effect of random sampling on estimation of the parameters of the 

network effects or social process model (see Erbring and Young 1979; 
Doreian 198 1 ;  Friedkin 1986, 1990; Marsden 1990a; and Burt 1987). 

Group Information Centralization. The summary group-level in

formation index proposed by Stephenson and Zelen is simply the average 

information across actors : 

(5.19) 

This index has limits that depend on g, unfortunately, and so is difficult to 

compare across networks. As we have mentioned throughout this chapter, 

averages are not centralization indices. A real group-level information 

centralization index is the variance of the actor information indices : 

si = [t(c; (ni) -Cd] /g. (5.20) 

One could also apply Freeman's (1979) general index (5.1) to informa

tion indices, although (to our knowledge) no one has calculated the 

denominator (the maximum possible sum of differences between the ob
served indices and the largest attained index) for a Freeman information 
centralization index. 

For the graphs of Figure 5.1, the variances are 0.001614, 0.000986, and 

0.0, for the star, line, and circle graphs, respectively. Thus, the star graph 

is most heterogeneous, and the circle, the least. 

As mentioned, this information actor-level index of centrality is the 
only index (that we are aware of) that can be applied to valued relations. 
Further, as we have discussed, it generalizes Freeman's widely used 

index of betweenness, since it considers all paths, not just geodesics. 
We comment further on the differences among all the indices discussed 

here at the end of the chapter. Further research and application should 

demonstrate the usefulness of the actor information centrality index 

(5.18). 

Last Look at Padgett's Florentine Families. As we have noted, 

family Pucci is not married to any other families; it is an isolate, and 

consequently, the actor information centralities cannot be calculated 
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because the C matrix cannot be inverted. Thus, we dropped this actor 

from the set of actors, and calculated actor information centralities for 

the other fifteen actors. These indices are shown in Column 6 of Table 5.1. 
It is difficult to compare these indices to the others, since only the 

information centralities are constrained to sum to unity. They must be 

between 0 and 1, just like all the other types of centrality, but are forced 

to be smaller in magnitude because of this constraint. 

The Medici family is still the most central family, although the 

Guadagni, Tornabuoni, and Ridolfi families have indices not much 

smaller than that for Medici. These four families consistently have 

the largest actor centrality indices. The Pazz� Ginori, Lambertesch� and 
Acciaiuoli families are the least central families ; in fact, the ordering of 

the actors with respect to information centrality is almost identical to 

that for betweenness centrality, The main difference between the two 

sets of centralities is the range of values - the range is much smaller 

for information. The variance of the actor information centralities is 

Sf = 0.000297, quite small, reflecting the small range of the values due 

to the unity summation constraint. 
We now turn to indices that can be applied to social network data 

consisting of directional relations. 

5.3 Directional Relations 

In the previous section, we discussed nondirectional relations, and intro

duced four actur-Ievel indices for centrality (and associated centralization 
indices). These indices are: 

(i) Degree - equation (5.3) 

(ii) Closeness - equation (5.8) 

(iii) Betweenness - equation (5.12) 
(iv) Information - equation (5.18) 

We now discuss how these, and other kinds of indices (specifically, those 

designed to measure prestige), can be calculated for directional relations. 

Suppose that we have a single set of actors, and a single, dichotomous 
directional relation. With such data, we can distinguish between "choices 

made" and "choices received." An example of such data that we will 

be analyzing in this section can be found in Chapter 2;  specifically, the 
countries trade network data which show import and export of basic 

manufactured goods among a collection of g=24 countries. These data 

are discussed in some detail in Chapter 2, and will be examined at 
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length in Chapters 9-12. Clearly for these data. imports are substantively 

different from exports, and it is interesting to study which actors are 

important importers and which are significant exporters. To identify 
these important actors on this relation, we will examine both aspects of 

prominence : centrality and prestige. 
As mentioned at the beginning of the chapter, centrality indices for 

directional relations generally focus on choices made, while prestige 

indices generally examine choices received, both direct and indirect. We 

will discuss how to calculate centrality indices for directional relations 

here, but the emphasis in this section will be prestige, and in particular, 

three types of prestige indices. 
We first discuss how the four centrality indices, degree, closeness, 

betweenness, and information, can be extended to directional relations. 

For this extension, we examine actors from the perspective of the choices 

or nominations. that are made. Two of the centrality indices are easily 
applied to directional relations (degree and closeness indices), while the 

other two (betweenness and information), because of their reliance on 

non directed paths and geodesics, are not. 
One can also examine the choices received by actors. This allows us to 

study which actors in the set of actors are prestigious. We will present 

and discuss three types of prestige indices. 

5.3.1 Centrality 

To extend to directional relations the centrality indices based on degree, 

closeness, betweenness, and information, and the group-level indices 

which aggregate the actor-level indices (equations (5.5), (5.9), (5.13), 

(5.19)), we must consider how each is computed and how the network 

properties that are crucial for each are defined for directional relations. 

Degree. An actor index for degree centrality can easily be cal

culated for directional relations. Such indices are meaningful if no 

restrictions, as in a. fixed choice design, are placed on the choices made 

by the actors. Since centrality indices focus on the choices made, we 

take the outdegree of each actor, rather than the degree (which we used 

for nondirectional relations) : eben,) = x,+/(g - 1). A group-level index 

of degree centralization can be calculated as suggested in equation (5.4). 
The denominator of this index when the measured relation is directional 
can be calculated to be (g - lf. These actor and group-level indices have 
exactly the same properties as degree indices for nondirectional relations. 
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Closeness. An actor index for closeness centrality can also be 

calculated for directional relations. Specifically, we define the distances 

between any two actors, as discussed in Chapter 4, as the length of the 

geodesic(s) from n; to nj. With a directed graph, the geodesic(s) from n; 
to nj may not be tbe same as the one(s) from nj to n;, so that d(n;, nj), 
the length of the geodesic(s), may not equal d(nj, n;). These {d(n;,nj)} are 
elements of a g X g distance matrix. 

Actor-level centrality indices for closeness are calculated by taking the 

sum of row i of the distance matrix to obtain the total distance n; is from 

all the other actors, and then dividing by g - 1 (the minimum possible 

total distance). The reciprocal of this ratio gives us an actor-level index 

for closeness. The formula is exactly the same as for nondirectional rela
tions. Specifically, the actor-level closeness centrality index for directional 

relations is 

(5.21) 

This index has exactly the same properties as discussed following equation 

(5.8). A group-level closeness index based on Freeman's general formula 

(5.1) can be obtained using the standardized indices ; however, to Our 
knowledge, no one has calculated the denominator of this index when 

the measured relation is directional. 

One problem with this actor-level centrality index based on closeness 

is that it is not defined unless the digraph is strongly connected (that is, 

if there is a directed path from i to j, for all actors i and j); otherwise, 

some of the {d(n;,nj)} will be co, and equation (5.21) will be undefined. 

The same problem arises with graphs based on nondirectional relations, 

as discussed earlier. One remedy to this problem is to consider only those 

actors that i can reach, ignoring those that are unreachable from i. 
This simple index, C�(n;), can be generalized by considering the in

fluence range of n; as the set of actors who are reachable from n;. This 

set contains all actors who are reachable from i in a finite number of 

steps. This notion is common to graph theory, and is related to an idea 

first used by Lin (1976) to describe the set of actors reachable to n; (see 

below). We define J; as the number of actors in the influence range of 

actor i. This count J; equals the number of actors who are reachable from 
n;. Note that this idea can also be applied to nondirectional relations. 

An "improved" actor-level centrality closeness index considers how 

proximate n; is to the actors in its influence range. We define closeness 
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now by just focusing on distances from actor i to the actors in its influence 

range. We consider the average distance these actors are from n,. This 

average distance, L d(n" nj)/J" where the sum is taken over all actors j 

in the influence range of actor i, is a refined measure of closeness. Note 

that this sum ignores actors who are not reachable from n" so that unlike 

the first closeness centrality measures, it is defined even if the graph is 
not strongly connected. We can define 

• J;/(g - 1) 
Cdn,) = 

L d(n" nj}/J, ' 
(5.22) 

where the summation again is just over those actors in the influence 
range of nj. 

One can see that this index is a ratio of the fraction of the actors in 

the group who are reachable (J,/(g - 1)), to the average distance that 

these actors are from the actor (L d(n" nj)/ J,). This index is quite similar 

to an index for prestige that we discuss in the next section. 

Other. The other two centrality indices for nondirectional rela

tions, based on betweenness and information, were derived using theory 

and algorithms designed specifically for nondirectional relations. Gould 

(1987) has extended the betweenness index to directional relations, by 

considering geodesics between any two actors. Gould shows that the al

gorithm to find actor betweenness indices for nondirectional relations can 

be applied to directional relations, since the basic algorithm automatically 

uses ordered (rather than unordered) pairs of actors. 

The {CB(n,)} indices defined in equation (5.11) are thus calculated 

correctly for both directional and nondirectional relations; however, the 

{C�(n,)} indices defined in equation (5.12) must be multiplied by 2. The 

maximum value for the index is (g - 1)(g - 2), so that these standardized 
scores must be multiplied by a factor of two to be correct (since the 
maximum for nondirectional relations is (g - 1)(g - 2)/2). We note that 

Gould's (1987) extension is based on the assumption that a directional 

relation can be turned into a nondirectional relation by coding all mutual 

dyads as lines and ignoring asymmetric dyads. Thus, there is a line in the 

derived undirected graph between two actors if and only if both actors 

choose each other in the original digraph. 

For an information index, we could consider directed geodesics and 

longer directed paths between actors. All these paths will be directed, 

given the nature of the data. However, we do not know how to gen-
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eralize Stephenson and Zelen's (1989) theory for information indices to 

directional relations. 

Thus, we recommend the use of just two centrality indices, C�(n,), 
and C�(n,) or Cc(n;), for directed graphs. In our later discussions of 

the countries trade network data, we calculate not only actor prestige 

indices, but also these two actor centrality indices. Since choices received 
are usually more interesting than those made, neither of these centrality 

indices is as useful as the measures of prestige that we discuss below. If 

the relation allows one to distinguish between choices made and choices 

received, then the latter, along with prestige indices calculated from them, 

can give important insights into social structure, as we will demonstrate 

with our example. 

5.3.2 Prestige 
With directional relations, choices received are quite interesting to a 

network analyst. Thus, measures of centrality may not be of as much 

concern as measures of prestige. We now discuss several prestige mea

sures, which we will illustrate on the countries trade network data. We 

recommend that both centrality and prestige measures be computed for 
directional relations, since they do attempt to measure different structural 

properties. 

There has been little research on group-level prestige indices. However, 

such measures would certainly be welcome and interesting, since they 
could quantify prestige heterogeneity (and possibly hierarchization or 

network stratification). 

We also note that there has been little work done on applications of 

prestige measures to actual digraphs. For example, it is not known which 

digraphs have maximal group-level prestige indices. More research on 

such important issues is clearly needed. 

Degree Prestige. The simplest actor-level measure of prestige is 

the indegree of each actor, which we denoted by d1(n;) in Chapter 4. The 

idea is that actors who are prestigious tend to receive many nominations 

or choices (see Alexander 1963). So, we define 

(5.23) 

As with the comparable indices based on outdegrees, equation (5.23) is 

dependent upon the group size g; thus, the standardization 
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gives us the proportion of actors who choose actor i, which is sometimes 

called a "relative indegree." The larger this index is, the more prestigious 

is the actor. Maximum prestige occurs when P�(ni) = 1 ;  that is, when 
actor i is chosen by all other actors. This index is quite simple to com

pute, and is usually provided as output from network analysis computer 

packages, such as UCINET. 

Proximity Prestige. This simple index, P�(ni)' counts only actors 

who are adjacent to actor i. One can generalize this index by defining the 
irifluence domain of actor I as the set of actors who are both directly and 
indirectly linked to actor j. Such actors are reachable to i, or alternatively, 

are those from whom i is reachable. Reachability is discussed in Chapter 

4. Thus, the influence domain consists of all actors whose entries in the 

ith column of the distance matrix or the reachability matrix are finite. 

This notion was first used by Lin (1976). We define Ii as the number of 
actors in the influence domain of actor i. This count Ij equals the number 

of actors who can reach actor i. We use the idea of an influence domain 

in the next prestige index. 

A second actor-level index of prestige considers how proximate ni is 

to the actors in its influence domain. We define proximity as closeness 

that focuses on distances to rather than from each actor. In other words, 
what matters now is how close all the actors are to ni. Since the relation 

is directional, such closeness will no doubt differ from the closeness that 

ni is to the other actors. As stressed in Chapter 4, with digraphs, distance 

to a node can be quite different from distance from. 
We consider the average distance these actors are to ni. This average 

distance, ,£ d(nj, ni)/l;, where the sum is taken over all actors j in the 
influence domain of actor i. is a crude measure of proximity. Note that 

it ignores actors who cannot reach ni, so that unlike our closeness and 

information centrality measures, it is defined even if the network is not 

connected (when some aclors are not reachable from other actors). This 

index depends on the size of the group, and is difficult to compare across 

networks. 

But, we can look at the ratio of the proportion of actors who can reach 
i to the average distance these actors are from i. Thus, a better measure 

of proximity takes the average distance, standardizes it, and then takes 

reciprocals. From a suggestion by Lin (1976), we define 



204 Centrality and Prestige 
I,/(g - 1) Pp(n,) = �d(nj, n,)/I, ' (5.25) 

where the summation again is just over those actors in the influence 

domain of n,. One can easily see that this index is a ratio of the fraction 

of the actors in the set of actors who can reach an actor (I,j(g - 1)) to 
the average distance that these actors arc to the actor (� d(nj, n,)/I,). As 

actors who can reach i become closer, on average, then the ratio becomes 

larger. 

This ratio index, based on the average distance actors in an influence 

domain are to i, has the same properties as the centrality index for actor 

closeness (see equation (5.7)). The index weights prestige according to 
closeness or proximity. Note that if all actors are adjacent to ni, then 
all the d(nj, n,) = 1 ,  I, = g - 1, and the average standardized distance 

is simply 1/(g - 1). This gives Pp(n,) = 1 ,  the maximum value of the 

prestige actor proximity index. If an actor is unreachable, then I, = 0, 

and Pp(n,) = O. Thus, the limits of this index are 0 and 1, and the 

magnitude of the index reflects how proximate an actor is from the set of 

actors as a whole. Similar indices were proposed by Mackenzie (1966a) 
and Arney (1973). 

One could easily take the variance of the {Pp(n,J} to obtain a group

level prestige index based on proximity. In addition, the average of 

the actor-level indices can be used to summarize the set of actors as a 

whole. The average is proportional to the average of the reciprocals of 

the average distances to the actors. These two group-level indices are 

and 

g - 2 sf, 
= 

� (Pp(n,) - Pp) 

i=l g 

(5.26) 

(5.27) 

The average will be between 0 and 1. It equals 1 in a complete directed 

graph, and 0 in an empty directed graph. The variance will be positive, 

and measures how much heterogeneity is present in the set of actors, 

with respect to proximity. 

Another index based on proximity was proposed by Harary (1959c), 
who considered not only the prestige of each actor (which he referred 

to as status, defined as the total distance of actor i to all other actors) 

but also the contrastatus of an actor (defined as the total distance to 
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ni of all other actors, not just those in the influence domain). In our 

terminology, these quantities are �j d(ni, nj) (on which the closeness 

indices for centrality are based) and the sum �j d(nj, nil (which, as jllst 

mentioned, is key to the proximity indices for prestige). Using these terms, 

statns (for Harary) is synonymous with actor-level closeness centrality, 

while contrastatus is similar to actor-level proximity prestige. Harary 

defines the net status of an actor as the difference between these two 

sums. The idea of constructing an index for prestige that is a difference 

of two simpler indices was first suggested by Zeleny (1940a, 1940b, 1941, 

1960). Zeleny's sociation index is the difference of the average of the 

overall "intensity" of ties in the group (measured by the density of ties 

in the sociomatrix if the relation is dichotomous) and the number of 
choices made by actor i. Refinements of this idea generate both a social 

status index and a social adjustment index, measured at the level of the 

individual actor. 

These actor and group-level prestige indices based on proximity or 

graph distances to each actor can be useful. Actors are judged to be 

prestigious based on how close or proximate the other actors in the set 

of actors are to them. However, one should simultaneously consider the 

prestige of the actors that are proximate to the actor under study. If 

many prestigious actors "choose" an actor, the actor should be judged 

more prestigious than an actor who is "chosen" only by peripheral actors. 

Thus, one should "weight" the distances used in the proximity indices 

by measures of the prestige of the actors in the influence domain. Seeley 

(1949) was the first to realize this; using children and friendship as Lhe 

network actors and relation under study, he states: 

How should we represent each . . .  child's popularity, as shown by the 
choices, weighting those choices according to the "popularity" of the 
source-of-choice child? (page 234) 

To answer this question, we turn to yet another class of prestige indices. 

®Status or Rank Prestige. Let us now consider a method to 

measure the prestige of the actors in a set of actors based on their status 

or rank within the set of actors. We have described several prestige 

measures that look at indegrees and distance, but none of these reflects 

the prominence of the individual actors who are doing the "choosing." 
We need to combine the numbers of direct "choices" or distances to a 

specific actor, with the status or rank of the actors involved. If one's 

influence domain is full of prestigious actors, one's prestige should also 
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be high. If, however, an actor's domain contains only peripheral, or 

marginally important, actors, then the rank of this actor should be low. 

To quantify this idea requires some sophisticated mathematics. An 

actor's rank depends on the ranks of those who do the choosing; but 

note that the ranks of those who are choosing depend on the ranks of 

the actors who choose them, and so on. As Seeley (1949) goes on to 

state: 

. . .  both "source" and "target" children are the same children, [so] we 
seem to be, and indeed we are, involved in an "infinite regress": [i's 
status1 is a function of the [status] of those who choose him; and their 
[status1 is a function of those who choose them, and so ad infinitum. 
(pages 234-235) 

Seeley (1949) was the first to propose a solution to this problem. His idea 

and solution was also discussed by Katz (1953), Hubbell (1965), Taylor 

(1969), Bonacich ( 1972a, 1972b, 1987), Coleman (1973), Burt (1982), 

Mizruchi, Mariolis, Schwartz, and Mintz (1986), and Tam (1989). We 

discuss this line of research here. We first want to note that researchers 
usually refer to the property under study as "status" (or even "power"); 

however, because of the use of this term in the relational analysis of 

social networks using role algebras (see Part IV), we have chosen to use 

the term "rank" as a synonym for "status." Thus, actors will be said to 

be prestigious with respect to their rank within the set of actors if they 

have large values on the measures described below. 

The simplest way to present the solution to this "infinite regress" 

situation is first to define PR(n,) as the actor-level rank prestige measure 

for actor i within the set of actors. The theory behind prestige as rank 

states that an actor's rank is a function of the ranks of the actors who 

choose the actor. Thus, if we take the ith column of the sociomatrix, 
which contains entries indicating which actors choose n" we can multiply 

these entries by the ranks of the other actors in the set of actors to obtain 
a linear combination measuring the rank of n,: 

(5.28) 

For example, if n2 is chosen by ns and n7, so that XS2 = X72 = 1 and all 

the other g - 2 entries in the second row of the sociomatrix are 0, then 
the rank index for this actor is defined as PR(n2) = PR(ns) + PR(n7)' In 

this example, if actors ns and n7 are of high rank, so will be n2. An actor's 

rank increases if the actor receives choices from high-ranking actors. 
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Thus, mathematically, we have g equations (5.28), all of which depend 

on all the indices themselves, the {PR(n,)}. So, we have a system of g lineal' 

equations with g unknowns. If we take the entire sociomatrix, X, and 

put the set of rank indices into a vector P = (PR(nJ), PR(nl), . . .  , PR(n, »', 
we can easily write this system of equations as 

p = X'p. (5.29) 

Or, rearranging terms, we obtain (I - X')p = 0, where I is the identity 

matrix of dimension g, and P and 0 are vectors of length g. 
This equation is identical to a characteristic equation (used to find the 

eigensystem of a matrix), in which p is an eigenvector of X' corresponding 
to an eigenvalue of 1. One solution to this system is to force X' to have 
such an eigenvalue. Thus, to solve this equation, one must put some 

constraints on either X', or on the indices themselves; otherwise, as first 

noted by Katz (1953), equation (5.29) has no finite solution. In fact, 

many authors, as we will note shortly, have worked on this problem, and 

all their solutions can be categorized based on the exact constraints that 

they place on the sociomatrix or on the system (5.29) itself. 
Katz (1953) recommends that one first standardize the sociomatrix to 

have column sums of unity. The effect of this standardization on the 

system (5.29) is that the system becomes a familiar matrix characteris

tic equation, with a well-known solution. We also recommend Katz's 

normalization. Specifically, one finds the eigenvector associated with the 

largest eigenvalue of the standardized X'. The first eigenvalue of the 

standardized X' will be unity (due to the constraint that the socioma

trix have unity column sums), and the eigenvector associated with this 

eigenvalue will be the vector of rank indices, p. 
As mentioned, the largest eigenvalue will be unity (if not, one has 

made a computation error). Call this eigenvector associated with this 

eigenvalue Pl' Then, the elements of this vector are the actor rank 

prestige indices: 

PI = (PR(nJ), PR(n'), . . .  , PR(ng»'. 

Large rank prestige indices imply that an actor is chosen either by a few 

other actors who have large rank prestige, or by many others with low 

to moderate rank prestige. Remember that an actor's rank is a weighted 

sum of the ranks of those who choose the actor. 

There are refinements of this normalization which we now discuss; 

however, we should note that such refinements are unnecessarily compli

cated. Katz's simple standardization discussed above, and the extracted 
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eigenvector, are easy to interpret ; more intricate refinements give no 

additional explanatory information. Katz (1953) also proposed that one 

introduce an "attenuation parameter" a to adjust for the lower "ef

fectiveness" of longer paths in a network. He begins with the matrix 
aX + a2X2 + . . . + akXk + . . . , which is like an "attenuated number of paths 

between any two nodes" matrix. The system (5.29) is then modified by 
considering the column sums of this matrix (as we discuss below) ; unfor

tunately, the parameter a is unknown, and must be estimated (actually 

guessed) for a given sociomatrix. 

To solve Katz's modification of the system, we must find a vector p 
that solves the new system of equations (which arises from the matrix 

sum mentioned above) 

{ [(II alI - X']p} = x, (5.30) 

where x is the vector of indegrees of the unstandardized X. The difference 

between this modification and the original system (5.29) is the presence 

of the parameter a, and the fact that the system now is equated to 

the indegrees, rather than the zero vector. Katz recommends that the 
reciprocal of the attenuation parameter should be between the largest 

eigenvalue of the unstandardized X, and twice this largest eigenvalue. 

That is, if we define Al as this largest eigenvalue, then Al < (I/a) < 2Al. 

It clearly is advantageous from a computing standpoint to choose (1/ a) 
to be equal to an integer. Given such an a and X, a vector of rank indices 

can easily be computed ; one need only solve the equations of the system 

(5.30). We refer the reader to Katz (1953) for details and an example. 
Taylor (1969) reviews Katz (1953) and Harary (1959c), and concludes 

that one not only needs to standardize the sociomatrix to have column 

sums of unity, but also to have row sums of unity, thereby adjusting 

not only for status but also for contrastatus, as does Harary. Taylor's 

combined measure is derived from an eigenvector of a matrix that has 
both adjustments (but not the eigenvectors associated with the eigen

values of unity, which these matrices are forced to have because of the 

standardizations). Since this index considers both distance to and dis

tance from an actor, as well as the rank of an actor, it can be viewed as 
a combination of rank, closeness, and proximity. It should be clear that 

there is a variety of ways to modify systems such as (5.29). 

Hubbell (1965) and Bonacich (1972a, 1972b, 1987) proposed methods 
for identifying cohesive subgroups of actors (see Chapter 7), and by so 

doing, generalized Seeley's (1949) prestige measure further. Specifically, 

Hubbell, in searching for an "input-output" model for "clique" detection, 
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derives a "status score" for each actor by taking Seeley's (1949) basic 

equation (5.28) and adding a constant for each actor. This constant is 

labeled the "exogenous contribution" of each actor to its own prestige. 

This assumption yields a matrix equation, which, with suitable constraints 

on the entries of the sociomatrix (such as unity column sums), can be 

solved for the vector of indices. Bonacich (1972b) suggests that the 
prestige vector be normed by multiplying it by a single parameter (with 

the best choice being the largest eigenvalue). With this normalization, 

the vector of indices is exactly the eigenvector associated with this largest 

eigenvalue. 

Bonacich (1987), based on his earlier research, proposed a two

parameter family of prestige measures. In addition to the attenuation 
parameter of Katz (1953), which Bonacich calls a dependence parameter 

and denotes by {i, a scale parameter, Q(, is introduced into the system of 

equations. The magnitude of {i reflects the degree to which an actor's 

prestige is a function of the prestige of the actors to whom the actor 

is connected. The relationship is monotonic, and the parameter can be 

negative. Bonacich discusses bargaining situations in which prestige (or 
power, as he refers to it) arises when connections are made to those 

who are powerless. Bonacich gives an example of an exchange network 

from Cook, Emerson, Gilmore, and Yamagishi (1983) that has negative 

dependenoe. The choice of Q( depends on the value chosen for the depen

dence parameter {i. Katz's (1953) single parameter prestige indices take 

Q( = 1 .  Mathematical details, and examples of the use of this family can 

be found in Bonacich (1987). 

Mizruchi, Mariolis, Schwartz, and Mintz (1986) (see also Mizruchi and 

Bunting 1981) focus attention on Bonacich's (1972a, 1972b) measure of 

prestige, and show how his index can be dichotomized as follows: one 

part due to the amount of prestige that an actor gets from another actor 

("derived" prestige), and one due to the prestige that comes back to 

the original actor after being initially sent to the other actor ("reflected" 

prestige). This partition of prestige into derived and reflected parts 

was first suggested by the work of Mintz and Schwartz (1981a, 1981b). 

The goal of this research is to identify hubs, those actors adjacent to 

many peripheral actors, and bridges, those adjacent to few central or 

prestigious actors. We regret this usage of the term "bridge," which is 

usually synonymous with a graph theoretic line-cut (see Chapter 4). Hubs 
have large reflected prestige indices, while bridges have large derived 

prestige indices. This partition of prestige into derived and reflected 

parts was first suggested by the work of Mintz and Schwartz (1981a, 
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1981b). We refer the reader to Mizruchi, Mariolis, Schwartz, and Mintz 

(1986) for substantive interpretations of hubs and bridges. And, we 
refer the reader to Tam (1989) for a detailed mathematical study of the 

relationship between this approach and the more standard actor-level 

prestige indices. 

To our knowledge, the only network computing package that calculates 

these prestige indices based on rank is GRADAP (Sprenger and Stokman 

1989). However, the indices themselves are basically the elements of 

an eigenvector of a matrix based on X. Such eigenvectors are not 
difficult to find, given the available statistical computing packages. We 

discuss this calculation in more detail in our example. Most of the more 

complicated indices are elements of eigenvectors of suitably standardized 
sociomatrices. Thus, all can be calculated using numerical analysis 

packages such as that provided by IMSL and writing short FORTRAN 
computer programs. The IBM-compatible personal computer package 

GAUSS (GAUSS 1988), which contains many basic matrix manipulation 

features, can also do these calculations. 

53.3 A Different Example 

To best understand the use of these centrality and prestige indices, let us 
look at the Countries Trade Network data, and illustrate the calculation 

of the {Pp (ni)) and the {PR(ni)) on these data. As mentioned, we will focus 

on the directional basic manufactured goods trade relation. Remember 

that the (i,j)th entry of the sociomatrix for this trade relation is unity if 

country i exports basic manufacturing goods to country j. Thus, countries 

are central if they export to others, and countries are prestigious if they 

import from other countries. In other words, prestigious actors are those 

with many imports (or those who import from many prestigious actors). 

We first calculated actor degree and closeness centralities for the 

twenty-four countries in this network data set. These indices are shown 

in Table 5.2. The {Cb(n,)} for the entire group are given in the first 

column. Two countries, n14 = Liberia, and n20 = Syria, export no basic 

manufactured goods to any of the other countries, so have zero row sums, 
even though they do import from some of the other countries. Since both 

these countries have zero outdegree, the directed graph representing this 

relation is not strongly or unilaterally connected (it is, however, weakly 
connected), and we cannot calculate closeness indices for the complete 

group. Thus, we dropped these two countries, and recalculated degree 

centralities, as well as closeness centralities for this reduced, but unilat-
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Table 5.2. Centrality indices for the countries trade network ('Actor and 
centralization indices calculated by dropping nt4 = Liberia and n20 = 
Syria from the actor set.) 

With g = 24 actors With g = 22 actors 

C�(nj) C],(n,l" Cc(nd· 

Algeria 0.174 0.190 0.553 
Argentina 0.565 0.619 0.724 
Brazil 0.913 0.905 0.913 
China 0.913 0.905 0.913 
Czechoslovakia 0.913 0.905 0.913 
Ecuador 0.087 0.095 0.525 
Egypt 0.391 0.429 0.636 
Ethiopia 0.087 0.095 0.525 
Finland 0.913 0.952 0.955 
Honduras 0.043 0.048 0.512 
Indonesia 0.609 0.667 0.750 
Israel 0.478 0.524 0.667 
Japan 1.000 1.000 1.000 
Liberia 0.000 - -

Madagascar 0.043 0.048 0.500 
New Zealand 0.478 0.524 0.667 
Pakistan 0.565 0.524 0.667 
Spain 0.957 0.952 0.955 
Switzerland 1.000 1.000 1.000 
Syria 0.000 - -

Thailand 0.609 0.619 0.724 
United Kingdom 0.957 0.952 0.955 
United States 1.000 1.000 1 .000 
Yugoslavia 0.783 0.810 0.840 

erally connected digraph. These indices are shown in Columns 3 and 4 
of Table 5.2. 

Focus your attention on the smaller set of countries, those that export 

(have non-zero outdegrees). There are many "central" exporting coun
tries. In order of decreasing degree centrality (using the smaller group), 

we have Japan, Switzerland, and United States (all with C� = 1.000), 

Finland, Spain, United Kingdom (these three with an index of 0.952), 

Brazil, China, Czechoslovakia (all tied at 0.905), Yugoslavia, Indonesia, 

Thailand, Israel, New Zealand, Pakistan, and so forth. The smallest 

exporters, and hence least central on this index, are Algeria, Ecuador, 

Ethiopia, Honduras, and Madagascar. We have almost exactly the same 

ordering at the top and at the bottom with closeness centrality as with 
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degree centrality. The more developed countries appear to be the most 
central actors. It is remarkable that these two sets of actor indices agree 
so well. 

The centralization indices for the group of 22 are C; = 0.333, and 
Cc = 0.495, neither of which is particularly large, reflecting the uniform 
spread of the indices from the United States, Japan, and Switzerland 
at the top, to Madagascar at the bottom. The closeness centralities 
are larger than the degree centralities, and have a smaller range. The 
variance of the outdegrees is sf, = 71.64, rather large (note that the 
outdegrees have a range of 0 to 23, with a mean of 13.1), so that the 
variance of the normalized actor degree centralities is 0.135. The variance 
of the normalized actor closeness centralities is only S� = 0.0328, much 
smaller than that for the degree indices, indicating more homogeneous 
actor closeness centralities. This homogeneity is probably due to the 
fact that the density of this relation is large (0.626) so that one can get 
from any country to any other country in relatively few steps, giving 
small distances from country to country on average. We also note that 
most countries trade with the "biggest" countries, so that even if the 
smaller countries do not trade with each other, their proximity to the big 
countries implies that the smaller countries are never very far away from 
each other (with respect to paths through the digraph). 

We now turn to the calculation of the prestige indices. These indices 
are shown in Table 5.3. Prestige for these countries and this relation 
is synonymous with high involvement in the importing of basic man
ufactured goods from other countries. The first column contains the 
degree prestige indices for all twenty-four countries, and the second, the 
proximity prestige indices. Notice that even though Liberia and Syria do 
not export in this group (and hence have outdegrees of zero) we are still 
able to calculate the proximity prestige indices. 

As can be seen from equation (5.24), the standardized degree prestige 
indices are simply the relative indegrees, standardized by dividing by their 
maximum possible value, g - 1. Such quantities are standard output from 
most network computer packages. The proximity prestige indices can be 
calculated by first determining the {I;} values, the number of actors who 
can reach actor i, and then dividing these values by g - 1.  This ratio is 
then divided by the average distances of all actors to actor i. Note that 
these average distances use the columns of the sociomatrix, rather than 
the rows (as the actor closeness indices do). In fact, if one transposes 
the sociomatrix, the average distances to an actor become the average 
distances involving the rows. Thus, the closeness centralities, which use 
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Table 5.3. Prestige indices for the countries trade network 

Pb(n;) P�(n,) P�(nj) 

Algeria 0.565 0.661 0.222 
Argentina 0.435 0.599 0.805 
Brazil 0.478 0.619 1.000 
China 0.652 0.710 0.711 
Czechoslovakia 0.565 0.661 0.818 
Ecuador 0.391 0.599 0.183 
Egypt 0.522 0.599 0.482 
Ethiopia 0.435 0.710 0.131 
Finland 0.652 0.590 0.758 
Honduras 0.391 0.581 0.072 
Indonesia 0.609 0.599 0.617 
Israel 0.435 0.599 0.682 
Japan 0.739 0.767 0.680 
Liberia 0.391 0.564 0.000 
Madagascar 0.261 0.532 0.106 
New Zealand 0.609 0.684 0.461 
Pakistan 0.609 0.684 0.525 
Spain 0.739 0.767 0.673 
Switzerland 0.652 0.710 0.765 
Syria 0.522 0.619 0.000 
Thailand 0.652 0.710 0.589 
United Kingdom 0.739 0.767 0.633 
United States 0.783 0.799 0.644 
Yugoslavia 0.652 0.710 0.680 

the average distances from an actor to all other actors, calculated on the 

transposed sociomatrix, are exactly the average distances needed for the 

actor proximity prestige indices. 

For the example, we note that all countries are reachable from all 

countries except Liberia (n14) and Syria (n20). Hence, the influence 

domain for the countries is the reduced group, giving Ii = 21. From 

equation (5.25), note that this gives us a numerator of 21/23 for all 

countries. 

Examining Table 5.3 we see that the degree prestige indices cover 
a relatively narrow range of values, from 0.261 (for Madagascar) to 

0.783 (for United States). Many countries import from almost all the 

other countries, and thus have large degree prestige indices: Spain, 

Japan, United Kingdom, China, Finland, Switzerland, Thailand, and 

Yugoslavia. The countries with the smallest degree prestige indices 

(and hence, few imports) are Argentina, Ecuador, Ethiopia, Honduras, 

Israel, Madagascar, and Liberia. Note that the prestigious countries 
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are similar to the most central, except Thailand and Yugoslavia are 
prestigious, but not terribly central (import more but export less) and 
Brazil and Czechoslovakia are central but not prestigious (export more 
but import less). The least prestigious countries are also the least cen
tral. 

Column 2 of Table 5.1 gives the actor proximity prestige indices, which 
have a much smaller range than those based on degree; in fact, the 
variance of the degree prestige indices is 0.0177, and just 0.0054 for the 
proximity prestige indices. We have exactly the same countries at the 
top and at the very bottom. Note, however, that the smallest proximity 
indices are 0.532 (Madagascar), indicating that even Madagascar is not 
terribly distant from the other countries. This is probably due to the large 
density for this relation; most countries do import from the countries in 
this group. We note that the average actor degree prestige index is 0.562, 
while the average actor proximity prestige index is 0.660. 

Lastly, we turn to the actor status or rank prestige index. We take the 
sociomatrix, normalize it to have column sums of unity (by dividing by 
the indegrees), transpose it, and calculate its eigenvalues. Note that this 
sociomatrix is not symmetric ; hence, the standard routines for extracting 
eigenvalues and eigenvectors, which are designed for symmetric matrices 
(such as covariance and correlation matrices), cannot be used. We used a 
small FORTRAN program, which calls the IMSL routine EVCRG. This 
subroutine extracts eigenvalues and eigenvectors from any real-valued 
matrix. Such quantities can be complex-valued, so care must be taken in 
interpreting the output. 

As mentioned, the largest eigenvalue of the relevant matrix is unity. The 
elements of the eigenvector associated with this eigenvalue are the rank
prestige indices. For the countries' basic manufactured goods relation, 
the indices for the twenty-four countries are shown in Column 3 of 
Table 5.3. These indices are quite different from the other prestige 
indices. The ordering of the countries with respect to rank prestige is 
Brazil, Czechoslovakia, Argentina, Switzerland, Finland, China, Israel, 
Yugoslavia, and then Spain, United States, and United Kingdom. The 
addition of Argentina and Israel to this "prestigious subset" is somewhat 
surprising, since these two countries have small indegrees; but remember, 
what is important here is not how many countries a country is adjacent 
to, but the prestige of these countries. Specifically, prestigious countries 
are those that import goods from nations who in turn import goods. 
Clearly, Brazil, Czechoslovakia, and Argentina are linked directly to 
other prestigious countries. 
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Several authors have compared the performance of the many centrality 

and prestige indices discussed in this chapter, either on real or simulated 

data, or both. Earlier researchers, such as Stogdill (1951), concentrated 

on different measures of actor degrees, thus focusing attention on only 
one centrality index. Most notable of recent comparative research are 
studies by Freeman ( 1979), Freeman, Roeder, and Mulholland (1980), 
Knoke and Burt (1983), Doreian (1986), Bolland (1988), Stephenson and 

Zelen (1989), and Friedkin (1991). We now review these comparisons. 

The first, extensive study of centrality indices was undertaken by 
Freeman (1979). Freeman lists all thirty-four possible graphs with g = 5 
nodes (itemized by Uhlenbeck and Ford 1962), and compares actor- and 
group-level degree, closeness, and betweenness centrality measures across 
the graphs. In brief, Freeman demonstrated that the betweenness indices 

best "captured" the essence of the important actors in the graphs. As 

we have mentioned throughout this chapter, closeness centrality indices 

could not be computed for disconnected graphs, and the star graph 

always attained the largest centralization score, while the circle graph 
attained the smallest centralization. Other, less obvious findings include : 

• The three measures of centrality under review differed noticeably 

in their rankings of the thirty-four graphs. 

• The range of variation in the actor centrality and group central

ization scores is greatest for betweenness; that is, betweenness 
centralities generate the largest actor variances. 

• The range of variation in the actor centrality and group cen

tralization scores is least for degree ; that is, degree centralities 

appear to generate the smallest actor variances. 

Further, the more theoretical nature of the betweenness indices leads 
Freeman to recommend their useage over the other two. 

Freeman, Roeder, and Mulholland (1980) replicated the MIT exper
iments, conducted by Bavelas (1950), Smith (1950), and Leavitt (1951), 
designed to study the effects of the structure of a network on problem 

solving, perception of leadership, and personal satisfaction (the three 
variables measured for each actor). Freeman, Roeder, and Mulholland 

sought to determine which of the three centrality indices (degree, close
ness, and betweenness) was most relevant to the same tasks undertaken 

by the same kinds of networks studied in the earlier experiments. Free

man, Roeder, and Mulholland used four different graphs, all with g = 5, 
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and found that betweenness indices best measured which actor in the set 

of actors was viewed most frequently as a leader. Both the degree and be

tweenness indices were important indicators of group performance (with 

respect to efficiency of problem solving). However, the closeness index 

(based on graph distance) was not even "vaguely related to experimental 

results" (Freeman, Roeder, and Mulholland 1980). 
Knoke and Burt (1983), as part of their classic paper distinguishing 

between centrality and prestige, studied five centrality indices and five 

prestige indices. These indices were calculated for the Galesburg, Illinois, 

physician network studied by Coleman, Katz, and Menzel (1966) to 

identify diffusion of a medical innovation. Within each set of five indices, 

two were based on degree (see equation (5.3)), one on closeness (equation 
(5.8)), and one on either betweenness (for centrality - equation (5.12)) 
or rank (for prestige - equation (5.28)). The five centrality actor-level 

indices were calculated on a symmetrized version of the data (so that the 

graph was nondirected) and the five prestige indices, for the actual data. 

All these indices are output from the computer program STRUCTURE 
(Burt 1989). For the Galesburg network, the correlations among the 
centrality and among the prestige indices were high, as expected. In 

addition, the centrality and prestige indices were also associated. This 

strong association, which Knoke and Burt (1983) study further by using 

additional actor attributes (such as the date that the medical innovation 

was adopted) is described by these researchers as a unique feature of 

the network under study. It is thus difficult to extend these findings to 
general network data. 

Doreian (1986) reviewed the work of Katz (1953), Harary (1959c), 

and Hubbell (1965), and focused on measures of "relative standing" of 

the actors in small networks. He criticized prestige indices based on 

degree or rank as being arbitrary (which is certainly tme of Katz's and 

Hubbell's prestige indices, since there is not natural choice for scaling 

or attenuation parameters). Doreian advocated the use of an "iterated 

Hubbell" index, which converges to a standardized eigenvector of a 

function of a matrix derived from the sociomatrix. The advantage of this 

index is that it produces prestige measures that correspond well to the 

regular equivalences of the actors in the network (see White and Reitz 

1983; and Chapter 12). 

Bolland (1988) studied four centrality measures : degree, closeness, 
betweenness, and a new measure, " continuing flow," which combines 

degree and closeness. Bolland's continuing flow index examines all paths 

of (at most) a fixed length and counts how many of these paths originate 
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with the ith actor. This couut is then standardized, and the fixed length 

allowed to get as large as possible. Unlike the closeness and betweenness 

indices, this index considers all paths of any length, not just geodesics. 

Bolland examined a network data set giving influence relationships 

among forty people involved in educational policy-making in Chillicothe, 

Ohio (see Bolland 1985). In addition to reporting extensive data analyses 
of this network, he conducted a Monte Carlo analysis by adding random 

and systematic variation to the network to obtain a number of "noisy" 

networks. These simulated networks were similar, but not exactly equal 
to, the original data. Each noisy network was replicated one hundred 
times to study the validity, robustness, and sensitivity of each of the four 

centrality indices. 

Bolland's findings supported the earlier work of Freeman (1979). 

Specifically, degree-based measures of centrality are sensitive to small 

changes in network structure. Betweenness-based measures of centrality 

are useful and capable of capturing small changes in the network, but 

are error-prone. Closeness measures are much too sensitive to network 

change. Lastly, Bolland found the continuing flow index to be relatively 

insensitive to systematic variation, and useful in most circumstances. He 
recommends the use of both betweenness and continuing flow indices in 

practice. 

Stephenson and Zelen (1989) compared their information centrality 

index to the other centrality indices using two data sets - the social 

network of forty AIDS patients mentioned earlier and a Gelada ba

boon colony of g = 12 animals, before and after the introduction of 

two additional group members. These latter data, gathered by Dunbar 

and Dunbar (1975), are analyzed longitudinally by Stephenson (1989). 

Stephenson and Zelen conducted the only comparison of the degree, 

closeness, and betweenness centrality measures, with the newer informa

tion index. There are several differences between information centrality 
indices and betweenness centrality indices. Specifically, information in

dices are much more "continuous" than those based on betweenness, 

which really are counts; rather than continuous-valued quantities. Thus, 

information indices can be more sensitive to slight arc changes than 

betweenness indices. Peripheral actors do not have much effect on the 

computed values of betweenness indices, since these actors rarely lie on 

geodesics ; however, such actors can have significant effects in a network 
(especially in networks modeling disease transmission). Information in

dices are much more likely to measure the impact of these peripheral 

actors. Degree centrality indices have a limited ability to distinguish 
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among actors with differing centrality. The range of possible values for 
a degree-based index is quite smail, so that such indices are not very 
sensitive. 

Friedkin (1991) offers a different theoretical foundation for the com
monly used centrality measures based on a social influence process. He 
derives degree, closeness, and betweenness centrality measures by assum

ing that the network effects model (which basically is an application 
of an autoregressive model for spatially distributed actors or units) is 
appropriate. This model has been proposed for use in network analysis 
by Erbring and Young (1979), Doreian (1981), Burt (1987), and Friedkin 
and Johnsen (1990). The three measures are 

(i) Total effects centrality - the total relative effect of an actor on 

the other actors in the network 
(ii) Immediate effects centrality - the rapidity with which an actor's 

total effects are realized 
(iii) Mediative effects centrality - the extent to which particular 

actors have a role in transmitting the total effects of other actors 

Friedkin shows that these measures arise as "side effects" of the network 
process model of social influence. As can be seen by their definitions, 
they are congruent with the degree, closeness, and betweenness actor
centrality indices discussed here. Friedkin's work can be extended to 
directional relations, including real-valued ties, due to the measurement 
generality of the social process model. Such generalizations would yield 
new, theoretical rationales for prestige measures. 

To gain a better understanding about how important a specific actor is 
to a network, one can take an actor with a large betweenness index, and 
drop it from the network (allowing this actor to serve as a "cutpoint"). 
Counting the number of components generated by this deletion will give 
an indication of how much "betweenness" this actor exerts over the 
network. Truly central actors will force many disconnected components 

to arise. Stephenson (1989) does this for the AIDS network, and finds 
that four of the actors in this network, which have large betweenness 
indices, do not "break up" the network when deleted. Betweenness is 
just one - of many - manifestations of the primary centrality concept. 
One should not utilize any single centrality measure. Each has its virtues 
and utility. 

We should note that there is a variety of actor- and group-level degree
based indices that can be calculated and examined when more than one 
relation is measured. For example, one can study how likely it is that an 
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actor chooses another actor on more than one relation. Such an index 
uses the quantities xij(m) = 1 if at least m of the ties XijI, Xij2 • . . .  I XiJR are 
equal to 1. An actor-level multiplex index can be calculated by averaging 
the quantities just over j. A group-level multiplex index can be calculated 
from these quantities, simply by averaging them over all i and j. An 
index based on network cohesion (for each relation) can be based on the 
number of dyads that are mutual. 

With multirelational data, we suggest that the indices described in 
this chapter be calculated for each relation. We do not recommend (as 
some authors have, such as Knoke and Burt 1983) that the relations 
be aggregated into a single sociomatrix, unless there are strong substan
tive reasons for such aggregations (such as two measures of friendship 
combined into a single positive affect relation). Further multirelational 
analyses, designed to measure how similar actors are across relations and 
how associated the relations are, are discussed in Chapter 16. 



6 
Structural Balance and Transitivity 

One of the most important concepts to emerge from the early days of 
social network analysis was balance theory. The early focus in balance 
theory was on the cognition or awareness of sociometric relations, usu
ally positive and negative affect relations such as friendship, liking, or 
disliking, from the perspective of an individual. 

The idea of balance arose in Fritz Heider's (1946) study of an individ
ual's cognition or perception of social situations. Heider focused on a 
single individual and was concerned about how this individual's attitudes 
or opinions coincided with the attitudes or opinions of other "entities" 
or people. The entities could be not only people, but also objects or 
statements for which one might have opinions. He considered ties, which 
were signed, among a pair or a triple of entities. Specifically, Heider 
(1946) states: 

In the case of two entities, a balanced state exists if the [ties] between 
them [are] positive (or negative) in all aspects . . . .  In the case of three 
entities, a balanced state exists if all three possible [ties] are positive in 
all respects, or if two are negative, and one positive. (page 1 10) 

For example, we can consider two individuals, focusing on one of them as 
primary, and their opinions about a statement, such as "'We must protect 
the environment." If both actors are friends, then they should react 
similarly to this statement - either both should oppose the statement 
(and hence, both have a negative opinion about it) or both should favor it 
(and have positive opinions). If either of these holds, there is balance, and 
the primary individual perceives this. If neither result holds, there is no 
balance, and the primary individual perceives this cognitive dissonance. 
With respect to Heider's theory, the opinions are viewed as ties (linking 
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the actor to the statement), which must be consistent (in sign) with the 
positive friendship tie between the two individuals. 

Heider's cognitive balance was soon generalized to structural balance, 
which focuses not on the single individual, but on a set of people or a 
group. With a group, one must consider all people, one at a time. A 
group is structurally balanced, if, when two people like each other (a 
"+" tie in the network), then they are consistent in their evaluation of 
all other people. If i and j "like" each other, then they both either "like" 
or "dislike" the same other people, and if i and j dislike each other, 
then they disagree in their evaluation of all other people. As we will see, 
in a structurally balanced group, the people can be partitioned into two 
subsets in such a way that within subsets all ties are positive and between 

all are negative. 

Graph theory was used by Harary (1953, 1955b) and Cartwright 
and Harary (1956; see also 1979) to mathematically formalize Heider's 
concepts and to quantify the character of balanced network structures. 
As we will discuss, the notion of a graph cycle (defined in Chapter 4) 
becomes crucial in determining how balanced a particular structure is. 

Structural balance has been used in many applications, including the 
study of international relations among nations, where the relations mea
sured are usually political alliances during times of warfare (Young 1971 ; 
Brown 1979). It has also been used to study politicians or community 
elites as actors with positive and negative cooperation as relations (Lau
mann and Pappi 1973; Knoke 1990). The goal in these studies is to exam
ine the social structure, and to look for how much "tension" is present, 
caused by conflicting negative and positive relationships among subsets 
of actors. Balance theory is discussed in most substantively based graph 
theory texts - for example, see Harary, Norman, and Cartwright (1965), 
Leik and Meeker (1975), Roberts (1978), and Hage and Harary (1983, 
1991). Fritz Heider (1944, 1946, 1958; see also the historical review paper 
of 1979), and later Newcomb (1953), Abelson and Rosenberg (1958), 
and Zajonc (1960, 1968), were the first theorists to consider whether 
various arrangements within subgroups of individuals were "balanced" 
with respect to positive and negative affect. Numerous authors in sociol
ogy, social psychology, and anthropology, for example, Evans-Pritchard 
(1929), Homans (1950), Levi-Strauss (1949), and Radcliffe-Brown (1940), 
were studying similar ideas in a range of contexts. Heider, in his review 
paper of 1979, notes that Wertheimer (1923), as well as Spinoza were 
quite influential in his thinking about phenomenal causality and interper-
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sonal relations, which allowed him to postulate the concepts of cognitive 
balance. 

As we discuss in this chapter, this early research led to the first sub
stantive empirical and model-based clustering methods for social network 
data (see Chapter 7). Structural balance (and its many generalizations, 
particularly transitivity) will be discussed in this chapter. These ideas 
have had a deep and long-lasting impact on social network methodology. 
Many of the topics discussed in Chapters 7, 10, and 14 were developed 
(at least in part) to study whether subgraphs are balanced or triads are 
transitive. Thus, we will return to balance and transitivity frequently 
throughout this book. 

So, the study of structural balance in a social network, consisting of a 
relation measured for a set of actors, requires that the ties have a sign 
or a valence. As Heider stated, we must be able to distinguish positives 
from negatives. The network must be representable as a signed graph or 
signed digraph. We begin with this assumption. 

6.1 Structural Balance 

A signed graph allows the lines to carry either positive or negative signs. 
The lines can be coded with two signs: either " +" or "-". For example, 
if the relation under study is "liking," then a "+" implies i and j like 
each other, a "-" implies i and j dislike each other. The absence of a 
line implies neither liking nor disliking. 

If one has a signed digraph, quantifying a directional relation, then the 
arc linking i to j is either a "+" or a "-", and is distinct from the arc 
linking j to i. This distinction forces us to consider balance for graphs 
and directed graphs separately. In Figure 4.22, we gave an example of a 
signed directed graph, using the directional relation of friendship among 
children, so that, for example, a "+" attached to an arc indicated a friend, 
and a "-", an enemy. Note that because the relation is directional, i's 
feelings toward j may differ from j's feelings toward i. 

We will now describe structural balance, first for nondirectional signed 
relations, and then for directional signed relations. We then give a variety 
of theorems (actually definitions derived from the formal definition of 
balance) that allow us to characterize the balance properties of specific 
relations. This discussion will then be generalized to clusterability, and 
later to transitivity. The generalizations of structural balance do not 
necessarily have to be applied to signed relations. Fortunately, the tenets 
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of transitivity are relevant to any relation. Thus, we will relax the 

restriction to signed relations later in this chapter. 

Before we star� let us look at a generic signed relation. The relation 
must be capable of expressing both positive and negative attitudes or 

sentiments. The class of affective relations certainly has this property : 
like and dislike can both be measured, as can friends and enemies, praise 
and blame, love and hate, and so forth. A relation must be representable 
as a signed graph or digraph in order to be studied using ideas of 
balance : positive ties as well as negative ties must be possible. The 
negative ties are usually viewed as the antonyms of the positive ones. 
One can treat the positive and negative ties separately and suppose that 
two distinct (but certainly associated) relations are measured. The classic 
network data set collected by Sampson (1968) contains four pairs of 
positive/negative relations : esteem/disesteem, like/dislike, praise/blame, 
and influence/negative influence. Notice how the negative aspect of each 
relation is the antonym or opposite of the positive, not simply its absence. 

Graph theorists (such as Harary 1957) note that a signed graph or 
signed digraph must satisfy a principle of antithetical duality : the dual 
(or opposite or antonym) of signed graph changes the signs of the lines 
from "+" to "-" or "-" to "+". When this is applied twice to a line or 
arc, the sign of the original line or arc is obtained. Thus, the opposite 
of a negative tie is a positive tie. We can express this "arithmetic" as: 
(-)(-) = (+) and, (+)(+) = (+). For now, we will assume that the 
relation under study satisfies this principle. This implies that relations 
such as "communicates with" or "interacts with," which are not signed 
and thus have no obvious dual, cannot be studied with balance theory. 

6.1.1 Signed Nondi,ectianal Relations 

Heider theorized about the cognition of social relationships. Such cog
nitive perceptions and the consistency of attitudes have played an im
portant role in early social psychological theories (see, for example, 
Abelson, Aronson, McGuire, Newcomb, Rosenberg, and Tannenbaum 
1968). Specifically, he studied a single person, which he denoted by a P, 
for the person, and another individual, denoted by a for the other. He 
considered how the positive or negative attitude of the primary person 
toward an entity or object (X) was consistent with the attitude of the 
other person toward the object. Sometimes, a third person (denoted by 
Q) can be the object, rather than a non· living entity. 
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Let us assume that this attitude is captured by a signed, nondirectional 
relation (which will usually be affective), so that the line connecting P 
with X, measuring P's attitude about the object, carries either a "+" if the 

attitude is, say, positive affect, or a "-" if the attitude is negative (note 
that we assume that P has an attitude toward the object, so that the line 
will not be absent). We should note that the object under consideration 
could be almost anything that the two people can have an opinion about: 
a situation, a movie, a person, a philosophy, and so forth. 

Triples. For simplicity throughout this chapter, we will always 
refer to the third party as an object X, but note that this third party can 
indeed be another person. If the third party is an actor, Q, one typically 
ignores the attitudes of Q toward P and O. 

To be a little more concrete, we will use the relation like/dislike 
throughout this chapter. Taking the two actors and the object (a P-O-X 
triple), there are eight possible mathematical representations or graphs 
for this triple of entities, which are shown in Figure 6.1. A solid line in 
the figure denotes a positive attitude (liking1 while a dashed line denotes 
a negative attitude (disliking). The four graphs at the top of Figure 6.1 
and the four graphs at the bottom of Figure 6.1 are usually referred to 
as P-O-X triples. In these figures, both actors are allowed to express 
their attitude toward the object, and we can also record the attitude (like 
or dislike for our example) toward each other, which is assumed to be 
common to both. 

In order to characterize the graphs in Fignre 6.1, we focus on the cycles 
present. Recall the definition of a cycle, given in Chapter 4. For a signed 
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relation, we can define the sign of a cycle as the product of the signs of 
the lines constituting the cycle. The multiplication rules for this product 
are discussed in Chapter 4, as well. Thus, cycles can be either positive 
or negative. The sign of a cycle is a crucial concept when considering 
whether a graph is balanced. 

Examine the four triples in the top row of the figure. These triples and 
the associated lines are special. Each graph is a cycle of length 3 and each 
has either 0 or 2 negative lines. If we consider the signs of the lines, the 
four graphs all have cycle sign of "+". A cycle will always have a positive 
sign if there is an even nnmber of negative lines. The four graphs at the 
bottom of the figure also contain cycles, but not one of these four has an 
even number of negative lines. The products of the signs for the cycles 
in these four graphs are all "-": either (+)(+)(-) for the first three, or 
(-)( -)( -) for the last one. Thus, these eight graphs fall naturally into 
two subsets: one set containing the four graphs with positive cycles, and 
one set containing the four graphs with negative cycles. 

The most important consideration is how to interpret any one of these 
graphs. First, take the graph at the upper left of Figure 6.1 which has 
three positive lines. Both actors P and 0 are positive about the object, 
and positive about each other. Such agreement is likely to be "pleasing" 
to the actors. The second graph in the top row also shows agreement 
among the actors : both have a negative opinion about the object, but 
possess positive attitudes about each other. The last two graphs in the 
nrst row display disagreement about the object: one actor is positive 
while the other is negative. Such conflict is likely to be uncomfortable 
to the actors, and consequently, one might expect negative attitudes 
toward each other, as indicated by the dashed line betwen P and 0 in 
these two graphs. These four graphs are to be expected if agreement 
about an object produces a positive feeling between the people, while a 
disagreement gives a negative feeling. This positive sentiment between 
people produces agreement. Negative sentiment leads to disagreement 
(see Johnsen 1985, 1986). 

Compare these four graphs at the top with the four at the bottom. In 
all of the graphs at the bottom of the figure, the expected does not arise. 
Specifically in these four graphs, if the two nodes have lines with the 
same sign to the object, then the actors represented by the nodes have 
a negative attitude toward each other (the first and fourth graphs). And 
if the two nodes have lines with different signs to the object, the actors 
have a ppsitive attitude toward each other (the second and third graphs). 
Clearly, these four graphs are strange. The four graphs at the top could 
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imply that the two actors involved would work well together, without 

internal tension, while the four at the bottom imply the opposite. If the 

object is a person, rather than an object, then the four graphs at the 

top of Figure 6.1 represent affective relational structures which minimize 

tension within the triple. 

Balance. If all the cycles in a graph of length 3 have positive 

signs, the graph is balanced. Sociologists and social psychologists have 

used the term "structural balance" to refer to groups of people and 

affective relations that substantively are "pleasing" or lack intrapersonal 
psychological "tension." We will formally define a triple of nodes, and 

the lines between them, as balanced if the cycle has a positive sign. Thus, 
the four graphs at the top of Figure 6.1 are all balanced and, hence, 

are permissible by structural balance, while the four at the bottom are 

not. To extend this definition to a graph with more than three nodes 

requires a statement about all possible cycles in the graph. One must 

also consider cycles of any size, not just triples, since structural balance 

applies to any subset of nodes. 

The signed graph need not be complete, so that some lines may be 
absent. As an example, consider a signed graph with g = 7 nodes, as 
shown in Figure 6.2. This graph has five positive lines and five negative 

lines present. Only ten of the possible twenty-one lines are present. 

If we look for cycles, we find four of length 3, and two of length 4. 

The cycles are: nln2n4nt, nln3n4nl, n4nSn6H4, n5n6n7nS. and nln2n4n3nl, 
I4n5fl6n,l4. Of the six, all but one has a positive sign. The cycle n5n6n,n5 
has a negative sign, since it contains just single "-". Remember that for 

balance, the negative lines in a cycle must be even in number. One would 
conclude that because of this single negative cycle, the entire graph is 

not balanced. This census of all cycles in a signed graph gives us the 

following general definition of a balanced signed graph, directly from 

Cartwright ami Harary (1956): 

Definition 6.1 A signed graph is balanced if and only if all cycles 
have positive signs. 

This definition can also be applied to valued graphs with lines valued at 

+1, -1, and O. That is, "zero"-valued ties have no sign; one considers 
only the cycles in the graph involving lines with signs. 

We note that it is possible for a graph (or digraph) to be neither 

balanced nor unbalanced. If a graph contains no cycles, it can be 
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neither balanced nor unbalanced. Researchers typically use the phrase 
"vacuously balanced" to refer to graphs and digraphs that are neither 
balanced nor unbalanced - neither fish nor fowl. Later in this chapter 
we will discuss vacuously balanced graphs and digraphs at greater length. 

A very important consequence of this definition, proved by Harary 
(1953, 1955b), and a result that is quite useful in classification of actors 

to subsets, is that if a signed graph is balanced, then one can partition 
the nodes into two subsets in such a way that only positive lines join 
nodes within subsets, and negative lines join nodes between subsets. One 

of these subsets may be empty (that is, contain no nodes). Another 
consequence (see Harary, Norman, and Cartwright 1965) is that all paths 
connecting any two nodes must all have the same sign (where the sign 

of a path is defined as the product of the signs attached to the lines in 
the path). 

Consider the example in Figure 6.3, which is a balanced signed graph. 
There are four cycles - one of length 4 and three of length 3 - and 
all have positive signs). For this graph with six nodes, we can partition 
the nodes into the two subsets {m, n3,n4,ns} and {nj, n6} so that all the 
positive lines in the subgraph fall among the nodes in the first subset, 
and all negative lines OCcur between nodes in different sets. This partition 
for balanced structures is quite important. 

This evolution in thinking about structural balance from triples to 
entire graphs leads to the clusterability of actors. This highlights an 
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important generalization of this idea first mentioned by Heider ; that 
balanced triples have actor partitions for which positive ties occur within 

and negative between. We will return to clusterability as a generalization 
of structural balance later in this chapter. 

6,1.2 Signed Directional Relations 

Suppose that the relation under investigation is directional, so that the 
relevant representation is a signed digraph. To generalize balance to 
such structures requires some care, since there are a number of ways to 
examine cycles in directed graphs. Remember from Chapter 4 that a 
cycle in a digraph requires all arcs to be "pointed in the same direction." 
We will actually relax our definition of balance so that with digraphs, we 
do not need cycles in order to consider the balance of a structure. 

To illustrate, consider the triple shown in Figure 6.4, which has one 
negative are, and two positive arcs. This digraph does not contain a cycle, 
since the arc from nj to n2 is oriented in the wrong direction (but we 
can still consider whether or not it is balanced). Reversing the direction 
of this arc would give us a digraph with a cycle of length 3, njn3n2nj, 
with a negative sign, and hence (using the definition of balance given 
for nondirectional relations) the digraph appears to be an unbalanced 
structure. 

As we define below, the digraph shown in Figure 6.4 is actually 
unbalanced. Note that there is clear "tension" in unbalanced structures 

such as this one. Person I "likes" person 3 as well as person 2, but this 
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Fig. 6.4. An unbalanced signed digraph 

friend n3 "dislikes" person 2 - clearly, a tension producer for person 1, 
who might realize that this friendliness with person 2 is not consistent 
with the friend n3s unfriendliness with person 2. 

To formally define balance in signed digraphs, we consider not paths 

and cycles, but semipaths and semicycles. As defined in Chapter 4, we 
ignore the directions of the arcs, and define a semipath as a sequence 
of nodes and arcs, beginning and ending with nodes in such a way that 
a particular arc in the semipath goes from either the previous node to 
the next node, or vice versa. For an example, refer to Figure 6.4. The 
sequence n,n,n3, along with the arcs between these nodes, is a semipath, 
but not a path, since the arc between n, and n, goes not from n, to nlo 
but from n, to n,. We do not care about the direction of the arc between 
any two nodes adjacent to each other in the semipath, but only that an 
arc exi�ts. A semicyde is a semipath in which all nodes are distinct, and 
the first and last nodes are identical. A cycle is a semicycle in which the 
arcs connect the ith node to the (i + l)st node. That is, the ith node 
in the semicycle is adjacent to the (i + 1 )sl. In our figure, the sequence 
n,n,n3n, is a semicycle. We define the sign of a semicycle as the product 
of the signs attached to the arcs making up the semicycle. Thus, the sign 
for the semicycle n,n, n3n, in Figure 6.4 is (+)( -)( +) � (-). 

With these definitions, we can state: 

Definition 6.2 A signed digraph is balanced if and only if all semi
cycles have positive signs. 

In a balanced signed digraph, all semicycles must have an even number 
of negative signs attached to the arcs. Thus, just as with balance for 

a signed graph, one must check the signs of all semicycles (rather than 
cycles). Every semicycle, regardless of its length, must be checked, and all 
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semicycle signs must be positive. The semicycle in Figure 6.4, n2n,n3n2, 
has a sign "-", so this digraph is not balanced. 

We should note that there is a very comprehensive set theoretic ap
proach to structural balance given by Flament (1963), similar to Free
man's (1989) representation for social network data discussed at the end 
of Chapter 3. 

6.1.3 OChecking for Balance 

A single unbalanced cycle or semicycle insures that the graph or digraph 

is not balanced. So, it is natural to consider how many cycles or semicycles 
in a graph or digraph do not have positive signs. From this consideration, 
one can develop graph-level indices measuring the amount of unbalance 

in a structure. We turn to this topic in the next few paragraphs. 
Before doing so, let us think about a method to determine whether 

a graph or digraph is balanced. One needs to look at all cycles or 
semicycles of length 3, 4, and so forth to check for balance. All must 
have positive signs. 

If we start with the sociomatrix for a graph, then one can show that 
if the graph is balanced, then the entries along the diagonal of the 
sociomatrix raised to a power p, XP, must all be non-negative for all 

powers p = 1,2, . . .  , g. Cycles have a maximum length of g, so we need 
not raise the sociomatrix to any power greater than g. 

We demonstrate this fact in Table 6.1 for the balanced graph in 
Figure 6.3. We note that the numbers on the diagonals of the power 
sociomatrices for balanced graphs are the sums of the signs of closed 
walks, with lengths equal to the powers of the respective matrices. Thus, 
for example, a diagonal entry of X3, xWl ,  is the sums of signs of closed 
walks oflength 3, starting and ending with ni. Since the graph is balanced, 
this entry must be positive. As can be seen from the table, all diagonal 
entries of all the power matrices are positive ;  therefore, the graph is 
balanced. 

Checking for balance using sociomatrix powers for a directed graph 

is a bit more complicated. Rather than give all the details here, we 
refer the reader to Harary, Norman, and Cartwright (1965), pages 352-

355. Specifically, one needs to replace the entries in the sociomatrix 
with symbols, reflecting the signs of the arcs. If both ", ---> nl and 
nj � ni are present, then this circumstance is taken into account. A 
symmetric valency matrix is constructed which has entries of 0, p, n, and 
a, depending on the sign of the sum of xij + x ji. This valency matrix is 
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Table 6.1. Powers of a sociomatrix of a signed graph, to demonstrate 
cycle signs, and hence, balance 

X 
n1 "2 ", n, n, n6 

"1 0 -1 -1 . -1  0 0 
n2 -1 0 0 I 0 0 
n, -I 0 0 I 0 0 
", -I I I 0 I -I  
n, 0 0 0 I 0 -I 
"6 0 0 0 -I -I  0 

X2 
n1 n2 n, ", n, n6 

n1 3 -I -I -2 -1 1 
n, -I 2 2 I I -I 
", - I  2 2 I I -I 
114 -2 I I 5 I -I 
n, -I  I I I 2 -I 
n6 I -I  -I  -I -I 2 

X' 
n1 n2 n, n, n, n6 

"1 4 -5 -5 -7 -3 3 
n2 -5 2 2 7 2 -2 
n, -5 2 2 7 2 -2 
n, -7 7 7 6 6 -6 
n, -3 2 2 6 2 -3 
n6 3 -2 -2 -6 -3 2 

X' 
n1 n2 n, ", n, n6 

n1 17 -11 -11 -20 -10 10 
n2 -11  12  12 13 9 -9 
n, -11  12  12 13  9 -9 
114 -20 13 13 33 12 -12 
", -10 9 9 12 9 -8 
n6 10 -9 -9 -12 -8 9 

X' 
n1 n2 n, ", ", n6 

n1 42 -37 -37 -59 -30 30 
n, -37 24 24 53 22 -22 

", -37 24 24 53 22 -22 
114 -59 53 53 70 45 -45 
", -30 22 22 45 20 -21 
no 30 -22 -22 -45 -21 20 

X6 
n1 n, n, n, n, n6 

n1 133 -101 -101 -176 -89 89 
n2 -101 90 90 129 75 75 
n, -101 90 90 129 75 75 
114 -176 129 129 255 115  -115  
n, -89 75 75 16 66 -65 

on 0< 
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then raised to various powers, by using a special set of algebraic rules 

that govern the addition and multiplication of its entries. These rules 

are given in Harary, Norman, and Cartrwright (1965, page 354). The 
diagonal entries of the valency matrix raised to all powers 1,2, . . .  , g must 
be all p or a for the graph to be balanced. Examples can be found in 
Harary, Norman, and Cartwright (1965). 

6.1.4 An Index for Balance 

To quantify how "unbalanced" an unbalanced graph or digraph is, one 
first must count the number of cycles (for a graph) or the number of 

semicycles (for a digraph) that have negative signs. An index such as this 
is usually referred to as a cycle index for balance. One can then compare 
this to the total number of cycles or semicycles present to construct an 

index. This index takes on values between 0 (completely unbalanced) to 

1 (balanced). 
We define PC as the number of positive (semi)cycles in a (di)graph, and 

TC as the total number of (semi)cycles. The index for unbalancedness is 
then PC ITC. Cycle indices can be calculated using matrices, as discussed 

by Cartwright and Gleason (1966). Variants on this index (see Harary 
1959a; Henley, Horsfall, and De Soto 1969; Norman and Roberts 1972a, 
1972b; Roberts 1978) involve weighting the components of this ratio 
index by using the length of the (semi)cycles. 

Harary (19590, 1960) considers a line index for balance equal to the 
number of signs attached to lines or arcs whose signs must be changed 
in order for the graph or digraph to become balanced. This number is 
exactly equal to the number of lines or arcs that must be removed in 
order for the graph or digraph to become balanced. Other measures of 

balance are discussed at length in Taylor (1970). 

6.1.5 Summary 

Structnral balance has been quite important in sociology, social psy· 
chology, and anthropology. References to its use in practice and theory 
abound - Taylor (1970), who presents both a text for readers on balance 

and social interaction, and critically reviews the literature, cites nearly 

200 papers and books. Hage and Harary (1983), in their chapter on 

signed graphs, and Hage and Harary (1991) cite many anthropological 
studies of balance in networks. Davis (1963, 1967, 1968b) takes a variety 

of very important studies and formulates a large number of propositions 
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about social structure from the writings of these theorists. The studies 

are Durkheim (1947), Stouffer Suchman, DeVinney, Star, and Williams 
(1949), Merton and Kitt (1950), Homans (1950, 1961), Festinger (1954, 

1957), Berelson, Lazarsfeld, and McPhee ( 1954), Lazarsfeld and Merton 
(1954), Katz and Lazarsfeld (1955), Lipset, Trow, and Coleman (1956), 
Bott (1957), Coleman (1 957), Fiedler (1958), and Davis ( 1959). Many of 
these propositions make direct statements about P-O-X triples. Remark

ably, all are consistent with the basic postulates of structural balance. 
But, as we note below, balance certainly has its limitations. And, struc

tural balance, as noted by Granovetter (1979) need not apply to the 
behavior of actors outside of small group settings. Some ties, especially 
those that make (semi)cycles have negative signs, may be reinforced by a 
wide variety of institutional, economic, and political constraints. Triples 
forbidden by structural balance can exist (and indeed, be quite stable) in 

certain political macro-situations. 
The most important aspect of structural balance is that the nodes in a 

balanced graph can be partitioned into two subsets or clusters. This fact 

follows directly from the original theorem for balance involving the signs 
of cycles, and allows one to consider clusters of actors among whom all 

ties are possible. It also allowed researchers, in the 1950's and 1960's, 

to consider ways to generalize structural balance, so that actors could 
possibly be partitioned into more than two subsets. We now tum to these 

generalizations. 

6.2 Clusterability 

Harary (1954) proved that balanced signed graphs have partitions of 
nodes into two clusters or subsets such that only positive lines join nodes 
in the same cluster and only negative lines join nodes in different clusters. 

Thus, actors in the same cluster have no negative ties with each other, 
while actors in different clusters have no positive ties between them. 
There can be no more than two clusters, however. If the signed graph is 
balanced, then two nodes who have a negative line between themselves 

must be in different clusters. And if the balanced signed graph has no 
negative lines, it has jnst a single cluster of nodes. 

Davis (1967, 1968b) noted that actual graphs or digraphs, representing 
a set of actors and a signed nondirectional or directional relation, actually 
appear to form clusters of this sort, but that the number of clusters is 
often more than two. Davis (1979) notes that this was indeed an empirical 
finding, prompted by research on a variety of different networks. 
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Definition of Clusterability. This empirical finding of more than 

two clusters led Davis (1967) to propose a generalization of balance for 

signed graphs that had more than two clusters of nodes. Such graphs 
were said to obey the theorems of clusterability, rather than balance. 
Formally, for signed graphs: 

Definition 6.3 A signed graph is clusterable, or has a clustering, 
if one can partition the nodes of the graph into a finite number of subsets 
such that each positive line joins two nodes in the same subset and each 
negative line joins two nodes in different subsets. The subsets derived from 
the clustering are called clusters. 

In brief, a balanced signed graph has one or two clusters. A signed graph 
that is not balanced may still be clusterable, and can have more than 

two clusters. 
Cartwright and Harary (1968) related this clusterability problem to 

the classic problem of the colorability of graphs (where the clusters are 
actually color sets) and extended Davis' research in special ways. It is 
interesting to note that some of the clusterable structures considered by 
Davis, Cartwright, and Harary were recognized earlier by Heider to be 

problematic, from the standpoint of balance (more on this later). 

The most important clusterability research is that of Davis (1967), in 

which a number of theorems are presented contrasting the concept of 
clustering with structural balance for graphs. Davis (1967) begins by 
arguing that sets of actors in a network have empirical tendencie� to split 
into three, four, or possibly more snbgroups of actors, or clusters. He 

asks : 

What conditions are necessary and sufficient for the [nodes] of a graph 
to be separated into two or more subsets such that each positive line 
joints two [nodes] of the same subset and each negative line joins [nodes] 
from different subsets? (page 181) 

We note that Davis first considered only complete signed graphs. In 

reality, signed graphs are rarely complete, and every possible line may 
not be present. Thus, Davis' ideas are usually relaxed to allow some 
ties between actors within clusters (or subsets) to be absent. We present 

two theorems here, one for signed graphs and one for complete signed 
graphs. 

Theorems. These two theorems give the conditions under which 
a signed graph has a clustering; that is, under what conditions on the 
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cycles of a graph will the .graph be clusterable? The second theorem 
is more specific than the first, since it is appropriate only for complete 

signed graphs, where all nodes are adjacent. It is important since it shows 
that for complete signed graphs, one need only look at cycles of length 
3 to determine clusterability. 

6.2.1 The Clustering Theorems 

We begin with the first clustering theorem. It comes directly from Davis 
( 1967), who also gives the proof. 

Tbeorem 6.1 A signed graph has a clustering if and only if the 
graph contains no cycles which have exactly one negative line. 

An example of a signed, clusterable graph is given in Figure 6.5, which 
was taken from Davis (1967). The graph in this figure has g=6 nodes 
and 8 lines : 2 positive lines and 7 negative. It clearly is not complete, 
since six pairs of nodes do not have lines between them. One can verify 
that there are fonr cycles of length 3 in this signed graph: n1 n,n6n" 
n2n3n6n2, n3n4nSn3, and n3nSn6n3. In addition, there are three cycles of 
length 4, one cycle of length 5, and one cycle of length 6. Since two of 
the four cycles of length 3 have negative signs (n1n,n6n1 and n,",n6n,), 
the graph is not balanced. Nevertheless, it is clusterable. None of these 

cycles contains exactly one line with a sign of "-", so, by the theorem, 
the graph is clusterable. 

There are four clusters in the graph : {n4,n" n6}, {nd, {n,}, and {n3}' 
Three of the clusters contain just one node, while one contains three. We 
should note that this clustering is not unique - there is also a second 
way to cluster these nodes. One can combine the second and third 
clusters (since n1 and n3 are not joined by a negative line), to give three 
clusters: {n4,n" n6}, {n" n,}, and {n2}. This lack of uniqueness, as we will 
see, is due to the fact that the graph is not complete. This can be quite a 
drawback in applications. 

If we consider triples as we did when discussing structural balance 
(see Figure 6.1), we recall that there were four triples not permissible 
under the structural balance conditions. However, with clusterability, we 
see that there are now only three, rather than four, triples that are not 
permissible. The triple with three "-"'s is allowed under clusterability, 
but not balance theory. That is, the graph is still clusterable even if a cycle 
of length 3 has three "-" lines. The two cycles in Figure 6.5 mentioned 
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Fig. 6.5. A clusterable signed graph (with no unique clustering) 

above (n,n2n6n, and n2n3n6n2) are of this type, and are allowed under 
clustering (since they have three, not one, negative lines). 

Clustering is less strict than balance. With clusterability, actors can 
be partitioned into more than two clusters. If there is more than one 
pair of actors with negative lines, then these actors are segregated into 
different clusters. Specifically, if there is a triple of actors in a cycle 
containing three negative lines, these three actors can be partitioned into 

three different clusters. The negative lines will be between clusters. Such 
a partitioning is not possible with balance, since there can be only two 
subsets of actors. We should note that this theorem is quite general, since 
it can be applied to signed graphs that are not necessarily complete. And 
clusterability allows the sign of a cycle of length 3 to be negative. 

Consider now a complete signed graph. The following theorem ex
tends clusterability to complete signed graphs; its last condition is very 
important. Again, it comes directly from Davis (1967). 

Theorem 6.2 The following four statements are equivalent for any 
complete signed graph: 

• The graph is clusterable . 

• The graph has a unique clustering. 
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• The graph has no cycle (of any length) with exactly one negative 
line. 

• The graph has no cycle of length 3 with exactly one negative line. 

When the signed graph is complete, it is now possible to have a unique 
clustering. Note, also, the last condition of the theorem. The lack of some 
lines between nodes in a signed graph (as in Figure 6.5) makes it more 
difficult to check for clusterability, and if such a graph is clusterable, we 

have no guarantee that the clustering is unique. Lack of completeness 
prevents us from guaranteeing a unique clustering. A clusterable complete 
signed graph has a unique clustering, and this clustering can be verified 
by looking just at all the triples. As Davis (1979) notes, referring to the 
last condition concerning triples, " . . .  'threezies' were the key to the whole 
thing," 

Flament (1963) proved that a complete graph is balanced if and only 
if all its cycles of length 3 are balanced (that is, if such cycles all 

have positive signs). Davis' clustering theorems, coupled with Flament's 

(1963) finding that the properties of triples were sufficient to assess 
the balance of a complete signed graph, led to nearly two decades of 
research on statistical and deterministic models for triples. Through these 
theorems, the properties of the triples of nodes in a graph tell us whether 
theoretically important structural properties are present. The prominent 
methodology for triples arising from this research will be discussed at 
length in Chapter 14. 

We should note that these theorems and this research focus only 
on signed graphs. One can easily extend these theorems to signed 

digraphs (representing a set of actors and a signed directional relation) 
by looking at semicycles within the digraph. One need only replace the 
terms "'graph," "nondirected," and "cycle" with the tenus "digraph," 
"directed," and "semicycle" in Theorems 1 and 2 and the following 
discussions. 

The uniqueness of the clusters is an important feature of clusterable 
complete signed graphs. There is only one way to form these clusters. 

If the graph is not complete but is clusterable, there may be more than 
one acceptable way to form the clusters. Complete graphs are quite rare 
in practice; thus, good methods for finding "good" sets of clusters from 
not complete graphs are very important. 

If the signed graph (or digraph) under study is not complete, then (as 
stated by the first clusterability theorem) one has to look at all cycles, 
not just those of length 3. The absence of cycles of length 3 that have 
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just one negative line is a necessary, but not a sufficient, condition for 

clusterability. If one can show that some of these cycles contain single 

negative lines or arcs, then the (di)graph is not clusterable, and one need 

not proceed to check cycles of longer length. 

Signed graphs for which all cycles of length 3 meet the criteria of 

the theorem, but cycles of longer length do not, are viewed as limited 
clusterable, and are discussed by Harary, Norman, and Cartwright (1965). 

Cartwright and Harary (1979) refer to a signed (di)graph whose nodes 

can be partitioned into S subsets as an S-clusterable (di)graph. Balanced 

(di)graphs are 2-clusterable. 

Consider briefly graphs and digraphs that have no cycles. Such graphs 

can be quite sparse and vacuous with respect to properties such as balance 

and clusterability. If a (di)graph does not meet any of the conditions for 

testing such properties, it is referred to as vacuous. Graphs and digraphs 

are called vacuously balanced or vacuously clusterable by Cartwright and 

Harary (1956) if they have no cycles or semicycles at all. Such structures, 

such as a triple of nodes with just two positive lines, are vacuous, clearly 

lacking the "tension" of unbalanced graphs or the "pleasantness" of 

balanced ones. 

One can construct and calculate iudices of clusterability analogous to 

the indices of balance discussed earlier in this chapter. There are line 

indices and cycle indices. There are also a variety of generalizations 

of clusterability, which we discuss later in this chapter. There are also 

extensions of these theoretical ideas to signed, valued graphs; for example, 

see Cartwright and Harary (1970) and Kaplan (1972). 

6.2.2 Summary 

Indeed, triples are key. In brief, all balanced signed (di)graphs are 
c1usterable, bnt clusterable signed (di)graphs may or may not be balanced. 

And if the signed (di)graph is complete, one need only check cycles of 

length 3 for verifying balance, and hence clusterability. For balance, 

cycles of length 3 with three negative lines are a problem. Such cycles 

are allowed for c1usterability, but not balance. 

Note how the (-)( -)(-) cycle is allowed with clusterability, but not 
with structural balance. The three actors must be placed into three distinct 

subsets (since none of them have positive ties with each other), but this is 

impossible with structural balance. Only two subsets are allowed, so one 

of them would have to contain two actors with a negative relationship. 
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In a partition into clusters, clusterability allows these three actors to be 

completely separated. 

6.3 Generalizations of C1usterability 

With these clusterability theorems in hand, a number of researchers 
embarked on empirical investigations. Questions such as how common 
clusterable signed (di)graphs are, and whether such signed (di)graphs 
were balanced needed answers. Such investigations required surveying 

many sociomatrices obtained from diverse sources. Further, the empirical 
studies had to be accompanied by statistical models that allowed those 
interested to study whether departures from theoretical models such as 
clusterability were "statistically large." 

The necessary statistical techniques are beyond the scope of the current 

chapter. We will return to a study of triples and balance, and its successor, 

transitivity, in Chapter 14. But we can report here how the theorems of 
clusterability were generalized due to unexpected empirical evidence. 

6.3.1 Empirical Evidence 

Leinhardt (1968, 1973), Davis and Leinhardt ( 1968, 1972), and Davis 
(1970) gathered nearly 800 sociomatrices from many different sources, 
and discovered a few interesting facts. First, they found that many rela
tions measured were directional. The recommended strategy of focusing 
on semicycles in such structures was difficult to implement. Secondly, 
asymmetric dyads, in which one actor chooses another actor, but the 
choice is not reciprocated, were very common. The ideas of balance 
and clusterability needed to be modified to take such situations into 
account (rather than ignoring the directionality of these arcs, which was 
the current practice when attention is focused on semicyc1es). Thirdly. 
they found that signed relations were rather rare. Thus, they decided to 
modify the theories of balance and clusterability for signed directional 

relations. When these new theories were later found lacking, Holland 
and Leinhardt (1971) revised them to unsigned directional relations. 

Davis and Leinhardt also found that in some digraphs, one subset of 
actors chose a second, while actors in this second subset chose members 
of a third subset. The clusters of actors appeared to be ranked, or 
hierarchical in nature, with the actors "on the bottom" choosing those 
"at the top" (but not vice versa). 
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6.3.2 ORanked Clusterability 

Davis and Leinhardt (1968) consequently presented a concept of ranked 
clusters, for complete signed directed graphs. Abandoning balance and 
clusterability allowed them to focus on the sixteen possible triples that are 
possible with this type of digraph. The sixteen are shown in Figure 6.6. 
Notice that this idea can only be applied to complete digraphs, so that 
every pair of nodes has two arcs between them, both of which have a 
sign. Actor j must have either a positive or a negative tie to actor j, and 
vice versa. 

Theory slates that one need only examine triples when studying clus
terability for complete signed graphs. The ranked clusterability mode� 
which is discussed in detail by Davis and Leinhardt ( 1968), also states 
that for such relations, one need only check threesomes. There are sixteen 
possible kinds of threesomes that can arise in a complete signed digraph. 
These sixteen, which are shown in Figure 6.6 (adapted from a figure in 

Leik and Meeker 1975), are made up of only three kinds of dyads : ++ 
dyads, in which both arcs in the dyad have positive signs ; -- dyads, 
in which both arcs in the dyad have negative signs; and +- dyads, in 
which one arc has a "+" and one has a "-". 

Davis and Leinhardt (1972) state: 

Relations of the sort we have called [+-] are assumed to connect 
persons in different levels, while [the other dyadic] relations are assumed 
to connect persons in the same level. Further, we assume that in pairs 
connected by [+-] relations, the recipient of the positive relationship 
is in the higher level. (page 220) 

They continue, 

[++] relations are assumed to connect persons in the same [cluster1 
within a level. [--] relations are assumed to connect persons in 
different cliques within a leveL (page 220) 

These two quotes nicely summarize which types of triads are possible, and 
which ones are not according to the postulates of ranked clusterability 
for complete signed digraphs. In brief, ranked clusterability postulates 
that ++ dyads occur only within clusters and -- dyads only between 
clusters at the same level of the hierarchy or order of clusters. The 
interesting +- dyads also occur between clusters, but at different levels. 
Thus, actors in a lower cluster should have positive ties to actors in 
a higher-ranked cluster and negative ties to actors in a lower-ranked 
cluster. One can see how such a model postulates that "lower" clusters 
of actors choose upwardly. 
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Fig. 6.6. The sixteen possible triads for ranked c1usterability in a com
plete signed graph 
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Ranked cluslerability, in which the positive arcs emanating to or 
from the nodes in [+-] dyads are postulated to "point" in the same 
direclion, slales that the triples numbered 2, 10, 1 1, 12, 13, 14, 15, and 
16  of Figure 6.6 should not occur in practice. These "miserable" eight 
(Davis 1979) depart from both clusterability and ranked clusterability. 
The empirical study of the 800 sociomatrices in the Davis/Leinhardt 
soeiomctric data bank found that the vast majority of triples were not 
of Ihese eight types (as reported in the reminiseenses of Davis 1979). 
Unfortunately, triple 2, which is not allowed, was quite common. Davis 
and Leinhardt (1972) concluded that 

. . .  we may say that we have had some success in showing that [+-] 
relationships tend toward a rank structure and some success in showing 
that C++] and [--] relations tend toward clusterability, but we have 
had more limited success in showing how these two "structures" are 
integrated to make a coherent whole. (page 249) 

Not only was triple 2 quite common, but so was triple 16. As Davis (1979) 
notes, there was strong empirical evidence for 6/8th's of a theorem. These 
two triples are quite common in positive affect relations which are in 
an "early" development stage ; that is, assuming that the relation under 

study will change over time, these triples contain dyads which might 
evolve into triples which are not prohibited. 

This ranked clusterability model was quite elegant, but little used. The 
ideas were quickly modified to account for another finding from the 
study of the 800 sociomatrices in the Davis/Leinhardt sociometric data 
bank - signed digraphs just are not very commonly collected. 

The lack of signed graphs or digraphs in the 800 sociomatrices is not 

surprising. The common technique for measuring affective relations (see 
Chapter 2) is simply to pose only two alternatives to each actor about 
every other actor : presence or absence of the tie in question. Davis 
and associates clearly needed an approach that could handle non-signed, 
directional relations. Adaptation of the "pre-1968" ideas to non-signed 
relations did not come until consideration of transitivity, found first in 

Holland and Leinhardt (1971). The first generalizations of clusterability 
continued to focus on signed relations. 

6.3.3 Summary 

Holland and Leinhardt (1970) were the first to suggest the extension of 

these ideas to non-signed directional relations. To turn ranked cluster

ability for complete signed digraphs into an equivalent idea for digraphs 
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without signs is quite simple. We take the idea of ranked clusters for 
complete signed digraphs, and do not consider arcs with negative signs. 
Then, any arc with a sign of "-" is removed from the signed digraph. We 
then drop the positive signs from the remaining arcs. The assumption is 
that the relation under study is the "positive" part of the signed relation 
- for example, we study only "like," "not like," and "dislike." Figure 6.7 
shows the triples of Figure 6.6, without the negative arcs. The triples 
arising from directional relations are commonly referred to as t/'iads, 
since we consider the threesome of nodes, and all the arcs between them. 

We note that the two problematic triads from ranked clusterability 
found empirically to be quite common have one and five arcs. These 
are the triads numbered 2 and 16 in Figure 6.7. Holland and Leinhardt 
showed that ranked clusterability is a special cilse of a more general set 
of theorems which naturally blend balance, clusterability, and ranked 
clusterability. Their partially ordered clusterability leads naturally to a 
consideration of the concept of transitivity. 

Holland and Leinhardt (1971) reviewed the postulates of balance the
ory, clusterability, and ranked clusterability, as well as transitive tourna
ments (Landau 1951a, 1951 b, and 1953; Hempel 1952), and proposed 
the very general concept of transitivity to explain social structures. Tran
sitivity includes all the earlier ideas as special cases. From a transitive 
digraph, one can obtain balanced, clusterable, and ranked clusterable 
graphs by making various assumptions about reciprocity and asymmetry 
of choices. During the past two decades, evidence has accumulated that 
transitivity is indeed a compelling force in the organization of social 
groups. We now present this idea. 

6.4 Transitivity 

We turn our attention to a triple of actors, i, j, and k, and the ties 
between them. We state: 

Definition 6.4 The triad involving actors i, j, and k is transitive if 
whenever i --> j and j --> k then i --> k. 

If either of the two conditions of this statement is not met (that is, 
if i +- j and/or j +- k), then the triple is termed vacuously transitive. 
Vacuously transitive triples are neither transitive nor intransitive. Note 
how the focus has shifted from cycles in signed graphs to semicycles in 
signed digraphs to transitive triads in ordinary digraphs. 
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Fig. 6.7. The sixteen possible triads for transitivity in a digraph 
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From this definition we have the following theorem: 

Theorem 6.3 A digraph is transitive if every triad it contains is 
transitive. 

We note that if a transitive digraph has no asymmetric dyads - that is, if 
all choices are reciprocated - then it is clusterable. Clusterable digraphs 
require mutual dyads to be within and null dyads to be between clusters. 
Thus, clusterability is a special case of transitivity. Ranked clusterable 
digraphs are also transitive. In fact, transitivity is the most general idea 
of this type for graphs and digraphs. 

Refer again to Figure 6.7. The following triads are transitive: 6, 7, 8, 9. 
Triads 1, 2, 3, 4, 5 are vacuously transitive. They do not contain enough 
arcs to meet the conditions of the theorem, so cannot be transitive or 
intransitive. Triads 10, 11, 12, 13, 14, 15, 16 are intransitive. Vacuously 
transitive triads can occur and the digraph itself can still be transitive. 
Now, rather than eight "miserable" triples from ranked clusterability, 
there are only seven intransitive triads. 

Notice that Definition 6.4 is stated for ordered triples of actors. Thus, 
we must look at ordered triples rather than triads. Note also that each 
threesome of actors consists of six distinct ordered triples of actors. Some 
of these triples may have transitive choices, as defined in Definition 6.4, 
while others may be intransitive. Still others may be vacuously transitive. 
A triple must be of one of these types. For the triad itself to be labeled 
transitive, all ordered triples of actors present in a triad must be either 
transitive or vacuously transitive. If any one of the triples is intransitive, 
so is the triad. 

For example, look at triad 16 in Figure 6.7. As is the case with all triads, 
triad 16 has six triples. This triad, along with its triples and their statuses, 
arc listed in Figure 6.8. Three of the triples are transitive, while one of 
them (the second) is not. The other two triples are vacuously transitive 
(for example, the first triple, njnjnk, is neither transitive nor intransitive 
since actor i does not have a tie to actor j). The second triple, n,nknj, is 
clearly intransitive, since nj ---+ nk, nk ---+ nj, but nj -f+ nj. Thus, this triad 
is considered intransitive because of this single intransitive triple. The 
number of transitive and/or intransitive triples within a particular type 
of triad is very important when quantitatively and statistically assessing 
the amount of transitivity in a digraph. We discuss this issue in much 
greater detail in Chapter 14. 



246 Structural Balance and Transitivity 

• , nj Triad 16 

Triple #1 ; ni nj nk 
nl -f+ nj 1'Ij -l> nk nj -Jo nk 

Triple #2 : n,. nk nj 
ni - nk nk --+ nj 1'Ij -f+ nj 

Triple #3 : Hj ni nk 
nj - ni nj -) nk nj -)0 nk 

Triple #4 : n j nk ni 
nj -+ nk nk -+ nj nj --). nj 

Triple #5 : nk nj n j 
nk -+ ni ni + nj nk -+ nj 

Triple #6 : nk n j ni 
11k --+ nj nj _ nj nk -+ ni 

• 
nk 

Vacuously transitive 

Intransitive 

Transitive 

Transitive 

Vacuously transitive 

Transitive 

Fig. 6.S. The type 16 triad, and all six triples of actors 

The generality of transitivity can be seen, for example, by looking 
at triad 2 from Figure 6.7. This triad, which is not allowed under .. 
ranked c1usterability, has just a single asymmetric dyad, so it is vacuously 
transitive. Vacuously transitive triples are allowed under transitivity, so 
type 2 triads can arise, without invalidating the idea. 

The other triad that was problematic for ranked dusterability was triad 
16, which we described in detail above. Davis and Leinhardt showed that 
this triad occurred far too frequently. But this triad is almost transitive. 
Only one of its six triples is intransitive. So, the presence of this 5/6th's 
transitive/vacuously transitive triad in a data set is not such a big deal 
(assuming transitivity is operating). 

Holland and Leinhardt (1972) provide strong, statistical evidence that 
transitivity is a very important structural tendency in social networks. 
By relying on the Davis/Leinhardt sociometric data bank, Holland and 
Leinhardt present evidence of transitive social structure. Holland and 
Leinhardt (1975, 1978, 1979) and Johnsen (1985, 1986) show that transi
tivity is one of many "nUll hypotheses" that can be tested by examining 
triads and the triples they contain. 
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The statistical methodology for determining how many intransitivities 
can be present in an actual data set, before concluding that transitivity 
does not hold, is discussed in Chapter 14. 

6.5 Conclusion 

Transitive digraphs (called t-graphs by Holland and Leinhardt 1971), and 
the mathematical methods based on them are quite important. These 
structures, methods, and theorems unified over two decades of theorizing 
about balance, clusterability and its generalizations, and transitivity, in 
sociology and social psychology. Transitivity has been shown to be a key 
structural property in social network data. In fact, many recent methods 
center on finding "what else" remains in a data set after "removing" 
tendencies toward transitivity. The idea of a transitivity bias or structural 
tendency in social network data was discussed as early as Rapoport 
(1953, 1963) and Fararo and Sunshine (1964) (see also the discussion of 
random and biased nets in Fararo and Skvoretz 1984, 1987; Skvoretz 
1985, 1990). There are, of course, other tendencies that can occur in a 
social network - in fact, we spend much of the remainder of this book 
describing and quantifying them. But after tendencies toward reciprocity 
were discussed in the 1940's, balance and its generalization, transitivity, 
were the earliest theories to play an important part in social network 
analysis. 

As we have discussed in this chapter, Cartwright and Harary (1956) 
used graph theory to quantify Heider's (1946) balance theory, and pro
posed a theorem that implied that a set of actors, if balanced, could be 
partitioned into two subsets. The data, unfortunately, had to be from a 
signed graph in order to apply this idea. Davis (1967) recognized that 
the decomposition of a set of actors into just two subgroups was not 
empirically likely; consequently, he expanded upon structural balance by 
proposing theorems that showed under what conditions such partitions 
could arise. Davis's ranked clusterability included balance theory as a 
special case, and thus seemed far more appropriate for social network 
data. Again, the restriction to signed graphs was quite a limitation; 
Davis and Leinhardt's ( 1972) empirical searches recognized that most 
social network data included unsigned, rather than signed, relations. 

With this empirical knowledge, Davis and Leinhardt (1968) combined 
the common tendency toward clustering with a second structural tendency 
toward ranking or differential status, to show how directional relations 
could generate structures resembling hierarchically arranged clusters. 
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Going a step further, concentrating on the" very _C9mmon directional, 
unsigned relations, Holland and Leinhardt (1970) showed how ideas 
about partially ordered clusters, generalizing ranked clusterability, lead 
naturally to transitivity, During the past two decades, research, such 
as Mazur (1971), Davis, Holland, and Leinhardt (1971), Holland and 
Lcinhardt (1973, 1979), Killworth (1974), Frank (1979a), Frank and 
Harary (1979, 1980, 1982), and Johnsen (1985, 1986), has continued 
the development of transitivity, but the major efforts can be found in 
the work of Heider, Cartwright, Harary, Davis, Holland, and Leinhardt 
during the period 1945-19n 

Many researchers have studied the implications of balance theory and 
transitivity for l'iocial structures: to name hut a few, Morrissette (1958), 
Rodrigues (1967, 1981), Horsfall and Henley (1969), Johnsen (1970), 
Wellens and Thistlethwaite (1971a, 1971b), Crano and Cooper (1973), 
Rodrigues and Ziviani (1974), Willis and Burgess (1974), Mower White 
(1977, 1979), Moore (1978), Tashakkori and Insko (1979), Newcomb 
(1981), Feld and Elmore (1982a), Rodrigues and Dela Coleta (1983), 
Chase (1982), Gupta (1985, and references therein), Mohazab and Feger 
(1985), especially the review of Zajonc (1968), and the work of Fararo and 
Skvoretz mentioned earlier, Transitivity nnderlies many social network 
methods. It will arise in Chapters 10 and especially 14, where we present 
statistical methods for determining the extent of transitivity in a social 
network. The ideas presented in Chapter 6 were important not only to 
network theorists, but to many methodologists. 

We note in conclusion that while this small set of graph theorists, so
ciologists, social psychologists, and statisticians were working on mathe
matical models of balance, clusterability, and transitivity, other method
ologists were busy studying about cliques and cohesive subgroups. This 
area of research is described in the next chapter. 



7 
Cohesive Subgroups 

One of the major concerns of social network analysis is identification of 
cohesive subgroups of actors within a network. Cohesive subgroups are 
subsets of actors among whom there are relatively strong, direct, intense-,-
frequent or positive ties. These methods attempt, in part, to formalize 
the intuitive and theoretical notion of social group using social network 
properties. However, since the concept of social group as used by social 
and behavioral scientists is quite general, and there are many specific 
properties of a social network that are related to the cohesiveness of 
subgroups, there are many possible social network subgroup definitions. 

In this chapter and the next we discuss methods for finding cohesive 
subgroups of actors within a social network. In this chapter we discuss 
methods for analyzing one-mode networks, with a single set of actors 
and a single relation. In Chapter 8 we continue the discussion of 
cohesive subgroups and related ideas, but focus on affiliation networks. 
Affiliation networks are two-mode networks consisting of a set of actors 
and a set of events. Cohesive subgroups in one-mode networks focus 
on properties of pairwise ties, whereas cohesive subgroups in two-mode 
affiliation networks focus on ties existing among actors through their 
joint membership in collectivities. Thus, one major difference between 
this chapter and the next is whether one-mode or two-mode data are 
being analyzed. 

We begin with an overview of the theoretical motivation for studying 
cohesive subgroups in social networks and discuss general properties of 
cohesive subgroups that have influenced network formalizations. We then 
discuss how to assess the cohesiveness of network subgroups, and extend 
subgroup methods to directional relations and to valued relations. The 
final section of this chapter briefly discusses alternative approaches for 
studying cohesiveness in networks using multidimensional scaling and 
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factor analysis. Most of the methods discussed in this chapter are based 
on graph theoretic ideas. and use graph theoretic concepts and notation. 
Thus, it might be useful to review Chapter 4 before reading the rest of 
this chapter. 

7.1 Background 

In this section we discuss the theoretical background for social groups, 
briefly outline some ways to conceptualize cohesive subgroups, and review 
key notation and graph theoretic concepts that are used to study cohesive 
subgroups. 

7.1.1 Social Group and Subgroup 

Many authors have discussed the role of social cohesion in social expla
nations and theories (Burt 1984; Collins 1988; Erickson 1988; Friedkin 
1984). Friedkin examines the use of network cohesion as an explanatory 
variable in sociological theories, especially for studyinR the emergence of 
consensus among members of a group : . 

Structural cohesion models are founded upon the causal propositions 
that pressures toward uniformity occur when there is a positively val
ued interaction between two persons; that these pressures may OCCUr by 
being "transmitted" through intermediaries even when two persons are 
not in direct contact; and that such indirect pressures toward unifor
mity are associated with the number of short indirect communication 
channels connecting the persons. (1984, page 236) 

Consequently, according to this idea, one expects greater homogeneity 
among persons who have relatively frequent face-to-face contact or who 
are connected through intermediaries, and less homogeneity among per
sons who have less frequent contact (Friedkin 1984). In his review of 
sociological theory, Collins (1988) .also states the importance of cohesion 
in social network analysis: 

The..more tightly that individuals are tied into a network� the more they 
are affected by group standards . . . . (page 416) 

Collins continues, noting that 

Actually, there are two factors operating here, which we can see from 
network analysis : how many ties an individual has to thlj group and how 
dosed the entire group is to out!nd.era .. iSolated and tightly connected 
groups make up a clique; within such highly cohesive groups, individuals 
tend to have very homogeneous beliefs. (page 417) 
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Cohesive subgroups are theoretically important according to these the
ories because of social forces operating through direct contact among 
subgroup members, through indirect conduct transmitted via intermedi
aries, or through the relative cohesion within as compared to outside the 
subgroup. Such theories provide motivation for cohesive subgroup meth
od� for one-mode social networks (in which ties are measured between 
pairs of actors). These ideas are all used to study cohesive subgroups in 
social networks. 

The notions of social group, subgroup, clique, and so on are widely 
used in the social sciences, particularly in social psychology and sociology. 
Although the notion of social group has received widespread attention 
in the social sciences, researchers often use the word without giving 
it a precise formal definition. As noted by Freeman (1984, 1992a) 
and Borgatti, Everett, and Freeman (1991) authors often assume that 
since "everybody knows what it means" it can be used without precise 
definition. Freeman reviews the history of the concept of group in 
sociology with special attention to network formalizations of this concept 
(Freeman 1992a). 

Many network researchers who have developed or reviewed methods 
for cohesive subgroups in social networks have noted that these methods 
attempt to formalize the notion of social group (Seidman and Foster 
1978a, 1978b; Alba and Moore 1978; Mokken 1979; Burt 1980; Freeman 
1984, 1992a; Sailer and Gaulin 1984). According to these authors, the 
concept of social group can be studied by looking at properties of 
subsets of actors within a network. In social network analysis, the notion 
of subgroup is formalized by the general property of cohesion among 
subgroup members based on specified properties of the ties among the 
members. However, since the property of cohesion of a subgroup can 
be quantified using several different specific network properties, cohesive 
subgroups can be formalized by looking at many different properties of 
the ties among subsets of actors. 

Although the literature on cohesive subgroups in networks contains 
numerous ways to conceptualize the idea of subgroups, there are four 
general properties of cohesive subgroups that have influenced social 
network formalizations of this concept. Briefly, these are: 

• The mutuality of ties 

• The closeness or reachability of subgroup members 

• The frequency of ties among members 
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• The relative frequency of ties among snbgroup members com
pared to non-members 

Subgroups based on mutuality of ties require that all pairs of subgroup 
members "choose" each other (or are adjacent) ; subgroups based on 
reachability require that all subgroup members be reachable to each 
other, but not necessarily adjacent; subgroups based on numerous ties 
require that subgroup members have ties to many others within the 
subgroup ; and subgroups based on the relativ" density or frequencv of 
ties require that subgroups be relatively cohesive when compared to the 
remainder of the network. Successive definitions weaken the first notion 
of adjacency among all subgroup members. These general subgroup ideas 
lead to methods that focus on different social network properties. Thus, 
our discussion in this chapter is divided into sections, each of which takes 
up methods that are primarily motivated by one of these ideas. 

In contrast to these ideas that focus on ties between pairs of actors in 
one-mode networks, some cohesive subgroup ideas are concerned with 
the linkages that are established among individuals by virtue of their 
common membership in collectivities. These ideas motivate methods for 
studying affiliation networks, which we discuss in Chapter 8. 

Before we present the subgroup methods for one-mode networks, let 
us review some basic concepts and definitions from graph theory. 

7.1.2 Notation 

Our presentation of notation here is intentionally brief, since these ideas 
were covered in detail in Chapters 3 and 4. To start, we will limit our 
attention to graphs, and thus, to dichotomous nondirectional relations. 

We begin with a graph, 'If, consisting of a set of nodes, %, and a set 
of lines, :.e. Each line connects a pair of nodes in 'If. Two nodes that are 
connected by a line are said to be adjacent. A node generated subgraph, 
'If" of 'If, consists of a subset of nodes, %" where %, ,; %, along with 
the lines from :.e that link the nodes in 'If,. We will refer to a subset of 
nodes as a subgroup or subset, and the nodes along with the lines among 
them as a subgraph. A graph is complete if all nodes are adjacent; that 
is, if each pair of nodes is connected by an line. Similarly, a subgraph, 
ris, is complete if all pairs of nodes in it are adjacent. 

A path connecting two nodes is a sequence of distinct nodes and lines 
beginning with the first node and terminating with the last. If there 
is a path between two nodes then they are said to be reachable. The 
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length of a path is the number of lines in it. A shortest path between 
two nodes is called a geodesic, and the (geodesic) distance between two 
nodes, denoted by d(i, j), is the length of a shortest path between them. 
The diameter of a graph is the length of the longest geodesic between any 
pair of nodes in the graph. In other words, the diameter of a graph is the 
maximum geodesic distance between any pair of nodes; max(d(i,j))i for 
n;, nj E .11". Similarly, the diameter of a subgraph can be defined as the 
longest geodesic between two nodes within the subgraph. The diameter 
of a subgraph is defined on the subset of nodes and lines that are present 
in the subgraph. 

A graph is connected if there is a path between each pair of nodes in 
the graph. A subgraph is connected if there is a path between each pair 
of nodes in the subgraph, and the path contains only nodes and lines 
within the subgraph. The degree of a node, d(i), is the number of nodes 
that are adjacent to it. The degree of node i in subgraph '#, is denoted 
by d,(i), and is defined as the number of nodes within the subgraph that 
are adjacent to node i. 

A subgraph is said to be maximal with respect to some property (for 
example, completeness) if that property holds for the subgraph, but does 
not hold if additional nodes and the lines incident with them are added 
to the subgraph. If a subgraph is maximal with respect to a property, 
then that property holds for the subgraph, '#" but not for any larger 
subgraph that contains '#, (Mokken 1979). For example, a component of 
a graph is a maximal connected subgraph (Hage and Harary 1983). The 
presence of two or more components in a graph indicates that the graph 
is disconnected. 

We can now define some interesting subgroup ideas using these graph 
theoretic concepts. 

7.2 Subgroups Based on Complete Mutuality 

The earliest researchers interested in cohesive subgroups gathered and 
studied sociometric data on affective ties, such as friendship or liking 
in small face-to-face groups, in order to identify "cliquish" subgroups. 
Network data on friendship nominations often give rise to directional 
dichotomous relations. Festinger (1949) and Luce and Perry (1949) 
argued that cohesive subgroups in directional dichotomou� relations 

would be characterized by sets of people among whom all friendship 
choices were mutual. Specifically, Luce and Perry and Festinger proposed 
that a clique for a relation of positive affect is a subset of people among 
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whom all choices are mutual, and no other people can be added to the 
subset who also have mutual choices with all members of the subset. 
This definition of a clique is appropriate for a directional dichotomous 
relation. 

The clique is the foundational idea for studying cohesive subgroups in 
social networks. Graph theory provides a precise formal definition of a 
clique that is appropriate for a nondirectional dichotomous relation. 

7.2.1 Definition of a Clique 

A clique in a graph is a maximal complete subgraph of three or more 
nodes. It consists of a subset of nodes, all of which are adjacent to 
each other, and there are no other nodes that are also adjacent to all of 
the members of the clique (Luce and Perry 1949; Harary, Norman, and 
Cartwright 1965). The restriction that the clique contain at least three 
nodes is included so that mutual dyads are not considered to be cliques. 
One can think of a clique as a collection of actors all of whom "choose" 
each other, and there is no other actor in the group who also "chooses" 
and is "chosen" by all of the members of the clique. 

The clique definition is a useful starting point for specifying the formal 
properties that a cohesive subgroup should have. It has well-specified 
mathematical properties, and also captures much of the intuitive notion 
of cohesive subgroup; however, it has limitations, which we discuss below. 

Figure 7.1 shows a graph and a listing of the cliques contained in it. 
The reader can verify that these subgraphs are in fact cliques, and that 
there are no remaining cliques in the graph. 

Notice that cliques in a graph may overlap. The same node or set of 
nodes might belong to more than one clique. For example, in Figure 7.1 
node 3 belongs in all three cliques. Also, there may be nodes that do not 
belong to any cliques (for example node 7 in Figure 7.1). However, no 
clique can be entirely contained within another clique, because if it were 
the smaller clique would not be maximal. 

7.2.2 An Example 

We will use the example of the relations of marriage and business among 
Padgett's Florentine families to illustrate cohesive subgroups throughout 
this chapter. Recall that both of these relations are dichotomous and 
nondirectional. We used the network analysis programs GRADAP 2.0 
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cliques: {1,2,3}, {I, 3, S}, and {3,4,S,6} 

Fig. 7.1. A graph and its cliques 

(Sprenger and Stokman 1989) and UCINET IV (Borgatti, Everett, and 
Freeman 1991) to do the subgroup analyses described in this chapter. 

First consider the relation of marriage among these families. For the 
marriage relation there are three cliques: 

• Bischeri Peruzzi Strozzi 
• Castellani Peruzzi Strozzi 
• Medici Ridolfi Tornabuoni 

Only seven of the sixteen families in this network belong to any clique 
on the marriage relation. Furthermore, the cliques are small; each clique 
contains only the minimum three families. By definition, there has been 
a marriage between all pairs of families in each clique. Notice that the 
first two cliques contain two members in common (Peruzzi and Strozzi), 
and differ only by a single member. However, the four families, Bischeri, 
Castellani, Peruzzi and Strozzi, do not form a clique because there is no 
marriage tie between Castellani and Bischeri. 

For the business relation there are five cliques: 

• Barbadori Castellani Peruzzi 
• Barbadori Ginori Medici 
• Bischeri Guadagni Lamberteschi 
• Bischeri Lamberteschi Peruzzi 
• Castellani Lamberteschi Peruzzi 
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Eight of the sixteen families belong to at least one clique On the business 
relation, and some families (for example Lamberteschi, Bischeri, and 
Peruzzi) belong to several cliques on this relation. As we saw with the 
marriage relation, the cliques are small (no more than three members) 
and there is considerable overlap among them. However, the cliques that 
are present in the business relation are different from the cliques that are 
present in the marriage relation. 

7.2.3 Considerations 

A clique is a very strict definition of cohesive subgroup. In fact, Alba 
(1973) calls it "stingy." The absence of a single line, or in sociometric 
terms, the absence of a single tie or "choice," will prevent a subgraph 
from being a clique. In a sparse network there may be very few cliques (as 
with the marriage relation among the Florentine families). In addition, 
the sizes of the cliques will be limited by the degree of tbe nodes. This 
can be a problem if the number of ties that an actor can have is limited 
by the data collection design. For example, in a sociometric study using 
a fixed choice design in which respondents are asked to list their three 
best friends, each person can be adjacent to at most three other people. 
Thus there can be no clique with more than four members. In general, if 
actors are restricted to k ties, then there can be no clique in the resulting 
data that has more than k + 1 members. 

Early researchers were concerned with methods for detecting cliques 
in networks (Festinger 1949; Luce and Perry 1949; Luce 1950; Harary 
and Ross 1957). More recently, researchers have realized tbat cliques 
seldom are useful in analysis of actual data because the definition is too 
strict. Actual data rarel,jl contain interestin& cliques, since the absence 
of a single tie among subgroup members prevents the subgroup from 
meeting the clique definition. In addition, cliques that do occur are often 
quite smal� and overlap one another (as we have seen in the analysis of 
Padgett's Florentine families). 

An additional limitation of clique as a formalization of cohesive sub
group is that there is no internal differentiation among actors within 
a clique (Doreian 1969; Seidman and Foster 1978a, 1978b; Freeman 
1992a, 1992b). Since a clique is complete, within tbe clique all members 
are graph theoretically identical. All clique members are adjacent to all 
other clique members, thus tbere are no distinctions among members 
based on graph theoretic properties within the clique. If we expect that 
the cohesive subgroups within a network should exhibit interesting in-
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ternal structure, such as having some core actors who are more strongly 
identified with the subgroup and other peripheral actors who are less 
identified with it, then a clique might be an inappropriate definition of 
cohesive subgroup. 

On the other hand, some researchers working with large network data 
sets (that include hundreds or even thousands of actors) have found that 
there may be numerous, but largely overlapping, cliques in the group 
(Alba and Moore 1978). In such cases, the cliques themselves might 
not be very informative. Instead, the researcher might study the overlap 
among the cliques. Studying how cliques overlap is one way to focus on 
the differentiation or internal structure of subgroups within the network. 
A recent paper by Freeman (1992b) describes how to use lattices (which 
we define in Chapter 8) to study the overlap among cliques in social 
network. 

An active area of recent research is the development of methods to 
extend the definition of cohesive subgroup to make the resulting sub
groups more substantively and theoretically interesting. These methods 
weaken the notion of clique so that the subgroups are less "stingy." 
There are obviously numerous ways to loosen the definition by removing 
required properties of a subgraph. These definitions describe subgraphs 
that are not cliques, but rather, are "cliqueMiike" entItles. The '·tnck;� 
is fo develop formal mathematical definitions that have known graph 
theoretic properties, and also capture important intuitive and theoretiCal 
aspects of cohesive subgroups. Two different structural properties have 
been used to. rela.x the cliqlle notion: first, Luce (1950), and later Alba 
(1973) and Mokken ( 1979), have used properties of reachability, path 
distance, and diameter to extend the clique definition; second, Seidman 
and Foster ( 1978a) and Seidman (1981b, 1983b) used nodal degree to 
propose alternative cohesive subgroup ideas. Both of these ideas take 
the clique as a starting point, and extend it by removing one or more 
r�strictions_ We will descrihe each of these in turn. 

7.3 Snbgroups Based on Reacbability and Diameter 

Reachability is the motivation for the first cohesive subgroup ideas 
that extend the notion of a clique. These alternative subgroup ideas are 
useful if the researcher hypothesizes that important social processes occur 
through intermediaries. For example, the diffusion of information has 
been hypothesized to occur in this way (Erickson 1988). Conceptually, 
there should be relatively short paths of influence or communication 
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between all members of the subgroup. Subgroup members might not be 
adjacent, but if they are not adjacent, then the paths connecting them 
should be relatively short. 

7.3.1 n-cliques 

Recall that the geodesic distance between two nodes, denoted by d(i, j), 
is the length of a shortest path between them. Cohesive subgroups based 
on reachability require that the geodesic distances among members of 
a subgroup be smalL Thus, we can specify some cutoff value, n, as 
the maximum length of geodesics connecting pairs of actors within 
the cohesive subgroup. Restricting geodesic distance among subgroup 
members is the basis for the definition of an n-clique (Alba 1973; Luce 
1950). An n-clique is a maximal subgraph in which the largest geodesic 
distance between any two nodes is no greater than n. Formally, an 
n-clique is a subgraph with node set .N" such that 

d(i,j) :;; n for all n;,nj E .N, (7.1) 

and there are no additional nodes that are also distance n or less from 
all nodes in the subgraph. 

When n = 1, the subgraphs are cliques, since all nodes are adjacent. 
Increasing the value of n gives subgraphs in which longer geodesic 
distances between nodes are permitted. A value of n = 2 is often a 
useful cutoff value. 2-cliques are subgraphs in which all members need 
not be adjacent, but all members are reachable through at most one 
intermediary. 

Let us look at an example to illustrate n-cliques. Figure 7.2, taken 
from Alba ( 1 973) and Mokken (1979), contains a single clique, {1, 2, 3}, 
which, by definition, is a 1-clique. In this graph, there are two 2-cliques: 
{ 1 , 2, 3, 4, 5} and {2, 3,4, 5, 6}. Notice that these two 2-cliques share four 
of their five members. In addition, it is important to note that even 
though we are using a maximum geodesic distance of n = 2 to find the 
2-cliques, the first 2-clique ({I, 2, 3, 4, 5}) has a diameter of 3. The geodesic 
between nodes 4 and 5 includes node 6, which is not a member of this 
2-clique. Within this 2-clique, the shortest path between 4 and 5 is the 
path 4, 2, 3, 5, which is of length 3. Thus, n-cliques can be found in which 
the intermediaries in a geodesic between a pair of n-clique members are 
not themselves n-clique members. 
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2-c1iques: {1,2,3,4, 5} and {2, 3,4, 5,6} 
2-c1an: {2, 3, 4, 5, 6} 
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2-c1ubs : {1,2, 3,4}, {1,2,3, 5}, and {2,3,4, 5,6} 

Fig. 7.2. Graph illustrating n-cliques, n-c1ans, and n-clubs 
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Let us return to the example of marriage and business relations among 
Padgett's Florentine families to illustrate n-cliques. We used the program 
GRADAP 2.0 (Sprenger and Stokman 1989) for this analysis. There are 
thirteen 2-cliques in the marriage relation : 

• Acciaiuoli Albizzi Barbadori Medici Ridolfi Salviati Tornabuoni 
• Albizzi Bischeri Guadagni Lamberteschi Tornabuoni 
• Albizzi Bischeri Guadagni Ridolfi Tornabuoni 
• Albizzi Ginori Guadagni Medici 
• Albizzi Guadagni Medici Ridolfi Tornabuoni 
• Barbadori Castellani Medici Ridolfi Strozzi 
• Barbadori Castellani Peruzzi Ridolfi Strozzi 
• Barbadori Medici Ridolfi Strozzi Tornabuoni 
• Bischeri Castellani Peruzzi Ridolfi Strozzi 
• Bischeri Guadagni Peruzzi Ridolfi Strozzi 
• Bischeri Guadagni Ridolfi Strozzi Tornabuoni 
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• Guadagni Medici Ridolfi Strozzi Tornabuoni 
• Medici Pazzi Salviati 

There are four 2-cliques on the business relation : 

• Barbadori Bischeri Castellani Lamberteschi Peruzzi 
• Barbadori Castellani Ginori Medici Peruzzi 
• Barbadori Ginori Medici Pazzi Salviati Tornabuoni 
• Bischeri Castellani Guadagni Lamberteschi Peruzzi 

Notice that the 2-cliques are both larger and more numerous than the 
cliques found for both the marriage and business relations. Since the 
definition of an n-clique is less restrictive than the definition of a clique, 
when n is greater than I it is likely that a network will contain more 
n-cliques than cliques. It is also likely that the n-cliques will be larger 
than the cliques. 

7.3.3 Considerations 

There are several important properties of n-cliques, some of which limit 
the usefulness of this cohesive subgroup definition. Since n-cliques are 
defined for geodesic paths that can include any nodes in the graph, 
two problems might arise: first, an n-clique, as a subgraph, may have a 
diameter greater than n, and second, an n-clique might be disconnected. 
The first problem arises because the requirement that nodes be connected 
by paths of length n or less docs not require that these paths remain 
within the subgroup (Alba 1973; Alba and Moore 1978). Geodesics 
connecting a pair of nodes in an n-clique may include nodes that lie 
outside of the n-clique. Thus, the diameter of the sub graph can be 
larger than n. The second problem is that an n-clique may not even 
be connected. Two nodes may be connected by a geodesic of n or less 
which includes nodes out�ide the n-clique, and these two nodes may have 
no path connecting them that includes only n-clique members. These 
problems indicate that n-cliques are not as cohesive as we might like for 
studying cohesive subgroups (Alba and Moore 1978; Mokken 1979). 

7.3.4 n-clans and n-clubs 

One idea to "improve" n-cliques is to restrict them so that the resulting 
subgroups that are identified are more cohesive, and do not have the 
problems of n-cliques. A useful restriction is to require that the diameter 
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of an n-clique be no greater than n. Mokken (1979) has described two 
logical ways to do this. The first, which he calls an n-clan, starts with 
the n-cliques that are identified in a network and excludes those n-cliques 
that have a diameter greater than n. The second approach, called an 
n-club, defines a new entity, a maximal n-diameter subgraph. 

An n-clan is an n-clique in which the geodesic distance, dU, j), between 
all nodes in the subgraph is no greater than n for paths within the 
subgraph. The n-clans in a graph can be found by examining all n-cliques 
and excluding those that have diameter greater than n. Any n-cliques that 
include pairs of nodes whose geodesics require non-subgroup members 
are excluded from consideration. The n-clans in a graph are those n
cliques that have diameter less than or equal to n (Alba 1973; Mokken 
1979). All n-clans are n-cliques. 

An n-club is defined as a maximal subgraph of diameter n. That is, an 
n-club is a subgraph in which the distance between all nodes within the 
sub graph is less than or equal to n; further, no nodes can be added that 
also have geodesic distance n or less from all members of the subgraph. 
n-clubs are not necessarily n-cliques, though they are always subgraphs 
of n-cliques. 

Although conceptually similar, n-clans and n-clubs are somewhat dif
ferent, as illustrated in Figure 7.2. This example is taken from Alba (1973) 
and Mokken (1979), and illustrates the difference between n-cliques, n
clans, and n-clubs. For this graph, taking n = 2 results in the following 
sets: 

• 2-cliques : {1 ,2, 3,4,5} and {2, 3,4,5,6} 

• 2-clan: {2, 3, 4, 5, 6} 

• 2-clubs: {1, 2, 3, 4}, {1, 2, 3, 5}, and {2, 3,4, 5, 6} 

First, consider the 2-cliques and 2-clans. Since the 2-clique {I, 2, 3, 4, 5} 
has diameter greater than 2 (the distance from 4 to 5 is equal to 3) it 
is not an 2-clan. The 2-clique {2, 3, 4, 5, 6} is a 2-clan since its diameter 
is not greater than 2. Now, consider the 2-clubs. The 2-clubs {I, 2, 3,4} 
and {I, 2, 3, 5} both have diameter equal to 2, and are maximal, since no 
node can be added to either subgraph without increasing its diameter. 
Notice that each of these 2-clubs is a subgraph of the 2-clique {I, 2, 3,4, 5} 
(whose diameter is greater than 2). Finally, the 2-club {2, 3, 4, 5, 6} has a 
diameter of 2 and is maximal. 

As this example illustrates, 2-clubs are either 2-cliques, or are subgraphs 
of 2-cliques. Mokken (1979) demonstrates that all n-clans are also n-
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cliques, and all n-clubs are contained within n-cliques. Furthermore, all 
n-clans are also n-clubs, though there can be n-clubs that are not n-clans. 

As Sprenger and Stokman (1989) have noted, "hardly anybody" has 
used n-clans and n-clubs, and more research is needed on these cohesive 
subgroup ideas. The n-clans in a social network are relatively easy to find 
by examining the n-cliques, and eliminating those with diameter greater 
than n. The n-c1ubs are difficult to find, and often routines for n-clubs 
are not included in standard network analysis packages. Therefore, in 
the following example we restrict our attention to n-clans. 

An Example. We will use the marriage and business relations 
for Padgett's Florentine families to illustrate n-clans. For the business 
relation, all of the four 2-cliques have a diameter that is 2 or less, and 
therefore these four 2-cliques are also 2-clans. For the marriage relation, 
five of the 2-cliques have diameter greater than 2, so they are excluded 
from the list of 2-clans. This leaves eight 2-clans: 

• Acciaiuoli Albizzi Barbadori Medici Ridolfi Salviati Tornabuoni 
• Albizzi Bischeri Guadagni Lamberteschi Tornabuoni 
• Albizzi Ginori Guadagni Medici 
• Albizzi Guadagni Medici Ridolfi Tornabuoni 
• Barbadori Castellani Medici Ridolfi Strozzi 
• Bischeri Castellani Peruzzi Ridolfi Strozzi 
• Bischeri Guadagni Ridolfi Strozzi Tornabuoni 
• Medici Pazzi Salviati 

The difference between the 2-cliques and the 2-clans on the marriage 
relation is that the five 2-cliques with diameter greater than 2 are excluded. 
For example, the diameter of the 2-clique {Barbadori, Medici, Ridolfi, 
Strozzi, Tornabuoni} is greater than 2, since the geodesic between Strozzi 
and Barbadori (which is of length 2) includes Castellani (who is not in 
this 2-clique). 

7.3.5 Summary 

The three definitions of cohesive subgroups discussed in this section are 
primarily motivated by the property of reachability among the nodes in 
a subgraph. An n-clique simply requires that there is some short path 
(geodesic) between subgroup members, though this short path may go 
outside the subgraph. An n-clique may be seen as too loose a definition 
of cohesive subgroup, and restrictions requiring geodesic patbs to remain 
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within the subgroup can be applied by requiring the subgraph to have a 
given maximum diameter. n-clubs and n-clans are two possible definitions 
that have the desired restrictions. 

As Erickson (1988) has noted, cohesive subgroup definitions based 
on reacbability are important for understanding "processes that operate 
througb intermediaries, sucb as the diffusion of clear cut and widely 
salient information" (Erickson 1988, page 108). In studying network 
processes such as information diffusion that "flow" through interme
diaries, cohesive subgroups based on indirect connections of relatively 
short paths provide a reasonable approach. 

A related cohesive subgroup idea is influence among subgroup mem
bers. This idea provides the motivation for Hubbell's (1965) adaptation 
of economic input-output models to sociometric data. Hubbell argues 
that ties between actors are "channels for the transmission of influence" 
(1965, page 377). Influence occurs both through direct contact and 
througb indirect cbains of contact via other actors. The goal is to iden
tify subgroups of actors among whom there is a relatively strong mutual 
influence, whether the influence is direct or indirect. Hubbell's approach 
relies on measures of influence based on a weighting of adjacencies and 
paths of influence, and a partitioning of actors based on the degree to 
which subgroup members mutually influence each other. 

In contrast, if one hypothesizes tbat network processes require direct 
contact among actors, and perbaps repeated, direct, contact to several 
actors, then a different cohesive subgroup definition is required. We turn 
now to subgroup methods that study cohesive subgroups by focusing on 
adjacency between actors, rather than on paths and geodesics. 

7.4 Subgroups Based on Nodal Degree 

In this section we describe cohesive subgroup ideas that are based on 
the adjacency of subgroup members. These approaches are based on 
restrictions 011 the millinlUm nUlnber of actors adjacent to each actor 
in a subgroup. Since the number of actors adjacent to a given actor is 
quantified by the degree of the node in a graph, these subgroup methods 
focus on nodal degree. Subgroups based on nodal degree require actors to 
be adjacent to relatively numerOUS other subgronp members. Thus, unlike 
the clique definition that requires all members of a cohesive subgroup 
to be adjacent to all other subgroup members, these alternatives require 
that all subgroup members be adjacent to some minimum number of 
other subgroup members. 



264 Cohesive Subgroups 

2 

.-------�-------. 4 
3 

Fig. 7.3. A vulnerable 2-clique 

Subgroups based on adjacency between members are useful for under
standing processes that operate primarily through direct contacts among 
subgroup members. For example, Erickson hypothesizes that "multiple 
redundant channels of communication" will be related to the accuracy of 
information and the recognizability of subgroups (Erickson 1988, page 
108). 

These definitions arise in part because of the "vulnerability" of n
cliques. Seidman and Foster (1978) observed that n-cliques often are not 
robust. One measures robustness by considering "the degree to which the 
structure is vulnerable to the removal of any given individual" (Seidman 
and Foster 1978, page 142). Robustness is often assessed using measures 
of connectivity (see Chapter 4). Robust subgraphs are little affected by 
the removal of individual nodes. For example, consider the 2-clique in 
Figure 7.3 consisting of nodes 1,2,3, and 4. Although all pairs of nodes 
are within path distance 2 of each other, these paths all contain node 3. 
Node 3 is critical for the connections between other nodes. Furthermore, 
1,2, and 4 are not connected to each other through any paths that do 
not contain 3. This 2-clique is vulnerable to the removal of node 3. 

The possible lack of robustness of n-cliques was one consideration that 
led to the proposal of an alternative subgroup definition. This alternative 
definition, the k-plex, builds on the notion that cohesive subgroups 
should contain sets of actors among whom there are relatively numerous 
adjacencies (Seidman 1978; Seidman and Foster 1978). 
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A k-plex is a maximal subgraph containing g, nodes in which each node 
is adjacent to no fewer than g, - k nodes in the subgraph. In other 
words, each node in the subgraph may be lacking ties to no more than k 
subgraph members. We denote the degree of a node i in subgraph <'#, by 
d,(i). A k·plex as a subgraph in which d,(i) <: (g, - k) for all n, E .%, and 
there are no other nodes in the subgraph that also have d,(i) <: (g, - k). 
That is, the k-plex is maximal. 

Since there are g, nodes in the subgraph, and we do not consider 
loops, the degree of a node within the subgraph cannot exceed g, - 1. 
Thus, if k = 1, the subgraph is a clique (the "missing" line is the reflexive 
line from the node to itself). As k gets larger, each node is allowed 
more missing lines within the subgraph. Since nodes within a k·plex will 
be adjacent to many other members, a k·plex is more robust than an 
n-clique, and removal of a single node is less likely to leave the subgraph 
disconnected. 

Seidman and Foster (1978) discuss properties of k-plexes. An important 
property of a k-plex is that the diameter of a k-plex is constrained by 
the value of k. Seidman and Foster prove that in a k-plex of g, nodes, if 
k < (g, + 2)/2, then the diameter of <'#, is less than or equal to 2. Thus, 
if the value of k is small relative to the size of the k-plex, the k-plex will 
have a small diameter. They also note that if <'#, is a k-plex with g, nodes, 
then for any subgraph <'#k of k nodes from <'#" the set of nodes in <'#k plus 
all nodes in <'#, that are adjacent to the nodes in <'#k constitute the node 
set of the k-plex <'#,. Thus, if you take any subset of k nodes in a k-plex, 
and then consider these k nodes along with the nodes adjacent to them, 
then all nodes in the k-plex (from which the subset is drawn) either will 
be in the original subset of k nodes or will be adjacent to one of these 
nodes (Seidman and Foster 1978). 

An Example. Again, we return to the example of marriage and 
business relations for Padgett's Florentine families. We used the program 
UCINET IV (Borgatti, Everett, and Freeman 1991) for this analysis. 
Since I-plexes are the same as cliques, we will examine the 2-plexes. Aiso, 
since k=2 means that two ties may be absent, we will restrict the size 
of the 2-plexes so that we only consider subgraphs with four or more 
members. For the marriage relation there are two 2-plexes, involving 
eight families: 

• Albizzi Guadagni Medici Tornabuoni 
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• Bischeri Castellani Peruzzi Strozzi 

Within each of these 2-plexes, each family is missing at most one marriage 
tie to one of the other families (since two ties can be missing, and one 
is the undefined reflexive tie). For the business relation there are three 
2-plexes, involving six families: 

• Barbadori Castellani Lamberteschi Peruzzi 

• Bischeri Castellani Lamberteschi Peruzzi 
• Bischeri Guadagni Lamberteschi Peruzzi 

Notice that for both the marriage and the business relations there are 
relatively few 2-plexes, compared to fairly numerous 2-C\iques. 

Considerations. Choosing a useful value of k so that the resulting 
subgroups are both interesting and interpretable depends in part on the 
relationship between the sizes of the resulting subgroups and the chosen 
value of k. If the value of k is large relative to the size of a subgroup, 
then the k-plex can be quite sparse. For example, a 2-plex of size three 
might be meaningless, since all three nodes could be missing ties to k = 2 
other nodes. A 2-plex of size five could also be quite sparse, since each 
node could have two lines present and two lines absent, and still meet the 
2-plex requirement. Therefore, in practice the researcher should restrict 
the size of a k-plex so that it is not too small relative to the number of 
ties that are allowed to be missing. 

7.4.2 k-cores 

Another approach to cohesive subgroups based on nodal degree is the 
k-core (Seidman 1983b). A k-core is a subgraph in which each node 
is adjacent to at least a minimum number, k, of the other nodes in 
the subgraph. In contrast to the k-plex, which specifies the acceptable 
number of lines that can be absent from each node, the k-core specifies 
the required number of lines that must be present from each node to 
others within the subgraph. As before, we define the degree of node i 
within a subgraph, d,(i), as the number of nodes within the subgraph 
that are adjacent to i. We then define a k-core in terms of minimum 
nodal degree within the subgraph. A subgraph, '#" is a k-core if 

d,(i) :2: k for all n, E .H,. 
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A k-core is thus defined in terms of the minimum degree within a sub
graph, or the minimum number of adjacencies that must be present. 
Seidman (1983b) notes that although k-cores themselves are not nec
essarily interesting cohesive subgroups, they are "areas" of a graph in 
which other interesting cohesive subgroups will be found. 

7.5 Comparing Within to Outside Subgroup Ties 

The three general cohesive subgroup approaches discussed so far in this 
chapter are based on properties of ties within the subgroup (adjacency, 
geodesic distance, or number of ties among subgroup members). How
ever, as Seidman notes, cohesive subgroups " . . .  in social networks have 
usually been seen informally as sets of individuals more closely tied to 
each other than to outsiders" (1983a, page 97). Thus, the intuitive notion 
of cohesive subgroup derives both from the relative strength, frequency, 

. density, or closeness of ties within the subgroup, and the relative weak
ness, infrequency, sparseness, or distance of ties from subgroup members 
to nonmembers (Bock and Husain 1950; Alba 1973; Seidman 1983a; 
Sailer and Gaulin 1984; Freeman 1992a). 

As Alba (1973) has noted, there are at least two different aspects to 
the concept of a cohesive subgroup: the concentration of ties within the 
subgroup, and a comparison of strength or frequency of ties within the 
subgroup to the strength or frequency of ties outside the subgroup. Alba 
has referred to the comparison of within to between subgroup ties as the 
"centripetal-centrifugal" dimension of cohesive subgroups. This idea has 
led to subgroup definitions that compare the prevalence of ties within the 
subgroup to the sparsity of ties outside the subgroup (Alba 1973; Bock 
and Husain 1950; Freeman n.d.; Sailer and Gaulin 1984). In this section 
we describe methods for analysis of subgroups based on comparison of 
ties within the suhgroup to ties outside the subgroup. 

The fourth cohesive subgroup idea is that cohesive subgroups should 
be relatively cohesive within compared to outside. Thus, instead of 
concentrating simply on properties of the ties among members within 
the subgroup, it is necessary to compare these to properties of ties to 
actors outside the subgroup. 

It will be useful to define some additional graph properties before 
we describe these methods. Recall that a graph '!J consists of a set of 
nodes .;V, and a set of lines !I!. To start we will restrict our attention 
to dichotomous, undirected graphs. We will be interested in subsets of 
nodes .;V, f;;; .;V, and the subgraph '!J, induced by node set .;V,. In 
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addition, we can denote the snbset of nodes that are in ff but not in ff, 

as ff, = ff - ff,. ff, and ff, are mutually exclusive and exhaustive 
subsets. Now, there are three sets of lines in the graph: lines between 
nodes within the subset ff" lines between nodes in ff, and nodes in ff" 
and lines between nodes within ff,. There are g nodes in ff, g, nodes 
in ff" and g, = g - g, nodes in ff,. Therc are g(g - 1)/2 possible lincs 
in the entire graph, g,(g, - 1)/2 possible lines within ff" and (g, x g,)/2 
possible lines between members of ff, and "outsiders" belonging to ff,. 

Let us first consider an "ideal" type of subgraph which exhibits the 
most extreme realization of a cohesive subgroup in which there are ties 
within the subgroup but not between subgroup members and outsiders 
(Freeman n.d.). Such an ideal subgroup would consist of ties between 
all pairs of members within the subgroup, and no ties from subgroup 
members to actors not in the subgroup. In graph theoretic terms, such a 
subgraph is a complete component of the graph. All nodes in a complete 
component are adjacent, and there are no nodes outside the subgraph 
that are adjacent to any node in the component. Freeman has called 
such a subgraph a strong alliance. A strong alliance is also a clique, since 
it is complete and maximal. But, a strong alliance is a stricter subgroup 
definition than is a clique. There are many cliques that are not strong 
alliances. 

A strong alliance is a stricter subgroup definition than a clique and 
is clearly too restrictive for data analytic purposes. However, there are 
natural graph theoretic relaxations of the strong alliance that define 
useful cohesive subgroup methods. Also a strong alliance provides a 
formal standard against which to compare observed cohesive subgroups 
to assess their cohesiveness. 

7.5.1 LS Sets 

An LS set is a subgroup definition that compares ties within the subgroup 
to ties outside the subgroup by focusing on the greater frequency of ties 
among subgroup members compared to the ties from subgroup members 
to outsiders (Luccio and Sami 1969; Lawler 1973; Seidman 1983a; 
Borgatti, Everett, and Shirey 1990). Seidman defines an LS set as 
follows: 

a set of nodes S in a social network is an LS set if each of its proper 
subsets has more ties to its complement within S than to the outside of 
S. (Seidman 1983., page 98) 
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Consider the subgraph <"$, with node set JV" and the subsets of nodes 
that can be taken from JV,. We will define a subset of nodes taken from 
JV, as fl, so that fl c: JV,. The set of nodes, JV" is an LS set if any 
proper subset fl c: JV, has more lines to the nodes in JV, - fl (other 
nodes in the subset) than to JV - JV, (nodes outside the subset) (see 
Seidman 1983a, page 97). 

The definition of an LS set compares the frequency of ties within and 
between subsets. There are three basic sets to consider: fl c: JV, ,;; JV. 
The set fl is a "wild card" that stands for any possible subset of nodes 
that can be selected from JV, (the potential LS set). Next there are two 
additional sets that consist of nodes in one of these three sets but not in 
another: JV - JV, and JV, - fl. There are two kinds of lines to consider: 
lines from fl to JV, - fl  and lines from fl to JV - JV,. Lines within the LS 
se� JV, (that is, from any subset of the nodes in the LS set to remaining 
LS set members), should be more numerous than lines from a subset of 
nodes in an LS set to non-LS set members. 

Seidman (1983a) and Borgatti, Everet� and Shirey (1990) have de
scribed several important properties of LS sets. First, since all subsets 
of the LS set have more ties within than outside the subset, they are 
relatively robust, and do not contain "splinter" groups. This leads Bor
gatti, Everett, and Shirey (1990) to hypothesize that LS sets in a network 
will be relatively stable through time. An important relationship between 
the LS sets in a given graph is that any two LS sets either are disjoint 
(share no members) or one LS set contains the other (Borgatti, Everett, 
and Shirey 1990). Unlike cliques, n-cliques, and k-plexes, LS sels cannot 
overlap by sharing some but not all members. The fact that LS sets are 
related by containment means that within a graph there is a hierarchical 
series of LS sets. 

75_2 Lambda Sets 

Recently, Borgatti, Everett, and Shirey (1990) have extended the notion 
of an LS set. Their approach, which they call a lambda set, is motivated 
by the idea that a cohesive subset should be relatively robust in terms of 
its connectivity. That is, a cohesive subset should be hard to disconnect 
by the removal of lines from the subgraph. The extent to which a pair 
of nodes remains connected by some path, even when lines are deleted 
from the graph, is quantified by the edge connectivity or line connectivity 
of the pair of nodes (see Chapter 4). The line connectivity of nodes i 
and j, denoted A(i, j), is equal to the minimum number of lines that must 
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be removed from the graph in order to leave no path between the two 
nodes. The line connectivity of two nodes is also equal to the number 
of paths between them that contain no lines in common (the number of 
line-disjoint or line-independent paths). The smaller the value of A(i,j), 
the more vulnerable i and j are to being disconnected by removal of 
lines. The larger the value of A(i, j), the more lines must be removed from 
the graph in order to leave no path between i and j. 

Using the notion of line connectivity, Borgatti, Everett, and Shirey 
(1990) define a lambda set. The logic of the definition of a lambda set 
is similar to the definition of an LS set. Consider pairs of nodes in the 
subgraph '!i" with node set .JV",. The set of nodes, .JV"" is a lambda set if 
any pair of nodes in the lambda set has larger line connectivity than any 
pair of nodes consisting of one node from within the lambda set and a 
second node from outside the lambda set. Formally, a lambda set is a 
subset of nodes, .JV",,;.JV", such that for all i, j,k E.JV"" and I E.JV" -.JV"" 
A(i, j) > ,\(k, I). 

Since high values of A require high line connectivity within the lambda 
set, successively increasing values of A gives rise to a series of lambda 
sets in a given network. These lambda sets do not overlap unless one 
lambda set is contained within another. An advantage of lambda sets is 
that they are more general than LS sets. Any LS set in a network will 
be contained within a lambda set, and a given network is more likely to 
contain lambda sets than it is to contain LS sets (Borgatti, Everett, and 
Shirey 1990). 

One important property of lambda sets is that nodes within a lambda 
set are not necessarily cohesive in terms of either adjacency or geodesic 
distance, the two properties that are the basis for other kinds of cohesive 
subsets that we have discussed. Members of a lambda set do not need 
to be adjacent, and since there is no restriction on the length of paths 
that connect nodes within a lambda set, members of a lambda set may 
be quite distant from one another in the graph (Borgatti, Everett, and 
Shirey 1990). 

So far we have described formal definitions of cohesive subgroups. 
Now we turn to some measures of how cohesive a subgroup is. 

7.6 Measures of Subgroup Cohesion 

Several researchers have proposed measures for the extent to which 
ties are concentrated within a subgroup, rather than between subgroups 
(Bock and Husain 1950; Alba 1973; Sailer and Gaulin 1984; Freeman 
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n.d.). These measures are primarily descriptive, although Alba presents 
a probability model for his measure. The problem of assessing the 
"goodness" of an assignment of actors to cohesive subgroups within a 
network is related to issues we discuss in Chapter 16, under the topic 
of goodness-of-fit indices. In this section we present some descriptive 
measures, and leave the statistical approaches for later, after we have 
developed the necessary background (in Chapters 13 and 15). 

Bock and Husain (1950) proposed that one way to search for cohesive 
subgroups in a social network is iteratively to construct subgroups so 
that the ratio of the strength of ties within the subgroup to ties betwecn 
subgroups does not decrease appreciably with the addition of new mem
bers. They note the similarity of this analytic problem to the analysis of 
sets of test items to identify subsets of highly correlated items. If there 
are g members in the whole network, and g, members in a subgroup .;Y"." 
then a measure of the degree to which strong ties are within rather than 
outside the subgroup is given by the ratio: 

l:iE.¥S L;E.Ks Xij 
gs(gs 1) 

LiEf. L:i'j!%s Xlj 
gs(g g.) 

(7.2) 

The numerator of this ratio is the average strength of ties within the 
subgroup and the denominator is the average strength of the tics that 
are from subgroup members to outsiders. For a dichotomous relation 
the numerator is the density of the subgroup. For a valued relation the 
numerator is the average strength of ties within the subgroup. If the ratio 
is equal to 1, then the strength of ties does not differ within the subgroup 
as compared to outside the subgroup. If the ratio is greater than 1, then 
the ties within the subgroup are more prevalent (or stronger) on average 
than are the ties outside the subgroup. Bock and Husain suggest that 
cohesive subgroups of actors can be constructed by successively adding 
members to an existing subgroup. so long as the additional members do 
not greatly decrease the valne of this ratio. 

As we mentioned above, Alba (1973) views the measure in equa
tion (7.2) in terms of two separate components. The numerator is a 
measure of the cohesiveness of a subgroup, and the denominator is a 
measure of sparsity of ties to actors outside the subgroup. Alba calls 
these the "centripetal" and "centrifugal" properties, respectively. Fur
ther, he presents formulas for the probability of obtaining the density 
of a subgroup equal to or greater than the observed density, given the 
density of the graph. 
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Alba (1973) uses the hypergeometric probability function to calculate 
the probability of observing exactly L, lines in a subgraph of g, nodes, 
taken from a graph with g nodes and L lines. Equivalently, this is 
the probability of drawing a random sample without replacement of 
g,(g, - 1)/2 dyads (the number of dyads within the subgroup) and 
observing exactly L, ties present, from a graph of g(g - 1)/2 dyads and 
L = x++/2 ties. The probability that the observed number of lines in 
the subgraph is equal to q is given by the following hypergeometric 
probability (Alba 1973, page 122): 

peL, = q) = (7.3) 

Equation (7.3) is the probability of obtaining exactly q lines in the 
subgraph. The probability that we are interested in is the probability of 

q or more lines; that is, the probability of a subgraph that is as dense 
or denser than the one we observe. Thus, we must sum the probabilities 
from equation (7.3) for values of q from L" the observed number of lines 
in the subgraph, to its maximum possible, which is either g,(g, - 1 )/2, 
the possible number of lines that could be present in the subgraph, or 
L = x++/2, the observed number of lines in the graph, whichever is 
less. The formula for the probability of observing q or more lines in a 
subgraph of size g, from a graph with L lines is: 

min(L."('!-") ( � ) ( � �� ) 
peL, ;;,: q) = L ( lM::!l) . 

k=q 2 
� 2 

(7.4) 

If the calculated probability in equation (7.4) is small, then the observed 
frequency of lines within the subgraph is greater than would be expected 
by chance, given the frequency of lines in the graph as a whole. Thus, 
this probability can be interpreted as a p-value for the null hypothesis 
that there is no difference between the density of the subgraph and the 
density of the graph as a whole. 

Freeman (n.d.) provides another approach to measuring the cohe
siveness of a subgroup. Freeman's measure is based on his model of 
strict alliances (see discussion above) and the extent to which a given 
subgroup approaches that strictly defined property. Sailer and Gaulin 
(1984) discuss several alternative measures of cohesiveness of a subgroup, 
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depending on how one conceptualizes the concentration of intcl'Uctions 
within as opposed to outside the subgroup. 

So far we have described cohesive subgroup methods for dichoto. 
mous nondirectional relations. We now discuss extensions of cohesivo 
subgroups to relations that are valued or directional. These extensions 
allow the cohesive subgroup ideas discussed in the previous sections to 
be applied to a much wider range of social network data. 

7.7 Directional Relations 

Cohesive subgroup ideas can be extended to directional relations. We will 
continue to restrict our attention to dichotomous relations. Recall that a 
directional relation is one in which a tie has an origin and a destination. 
A directional relation can be represented as a directed graph. An arc 
in the directed graph is present from i to j if i --> j, or equivalently, if 
i "'chooses" j. In a sociomatrix for a directional relation xij might not 
equal Xjj. 

There are several ways to define cohesive subgroups for directional 
relations. The most straightforward way is to consider only the recipro· 
cated ties that are present in the graph (Festinger 1949; Lnce and Perry 
1949; Luce 1950). More generally, it is possible to define properties of 
connectedness for directional relations, and then use these properties to 
define cohesive subgroups for directional relations. We will discuss each 
approach in turn. 

7.7.1 Cliques Based on Reciprocated Ties 

Recall that the definition of a clique originally proposed by Festinger 
(1949) and Luce and Perry (1949) focused on directional affective reo 
lations and required that all ties between all pairs of clique members 
be reciprocated. Thus, cliques can be found in a directional relation 
by focusing only on those ties that are reciprocated (Xii = Xji = 1). 
In analyzing a directional relation, this is equivalent to symmetrizing 
the sociomatrix by taking the minimum of the entries in corresponding 
off·diagonal cells. More precisely, we can define a new nondirectional 
relation, f!(min. where 

X�in = x�in = { 1 
IJ }I 0 

if Xij = x ji = 1, 
otherwise. 
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The new relation ;rm;n contains only ties that are reciprocated (xu = 
xp = 1) or null (x;j = xp = 0). The sociomatrix representation for 
this relation is symmetric. The relation ;rm;n can then be analyzed 
using methods for finding cliques or other cohesive subgroups in a 
nondirectional relation. However, if there are few reciprocated ties the 
resulting symmetric relation will be quite sparse, and might not yield 
many cohesive subgroups. 

An Example. As an example of a clique analysis of a dichoto
mous directional relation we will consider the Friendship relation for 
Krackhardt's higb·tech managers. Recall that each manager was asked, 
"Who are your friends?" Thus, a friendship tie is directed from one 
manager to another, and friendship choices need not be reciprocated. To 
find cliques (subsets of actors among whom all choices are reciprocated), 
it is necessary to analyze only those ties that are reciprocated. This is 
accomplished by symmetrizing the sociomatrix as described above. We 
analyzed the symmetrized sociomatrix for the friendship relation using 
UCINET IV (Borgatti, Everett, and Freeman 1991). There are six cliques, 
containing nine of the managers. 

• 1 4 12 

• 4 12 17 

• 511 17 

• 5 11 19 

• 11 15 19 

• 12 17 21 

Notice that these cliques are small, containing only the minimum three 
members, and there is considerable overlap among them. 

7.7.2 Connectivity in Directional Relations 

A more flexible way to extend cohesive subgroup ideas to directional re
lations uses definitions of semipaths and connectivity for directed graphs. 
These ideas generalize the definitions of path, path distance, and connec
tivity from graphs to directed graphs, and were defined in Chapter 4. We 
will begin by briefly reviewing the two kinds of paths for digraphs and 
then use these kinds of paths to describe four ways to extend the notion 
of connectivity and n-cliques to directed graphs (Harary, Norman, and 
Cartwright 1965; Peay 1975a, 1980). 
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Recall that a path from node i to node j in a directed graph is a 
sequence of distinct nodes, where each arc has its origin at the previous 
node and its terminus at the subsequent node. Thus, a path in a directed 
graph consists of arcs all "pointing" in the same direction. The length 
of a path is the number of arcs in it. A semipath from node i to node 
j is a sequence of distinct nodes, where all successive pairs of nodes are 
connected by an arc from the first to the second, or by an arc from the 
second to the first. In a semipath the direction of the arcs is irrelevant. 
The length of a semi path is the number of arcs in it. 

There are four different ways in which two nodes can be connected by 
a path, or semipath, of n arcs or fewer. Our definitions come from Peay 
(1980, pages 390-391). A pair of nodes, i, j, is: 

(i) Weakly n-connected if they are joined by a semipath of length n 
or less 

(ii) Unilaterally n-connected if they are joined by a path of length n 
or less from i to j, or a path of length n or less from j to i 

(iii) Strongly n-connected if there is a path of length n or less from i 
to j, and a path of length n or less from j to i; the path from i 
to j may contain different nodes and arcs than the path from j 
to i 

(iv) Recursively n-connected if they are strongly n-connected, and the 
path from i to j uses the same nodes and arcs as the path from 
j to i, in reverse order 

These are increasingly strict connectivity definitions. A pair of nodes 
connected by a stricter kind of connectivity is also connected by weaker 
kinds. 

7.7.3 n-cliques in Directional Relations 

It is now possible to define four different kinds of cohesive subgroups 
based on the four types of connectivity (see Peay 1975, 1980). In each 
case, a cohesive subgroup is defined as a subgraph of three or more nodes 
that is maximal with respect to the specified property. The property is the 
kind of connectivity between the nodes in the subgraph. Since there are 
four kinds of connectivity in a directed graph, there are four definitions 
of cohesive subgroups. These are natural extensions of the definition of 
an n-clique described above. 
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(i) A weakly connected n-clique is a subgraph in which all nodes are 
weakly n-connected, and there are no additional nodes that are 
also weakly n-connected to all nodes in the subgraph. 

(ii) A unilaterally connected n-clique is a subgraph in which all nodes 
are unilaterally n-connected, and there are no additional nodes 
that arc also unilaterally n-connected to all nodes in the sub
graph. 

(iii) A strongly connected n-clique is a subgraph in which all nodes 
are strongly n-connected, and there are no additional nodes that 
are also strongly n-connected to all nodes in the subgraph. 

(iv) A recursively connected n-clique is a subgraph in which all nodes 
are recursively n-connected, and there are no additional nodes 
that are also recursively n-connected to all nodes in the subgraph. 

As with the definitions of connectivity, these are increasingly strict cohe
sive subgroup definitions. 

Finding some kinds of n-cliques in directional dichotomous relations 
is straightforward. Finding weakly connected n-cliques and recursively 
connected n-cliques requires symmetrizing the relation using the appro
priate rule, and then using a standard n-clique algorithm. Since weakly 
connected n-cliques require a semipath of length n or less between all 
members, the direction of the arcs in the semipath is irrelevant. Thus, 
we can construct a symmetric relation, f!Imax, with values xzrx. in which 
a tie is present from i to j if either i --> j or j --> i. The relation p£max is 
defined as: 

x�ax = x�ax = { I} JI 
1 if either Xij = 1 or Xji = 1, 
o otherwise. 

The n-cliques in p£max are the weakly connected n-cliques in P£. 
Recursively connected n-cliques require not only a path of length n or 

less between all pairs of members, but the paths must contain exactly 
the same nodes in the reverse order. Thus, one must only consider arcs 
in both directions. In order to find recursively connected n-cliques, one 
can construct a symmetric relation, p£m;n (as defined above), in which a 
tie in p£m;n is present only if both Xu = 1 and xp = 1. The n-cliques in 
p£m;n are the recursively connected n-cliques in P£. 

An Example. To illustrate n-cliques for a dichotomous direc
tional relation we will use the friendship relation from Krackhardt's 
high-tech managers. We only present the recursively connected 2-cliques 
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and the weakly connected 2-cliques, which, as we have discussed above, 
can be found by using an appropriately symmetrized sociomatrix, and a 
usual n-clique program (for example, in GRADAP or UCINET IV). 

There are eight recursively connected 2-cliques: 

• I 2 4  12 16 
• 1 2 4  12 17 2 1  
• I 2 1 8  21 
• I 4 8 12 17 

• 3 5 11 15 19 
• 4 5 6 11 12 17 21 
• 5 11 13 15 17 19 
• 11 14 15 19 

Seventeen of the twenty-one managers belong to at least one of the 
recursively connected 2-cliques. Since managers 7 and 9 have outdegrees 
equal to 0 on this relation (they did not choose anyone on the friendship 

relation), they cannot belong to either recursively or strongly connected 
n-cliques. 

There are four weakly connected 2-cliques: 

• I 2 3 4 5 8 9 10 11 12 15 17 19 20 21 16 6 14 7 
• I 2 3 4 5 89 10 11 12 IS 17 192021 16 6 18 
• I 2 3 4 5 8 9 10 11 12 IS 17 19 20 21 13 18 
• I 2 3 4 5 8 9 10 11 12 IS 17 19 20 21 13 14 

All of the twenty-one managers belong to at least one of the four 
weakly connected 2-cliques, and the vast majority (fifteen of the twenty
one managers) belong to all of them. Clearly, these weakly connected 

2-cliques are not very cohesive. 

7.8 Valued Relations 
Relations are often valued. Valued relations indicate the strength or 
intensity of ties between pairs of actors. For instance, social network 
data can be collected by having each person indicate their degree of 
"liking for" or "acquaintance with" each other person in a group using 
a five point rating scale. Or, one could record the number of social 
occasions at which each pair of actors were both present. Cohesive 
subgroups in valued relations focus on subsets of actors among whom 

ties are strong or frequent; thus, ties among subgroup members should 
have high values. 
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Valued relations are "represented as valued graphs. A valued graph, 

�(.;V,!E, y), consists of a set of nodes, .;V, a set of lines, !E, and a set 
of values, y, indicating the strength of each line. The value attached to 
a line codes the strength of the tie between the pair of actors. A valued 
relation can be represented as a sociomatrix where Xij is the value of 
the tie from actor i to actor j. We will assume that measurements on 
the valued relation are at least ordinal, and take on C values, such that 
o ,,; Xij ,,; C - 1, for all i and j. The highest possible value indicates the 
strongest tie between any pair of actors. Smaller values of xij indicate 

weaker ties. Thus, since the relation is assumed to be at least ordinal, 
if Xij < Xkl. the tie from i to j is weaker than the tie from k to I. For 
simplicity we will limit our attention to non directional valued relations. 

In a nondirectional valued relation the strength of the tie from actor i to 
actor j is the same as the strength of the tie from actor j to actor i. If the 
relation is nondirectional Xij = xji for all i and j, and the sociomatrix is 
symmetric. 

In general, a cohesive subgroup of actors in a valued network is a 
subset of actors among whom ties have high values. Thus, if we consider 
the values attached to the ties among subgroup members, these values 
should be relatively high. Since the values of the ties range from 0 
(indicating the weakest possible tie) to C - 1 (indicating the strongest 
tie), more cohesive subgroups will have ties with values close to C - 1 
whereas less cohesive subgroups will have ties with values lower than 
C - 1. Thus, in a valued relation we can study cohesive subgroups that 
vary in the strength of ties among members. 

In studying cohesive subgroups in valued relations we will consider a 
threshold value, c, for the value of ties within the subgroup. By increasing 
(or decreasing) the threshold value we can find more (or less) cohesive 

subgroups. Since the values of the ties range from 0 to C - 1, the 
threshold value c can take on values between 0 and C - 1. 

We will now define a Clique, n-clique, and k-plex for a valued relalion. 
We then describe how valued relations can be analyzed to study these 
cohesive subgroups. Further discussion of cliques and related ideas for 
valued relations can be found in Doreian (1969) and Peay (1974, 1975a, 
1980). 

7.8.1 Cliques, n-cliques, and k-plexes 

Let us first define a clique at level c. A clique at level c is a subgraph in 
which the ties between all pairs of actors have values of c or greater, and 
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there is no other actor outside the clique who also has ties of strength c 
or greater to all actors in the clique. Formally, a subgraph '§, with actor 
set %, is a clique at level c if for all actors i,j E %" xij ;" c, and there 

is no actor k, such that Xki ;" c for all i E %, (Peay 1975a). 
We can successively increase (or decrease) the threshold value, c, 

through the range of values 0 to C -1. By increasing the threshold value, 
we will be able to identify subgroups that are more and more cohesive, 

and by decreasing the threshold value, we will identify subgroups that 
are less and less cohesive. Using increasingly strict cutoff values leads to 

a hierarchical series of cliques. It is important to note that a clique that 
is present at a given cutoff value, c, will be a clique, or will be contained 
within a larger clique, at any less stringent cutoff value, c', where c' < c 
(Doreian 1969; and Peay 1974). 

Now, let us consider n-cliques in valued relations. In valued relations, 
n-cliques are based on the values of the geodesics between subgroup 
members. Recall that a path at level c in a valued graph is a path in 
which all lines have values of c or greater. Also, two nodes in a valued 
graph are reachable at level c if there is a path at level c between them. 
In a valued relation, an n-clique at level c requires that geodesics between 
subgroup members contain lines that have values that are all c or greater. 
Thus, an n-clique at level c in a valued graph contains members all of 
whom are reachable at level c by a path of length n or less (Peay 1975a). 
Since subgroup members are reachable at level c, there is a path at level 
c between each pair of n-clique members. 

One can also define a k-plex at level c for a valued relation. A k-plex 
at level c in a valued relation requires that all g, members of the k-plex 
have ties with values of c or greater to no fewer than g, -k of the other 
k-plex members. 

We now describe how to find cliques, n-cliques, and k-plexes in valued 
relations. 

Finding Cliques, n-cliques, and k-plexes. One way to study co
hesive subgroups in valued relations is to define one or more derived 
dichotomous relations based on the strength of the ties in the original 
valued relation (Doreian 1969). We will then be able to use the sub
group approaches for dichotomous relations to analyze valued relations 
by analyzing the derived dichotomous relations. 

Given a set of actors, %, and a valued relation, fl', we define a new 
dichotomous relation, fl'(el, such that there is a tie from aclor i to j in 
fl'(e) if the value of the tie from i to j in fl' is greater than or equal 
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to the specified value, c. In this new dichotomous relation ties are 
present among all pairs of actors who have ties in pt with values of c or 
greater. We denote this new, derived dichotomous relation as ptkl, with 
sociomatrix X(o) = {x�j)}, where 

x�:) 
= { 1 if xij � C 

I} 0 otherwise. 

For any valued relation we can define an increasingly strict series of 
cutoff values, c, that spans the range of values 0 " c " C - 1. Each 

value of c defines a dichotomous relation and its corresponding graph 
and sociomatrix. With larger values of c, ties are present in pt(o) only if 
there is a relatively strong tie between actors in pt. Thus for larger values 
of c, the relation pt(o) may be fairly sparse. For small values of c, a tie is 
present in pt(c) even if the strength of the tie in pt is relatively low, and 

thus this relation can be fairly dense. In fact, a cutoff value of c = 0 
results in a complete relation (and a complete graph) since all defined 
values of X(O) will be equal to unity. Thus, in practice, there are C - 1 
nontrivial graphs that can be defined from a valued graph with C levels. 
It is important to note that for two cutoff values, c and c', with c' < c, 
all of the ties present in pt(c) will also be present in ptk') ; in other words, 

pt(c) "includes" pt(o). 
We now illustrate cliques in a valued relation using a hypothetical 

valued graph and the dichotomous relations that can be derived from it. 

An Example. Figure 7.4 presents the sociomatrix for a valued 
relation and the graphs that can be derived from this relation. The values 
of the relation range from 0 to C - 1 = 5. Thus, there are five possible 
nontrivial graphs that can be derived from this valued relation using 
increasingly strict cutoff values. 

Consider the cliques that may be present in each derived graph, starting 
from the strictest cutoff value, c = 5. At the strictest cutoff, c = 5, there 
are no cliques. As c decreases there are more, and larger, cliques in the 
derived graphs. The results of a clique analysis of each of the five derived 
graphs are: 

• c = 5: no cliques 
• c = 4: {1 ,2,3} 
• c = 3: {1 ,2,3} 
• c = 2: { 1, 2,3} and {3,4, 5} 
• c = I: {1 , 2,3,4} and {3, 4, 5} 
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1 2 3 4 5 

1 5 4 1 0 
2 5 4 1 0 
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4 4 
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,�, ,l1$, 
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Fig. 7.4. A valued relation and derived graphs 

Notice that the clique containing nodes 1, 2, and 3 that occurs at c = 4 
continues to be a clique, or is subsumed within a larger clique, at all less 
stringent values of c. 

In general, every derived dichotomous relation defines a graph that 
can be analyzed using methods for finding cohesive subgroups, described 
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above. For example, one can analyze each of the graphs derived from 
a valued relation and study the cliques, k-plexes, or n-cliques that may 

exist in each of the graphs. Each of the C -1  graphs may (or may not) 

contain cohesive subgroups. 

Actors among whom ties have large values can appear in cohesive 

subgroups at strict cutoff levels, whereas actors among whom ties have 
small values can only appear in cohesive subgroups at less strict cut

off levels. As Doreian (1969) notes, analyzing the derived graphs for 

increasingly stringent values of c results in a hierarchical series of cohe

sive subgroups. This hierarchical series allows one to study the internal 
structure of cohesive subgroups. 

The approaches presented in this section generalize cohesive subgroup 
ideas that were initially developed for dichotomous relations and apply 
them to valued relations. Thus, the definitions of clique, n-clique, and 

k-plex remain the same, but are applied to dichotomous relations derived 
from the valued relation. An alternative approach for studying cohe
sive subgroups in valued relations is to define cohesive subgroup ideas 
specifically for valued relations (Freeman 1992a). 

7.8.2 Other Approaches for Valued Relations 

In a recent paper, Freeman (1992a) reviews sociological approaches to 
the concept of social "group" and discusses formalizations of this concept 
using data on frequency of interactions among people in naturally oc
curring communities. Data on interaction frequencies give rise to valued 
relations. Freeman's argument, expanding on ideas presented by Winship 
(1977) and Granovetter (1973), is that membership in a "group " should 

be characterized by relatively freqnent face-to-face interactions among 
members. Specifically, if actors i, j, and k are members of a "group," 
then if i and j interact frequently, and j and k interact frequently, then 

i and k should have at least some amount of interaction. This idea of 
cohesiveness of subgroups builds on Granovetter's (1973) ideas of strong 
and weak ties, and extends the ideas of transitivity and clusterability 
to valued relations. Advantages of this approach are that the resulting 
cohesive subgroups form a hierarchical series, and different subgroups 
do not overlap unless one subgroup is fully contained within another. 
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The result of a cohesive subgroup analysis is a list of subsets of actors 
within the network who meet the specified subgroup definition. For 
example, the result of a clique analysis is a list of the cliques in the 
network and the actors who belong to each clique. For a given analysis it 
might be the case that no subsets of actors meet the specified subgroup 
definition (for example, it might be that there are no cliques in a given 

network), or it might be the case that there are numerous subsets of 
actors that meet the specified subgroup definition (for example, the 
n·clique analysis of the marriage relation among Padgett's Florentine 
families resulted in thirteen 2·cliques). In any case, the researcher must 
interpret the results of the ana lysis. In this section we discuss three levels 

at which one might interpret the results of a cohesive subgroup analysis. 
These levels are the: 

(i) Individual actor 

(ii) Subset of actors 

(iii) Whole group 

In terms of individual actors, the simplest distinction is between actors 
who belong to one or more cohesive subset(s), and actors who do not 
belong to any cohesive subset. Thus, we can make a distinction between 

"members" and "non-members." One can then relate tbis distinction to 

other actor characteristics, for example, by studying whether subgroup 
umembers" differ from "non-members" in theoretically important ways. 
It could also be the case that "non-members" occupy critical locations 

between groups ; for example, they might have high betweenness central

ity. The network analysis program NEGOPY (Richards 1989a) uses a 
similar distinction to describe types of actors in a network. 

The result of a cohesive subgroup analysis can also be interpreted in 
terms of the characteristics of the members of the subsets. If the network 
data set contains information on attributes of the actors, then one can 

use these attributes to describe the subsets. For example, it might be the 

case that members of the same subgroup are more similar to each other 
than they are to outsiders. This method of interpretation was used by 

Alba and Moore (1978) to describe the composition of subgroups of elite 

decision makers. 
Finally, the result of a cohesive subgroup analysis can be used to 

describe the network as a whole. Consider two quite different ways 
that a network might be organized. On the one hand, a network could 
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be a single cohesive set. On the other hand, the network could be 
"fragmented" into two or more subgroups. In the first case, cohesive 

subgroups within the network would be largely overlapping, and would 

contain most of the actors in the network. We saw this pattern for the 
n-clique analysis of Friendship among Kackhardt's high-tech managers. 
In the second case, fragmentation of the network would show up as two 
or more cohesive subgroups that did not share members in common. 
Hence, the numbers of actors in the subgroups and the degree to which 

these subgroups overlap can be used to describe the structure of the 
network as a whole. 

7.10 Other Approaches 

All of the cohesive subgroup ideas discussed in the previous sections 
define specific graph theoretic properties that should be satisfied in order 

to identify a subset of actors as a cohesive s ubgroup. For all of these 
approaches, the analytic problem is to examine a set of social network 
data to see whether any subsets of actors meet the specified subgroup 
definition. The result is the possible assignment of actors to one or more 
cohesive subgroups. An alternative, and more exploratory, approach to 

cohesion in social networks seeks to represent the group structure in 

a network as a whole. Collections of actors among whom there are 
relatively strong ties can become more visible by displaying functions or 

rearrangements of the graphs or sociomatrices. We now describe these 
approaches. 

7.10.1 Matrix Permutation Approaches 

The earliest contributions to cohesive subgroup analysis of social net

works were concerned with systematic ways for ordering rows and 
columns of a sociomatrix to reveal the subgroup structure of a net
work (Forsyth and Katz 1946 ; Katz 1947). The subgroup structure is 
seen in the relative prevalence (or sparsity) of ties among some subsets 

of actors. An informative sociomatrix should make this subgroup struc
ture readily apparent. If there are subgroups of actors in a network 
who tend to choose each other and tend not to choose actors outside 
their subgroup, then it is very useful to rearrange the rows and columns 
of the sociomatrix so that actors in the same subgroup occupy rows 
(and columns) that are close to one another in the sociomatrix. Thus, 
there might be some "preferred ordering" of the rows and columns of 
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the sociomatrix that would best reveal the structure of the group (Katz 
1947). If one had objective criteria for this ordering, then different re
searchers could construct the same preferred sociomatrix. One could 

then inspect the rearranged sociomatrix and identify subgroups of actors 
among whom there are prevalent or strong ties. 

An important property of a good ordering of a sociomatrix is that sub
sets of actors who have strong ties to each other should occupy adjace nt 

rows (and columns), or at least should occupy rows (and columns) that 

are close in the sociomatrix. If actors who "choose" each other occupy 

rows and columns that are close in the sociomatrix, then ties that are 
present will be concentrated on the main diagonal of the sociomatrix, 
and ties that are absent will be concentrated far from the main diagonal 
of the sociomatrix. For a dichotomous relation, l 's will be close to the 
main diagonal and O's will be in the upper right and lower left of the 
sociomatrix. In analyzing a valued relation, ties with larger values will be 

concentrated along the main diagonal and ties with smaller values will 

be found in cells of the matrix that are off the main diagonal. 
The goal is to permute the rows (and simultaneously the columns) of 

the sociomatrix to concentrate "choices" along the main diagonal (Katz 
1947). Subgroups of actors who "choose" one another will then be close 

to each other in rows (columns) of the sociomatrix, and their choices will 

be close to the main diagonal of the sociomatrix. 
Since the mid-194 0's, numerous authors have proposed objective crite

ria for pennuting rows and columns of a matrix to concentrate "choices" 
along the main diagonal of a matrix (Katz 1947; Beum and Brundage 
195 0; Coleman and MacRae 196 0 ; Hubert 1985, 1987; Hubert and Ara
bie 1989; Hubert and Schultz 1976; Arabie, Hubert, and Schleutermann 
1990). Some of these methods are applicable to matrices in general, and 

are thus not restricted to sociomatrices. 

Figure 7.5 shows a small hypothetical sociomatrix, first in original 
order, and then with the rows and columns permuted so that actors who 
have ties to each other are close to one another in the sociomatrix. 

Systematic procedures for permuting rows and columns of a socioma

trix seek to minimize a function that quantifies the extent to which ties 
with high values are far from the main diagonal (assuming that high 
values code strong ties). Recall that Xu is the value of the tie from actor i 
to actor j. Furthermore, i and j index the rows/columns of the socioma
trix (for example, i = 2 refers to row 2 of the sociomatrix). Therefore, 
we would like to have large values of Xij correspond to small differences 

between the indices i and j. Small differences between the indices can be 
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X 
n) n, n3 "4 n, 

n) 0 1 0 1 
n, 0 0 1 0 
"3 1 0 0 1 
n4 0 1 0 0 
n, 1 0 1 0 

X permuted 
n, n) n3 ", n, 

n, 1 0 0 
") 1 0 0 
n3 1 1 0 0 
n, 0 0 0 1 
n4 0 0 0 1 

Fig. 7.5. A hypothetical example showing a permuted sociomatrix 

quantified either by small values of Ii - jl or by small values of (i _ j)2 

The largest values of xij should occupy cells in which the indices i and 
j are close. The smallest values of xii should occupy cells in which the 

indices i and j are far apart. 
For an entire matrix a summary measure of how close large values of 

Xij are to the main diagonal is given by : 

g g 
� � xij(i -j)2 for i i= j. 
i=l j=l 

(7.5) 

The quantity in equation (7.5) is relatively small when large values of Xii 
occupy cells of the sociomatrix with small differences between the indices 
i and j. This quantity is relatively large when large values of Xii occupy 
cells of the sociomatrix with large differences between the indices i and 

j. If the value of equation (7.5) is small, then the ordering of rows and 
columns in the sociomatrix places actors among whom there are relatively 
strong ties close to each other, as is desired. On the other hand, if the 

value of this quantity is relatively large, then the ordering of rows and 

columns i n  the sociomatrix probably is not the best possible ordering for 
revealing cohesive subgroups of actors. Katz (1947) suggests permuting 
rows and simultaneously columns of the sociomatrix to minimize this 
quantity. 

Beum and Brundage (195 0), Coleman and MacRae (196 0), and Arabie, 
Hubert, and Schleutermann (1990) suggest strategies for reordering rows 
and columns of the sociomatrix so that i and j corresponding to large 
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values of Xu are moved closer together. This problem of sociomatrix 
permutation to optimize a given quantity is an instance of the more gen
eral analysis problem of combinatorial optimization. Finding the single 
best ordering of rows and columns of a data array is computationally 
intensive. and, short of trying all possible permutations, there may be no 
guarantee that the optimum has been reached. Algorithms for permuting 
rows and columns to minimize a given objective function can be found 
in Arabie, Hubert, and Schleutermann (1990  and references therein) and 

a more general review of this data analytic approach can be found in 
Arabie and Hubert (1992). 

The result of a matrix permutation analysis is a reordering of the 

rows and columns of the sociomatrix so that actors that are close in the 
sociomatrix tend to have relatively strong ties. However, a matrix permu

tation analysis does not indicate the boundaries between, or membership 

in, any subgroups that might exist in the network. Therefore, matrix 
permutation methods do not locate discrete subgroups. These methods 
do provide a preferred ordering in which to present a sociomatrix. Nev

ertheless, it can be quite informative to present the sociomatrix with rows 
and columns permuted to suggest the subgroup structure. 

Other approaches to subgroup identification include methods for pre

senting the subgroup structure of a social network using standard data 
analytic methods to display proximities among actors. Approaches in 
this tradition use multidimensional scaling, hierarchical clustering, or 
factor analysis to represent the proximities among network actors. We 
will briefly describe multidimensional scaling and factor analysis for 
representing proximities among actors. 

7.10.2 Multidimensional Scaling 

Often the researcher is confronted with a set of network data and simply 

wishes to display the proximities among actors in the group. Such rep
resentations can be quite usefnl for understanding the internal structure 
of the group, for revealing which actors are "close" to each other, and 
for presenting possible cleavages between subgroups. Standard clustering 
and multidimensional scaling techniques can be used to represent prox

imities among actors when appropriate network measures are used as 
input. 

Multidimensional scaling has been nsed by many network analysts to 

represent proximities among actors. Just a few of the many substantive 
examples inclnde : studies of community elites (Laumann and Pappi 1973, 
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1976), naturally occurring communities (Freeman, Romney, and Freeman 
1987; Freeman, Freeman, and Michaelson 1988; Arabie and Carroll 
1989; Doreian and Albert 1989), organizational culture (Krackhardt and 
Kilduff n.d.), scientific communities (Arabie 1977), and state supreme 
court precedents (Caldeira 1988). 

Multidimensional scaling is a very general data analysis technique, 

and there are numerous texts and articles describing multidimensional 
scaling (see for example Kruskal and Wish 1978; Schiffman, Reynolds, 
and Young 1981 ;  and Coxon 1982). Multidimensional scaling seeks 
to represent proximities (similarities or dissimilarities) among a set of 
entities in low-dimensional space so that entities that are more proximate 
to each other in the input data arc closer in the space, and entities that 

are less proximate to each other are farther apart in the space. The 
usual inpu t to multidimensional scaling is a one-mode symmetric matrix 
consisting of measures of similarity, dissimilarity, or proximity between 

pairs of entities. To study cohesive subsets of actors in a network the 

input to multidimensional scaling should be some meaSUre of pairwise 
proximity among actors, such as the geodesic distance between each pair 
of actors. The output of multidimensional scaling is a set of es timated 

distances among pairs of entities, which can be expressed as coordinates 

in one-, two-, or higher-dimensional space. Results are also displayed as 

a diagram in which the coordinates are used to locate the entities in the 
resulting one-, two-, or three-dimensional space. Using multidimensional 
scaling to study cohesive subgroups shows which subsets of actors are 
relatively close to each other in a graph theoretic sense. 

An Example. To illustrate multidimensional scaling for studying 

cohesive subgroups we use the marriage relation for Padgett's Florentine 
families. Recall that this relation is dichotomous and nondirectional. 
Analyzing the sociomatrix directly using multidimensional scaling is 
unwise. Since there are only O's and l's in this matrix the multidimensional 
scaling solution would be very unstable. Instead, it is useful to compute 
a valued measure of proximity among pairs of actors. One such measure 

is the geodesic distance between pairs of actors. In our example we use 
the matrix of the geodesic distances among pairs of families as input to 
multidimensional scaling. We used GRADAP (Sprenger and Stokman 
1989) to calculate the path distances, aud SYSTAT (Wilkinson 1987) 
to do the multidimensional scaling. The Pucci family is an isolate on 
the marriage relation and thus was omitted · from the multidimensional 
scaling. The final multidimensional scaling solution in two dimensions 
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Eischen 
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Fig. 7.6. Multidimensional scaling of path distances on the marriage 
relation for Padgett's Florentine families (Pucci family omitted) 

has stress equal to 0.0198 (Kruskal, stress form 1). This result is presented 
in Figure 7.6. 

Notice in Figure 7.6 that one of the most prominent families, Medici, 
is located in the center of the plot. It is also interesting to note that the 
six families (Bischeri, Castellani, Guadagni, Lamberteschi, Peruzzi, and 
Slrozzi) identified by Kent (1978; also see Breiger and Pattison 1986) as 
being in the anti-Medici faction are, without exception, all on the right 
side of the plot. 
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7.10.3 QFactor Analysis 

Factor analysis of sociometric data waS quite widespread and influential 
in the early history of network analysis (Bock and Husain 1952; MacRae 
1960; Wright and Evitts 1961). Both direct factor analysis (in which a 
sociomatrix is input directly into a factor analytic program) and factor 
analysis of a correlation or covariance matrix derived from the rows (or 
columns) of a sociomatrix have been used to reveal aspects of network 
structure. In studying cohesive subgroups, Bonacich (1972b) shows that 
if a group contains non-overlapping subsets of actors in which actors 
within each subset are connected by either adjacency or paths, then a 
factor aualysis of the sociomatrix will reveal this subgroup structure. 
However, one should be quite cautious about using factor analysis on 

dichotomous data, since results can be quite unstable. 
Although factor analysis can be used to study cohesive subgrou ps in an 

exploratory way, the most influential and important cohesive subgroup 

ideas are those (such as cliques and related ideas) that express specific 
formal properties of cohesive subgroups and locate such subgroups that 
might exist within a network data set. 

7.11 Summary 

In this chapter we have presented methods for studying cohesive sub
groups in social networks, for dichotomous nondirectional relations, 
directional relations, and valued relations. These methods are motivated 
by theoretically important properties of cohesive subgroups, and present 
alternative ways of quantifying the idea of social group using social 
networks. We also presented methods for assessing the cohesiveness of 
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Affiliations and Overlapping 
Subgroups 

In this chapter we discuss methods for analyzing a special kind of two
mode social network that represents the affiliation of a set of actors 
with a set of social occasions (or events). We will refer to these data 
as affiliation network data, or measurements on an affiliation variable. 
This kind of two-mode network has also been called a membership 
network (Breiger 1974, 1990a) or hypernetwork (McPherson 1982), and 
the affiliation relation has also been referred to as an involvement relation 
(Freeman and White 1993). 

8.1 Affiliation Networks 

Affiliation networks differ in several important ways from the types of 
social networks we have discussed so far. First. affiliation networks are 
two-mode networks, consisting of a set of actors and a set of events. 
Second, affiliation networks describe collections of actors rather than 
simply ties between pairs of actors. Both of these features of affiliation 
networks make their analysis and interpretation somewhat distinct from 
the analysis and interpretation of one-mode networks, and lead us to 
the special set of methods discussed in this chapter. Among the impor
tant properties of affiliation networks that require special methods and 
interpretations are: 

• Affiliation networks are two-mode networks 

• Affiliation networks consist of subsets of actors, rather than 
simply pairs of actors 

• Connections among members of one of the modes are based on 
linkages established through the second mode 

291 
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• Affiliation networks allow one to study the dual perspectives of 
the actors and the events 

We will return to these ideas throughout this chapter. 
Methods for studying two-mode affiliation networks are less weIl de

veloped than are methods for studying one-mode networh. As a conse
quence, many of the methods we discuss in this chapter are concerned 
with representing affiliation networks using graph theoretic and related 
ideas, rather than with analyzing these networks. 

We begin with a review of the theoretical motivations for studying 
affiliation networks. We then discuss how affiliation networks establish 
linkages among the entities in each of the modes. We will see that we 
can begin with data on an affiliation network and derive arrays that 
are standard one-mode sociomatrices. Next, we present examples of 
analyses of the one-mode matrices that are derived from an affiliation 
network Finally, we examine what the affiliation network implies about 
the association between the actors and the events, and present two 
approaches for analyzing the two modes simultaneously. 

8.2 Background 

In this section we review some of the more influential theoretical and 
substantive contributions to the study of affiliation networks. We will also 
note some of the different motivations for studying affiliation networks 
and introduce the basic concepts that we will use in discussing affiliation 
networks. 

B.2.1 Theory 

The importance of studying affiliation networks is grounded in the the
oretical importance of individuals' memberships in collectivities. Such 
research has a long history in the social sciences, especially in sociology. 

Simmel (1950, 1955) is widely acknowledged as being among the first 
social theorists to discuss the theoretical implications of individuals' 
affiliations with collectivities (which he called social circles). In quite 
simplified form, his argument is that multiple group affiliations (for 
example with family, voluntary organizations, occupational groups) are 
fundamental in defining the social identity of individuals. He argued that 
the individual "is determined sociologically in the sense that the groups 
'intersect' in his person by virtue of his affiliation with them" (page 150). 
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Many social scientists have developed and expanded on Simmel's insights 
(Breiger 1974, 1990b, 1991; Foster and Seidman 1982, 1984; Kadushin 

1966; McPherson 1982; McPherson and Smith-Lovin 1982). 
Kadushin (1966) clarified the notion of a social circle as an important 

kind of social entity, one without a formal membership list, rules, or 
leadership. He also outlined the differences between social circles and 
other kinds of social groups. In his work, the social circle is seen as 
an unobservable entity that must be inferred from behavioral similarities 
among collections of individuals. One of Kadushin's important insights 
is that social circles provide conditions for development of interpersonal 
connections. 

Affiliation networks are especially useful for studying urban social 
structures. As Foster and Seidman (1984) observe : 

. . .  due to their size and complexity, urban social structures are never 
described either by social scientists or urban residents exclusively in 
terms of dyadic relationships. Accordingly, most anthropologists have 
recognized that an important component of urban structure arises from 
collections of overlapping subsets such as voluntary associations, ethnic 
groups, action sets, and quasi-groups . . . .  (page 177) 

To be used in social network analysis, the social occasions which define 
events in affiliation networks must be collections of individuals whose 
membership is known, rather than inferred (as in Kadushin's models of 
social circles). We assume, as did Breiger (1974), that 

usage of the term "group" is restrictive in that I consider only those 
groups for which membership lists are available - through published 
sources, reconstruction from field observation or interviews, or by any 
other means. (1974, page 181) 

Common to all of these views is the idea that actors are brought 
together through their joint participation in social events. Joint partici
pation in events not only provides the opportunity for actors to interact, 
but also increases the probability that direct pairwise ties (such as ac
quaintanceship) will develop between actors. For example, belonging 
to the same club (voluntary organization, boards of directors, political 
party, labor union, committee, and so on) provides the opportunity for 
people to meet and interact, and thus constitutes a link between indi
viduals. Similarly, when a person (or a number of people) participate 
in more than one event, a linkage is established between the two events. 
Overlap in group membership allows for the flow of information between 
groups, and perhaps coordination of the groups' actions. For example, 
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the interlock among corporate boards through sharing members might 
facilitate coordination among companies (Sonquist and Koenig 1975). 

The fact that events can be described as collections of actors affiliated 
with them and actors can be described as collections of events with which 
they are affiliated is a distinctive feature of affiliation networks. 

8.2.2 Concepts 

Because affiliation networks are different from the social networks we 
have discussed so far in this book, we will need to introduce some new 
concepts, vocabulary, and notation. Most importantly, since affiliation 
networks are two-mode networks, we need to be clear about both of the 
modes. As usual, we have a set of actors, JV = {n" n2, . . .  , ng j, as the first 
of the two-modes. In affiliation networks we also have a second mode, 
the events, which we denote by ./lt = {mj,m2, "  . , mh} . 

The events in an affiliation network can be a wide range of specific 
kinds of social occasions; for example, social clubs in a community, treaty 
organizations for countries, boards of directors of major corporations, 
university committees, and so on. When there is no ambiguity in meaning 

we will use the terms "club," "board of directors," "'party," "committee," 
and so on to describe specific kinds of events. We do not require that 
an event necessarily consist of face-te-face interactions among actors at 
a particular physical location at a particular point in time. For example, 
we could record memberships in national organizations where people do 
not have face-to-face meetings that include all members. We do require 
that we have a list of the actors affiliated with each of the events. 

In the most general sense, we will say that an actor is affiliated with 
an event, if, in substantive terms, the actor belongs to the club, attended 
the meeting, sits on the board or directors, is on the committee, went to 
the party, and so on. When there is no ambiguity, we might also say that 
the actor belongs to, was at, or is a member of an event, depending on 
the particular application. 

As we have noted, affiliation networks consist of information about 
subsets of actors who participate in the same social activities. Since 
activities usually contain several actors, rather than simply pairs of actors, 
an affiliation network contains information on collections of actors that 
are larger than pairs. Thus, affiliation networks cannot he. analyzed 
thoroughly by looking at pairs or dyads of actors or events. 

Another important property of affiliation networks is the duality in 
the relationship between the actors and the events. In emphasizing this 
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property, Breiger (1990a, 1990b, 1991) refers to such networks as dual 
networks. In the more general literature, the term "duality" is used in 
various, often imprecise, ways to refer to the complementary relationship 
between two kinds of entities. However, the duality in affiliation networks 
refers specifically to the alternative, and equally important, perspectives 
by which actors are linked to one another by their affiliation with events, 

and at the same time events are linked by the actors who are their 
members. Therefore, there are two complementary ways to view an 
affiliation network: either as actors linked by events, or as events linked 

by actors. A formal statement of the duality of the relationship between 
actors and events was given in the classic paper by Breiger ( 1974). We 
present this formal statement of the duality below. 

Analytically, the duality of an affiliation network means that we can 
study the ties between the actors or the ties between the events, or both. 
For example, in one-mode analysis focusing on ties between actors, two 
actors have a pairwise tie if they both are affiliated with the same event. 
Focusing on events, two events have a pairwise tie if one or more actors 
is affiliated with both events. When we focus on ties between actors, 
we will refer to the relation between actors as one of co-membership, or 
co-attendance. When we focus on ties between events, we will refer to 
the relation between events as overlapping or interlocking events. On 
some occasions both forms of one-mode relations are referred to as 

co-occurrence relations (MacEvoy and Freeman n.d.). 
These one-mode ties, either between actors or between events, are 

derived from the affiliation data and can be studied using methods for 
analyzing one-mode networks. However, it is often more interesting to 
analyze both modes simultaneously by studying the relationship between 
the actors and the events with which they are affiliated. Such two-mode 
analyses study the actors, the events, and the relationship between them 
at the same time. We will discuss both one-mode and two-mode analyses 
in this chapter. 

In summary, affiliation networks are relational in three ways: first, they 
show how the actors and events are related to each other ; second, the 

events create ties among actors ; and third, the actors create ties among 

events. 

8.2.3 Applications and Rationale 

Numerous research applications have employed affiliation networks, ei
ther explicitly or implicitly. The following list is a small sample: member-
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ship on a corporate board of directors (Allen 1982; Bearden and Mintz 
1987; Burt 1978/79b; Fennema and Schijf 1978/79 ; Levine 1972; Mario
lis 1975; Mintz and Schwartz 1981a, 1981b; Mizruchi 1984; Mokken and 
Stokman 1978/79; Sonquist and Koenig 1975), records of the club mem
berships of a set of community decision makers or elites (Domhoff 1975; 
Galaskiewicz 1985), memberships in voluntary organization s (McPherson 
1982), records of the academic institutions with which researchers have 
been affiliated (Freeman 1980b), ceremonial events attended by members 
of a village (Foster and Seidman 1984), committees on which university 
faculty sit (Atkin 1974, 1976), social events people attend (Breiger 1974; 
Davis, Gardner, and Gardner 1941 ; Homans 1950), high school clubs 
(Bonacich 1978), observations of collections of individuals' interactions 
(Bernard, Killworth, and Sailer 1980, 1982; Freeman and Romney 1987; 
Freeman, Romney, and Freeman 1987; Freeman, Freeman, and Michael
son 1988), trade partners of major oil exporting nations (Breiger 1990b), 
the overlap of subspecialties within an academic discipline (Cappell and 
Guterbock 1992; Ennis 1992), and the fate of Chinese political figures 
(Schweizer 1990). 

Given this wide range of applications, it is useful to note three primary 
rationales for studying affiliation networks. First, some authors argue 
that individuals' affiliations with events provide direct linkages between 
the actors and/or between the events. Second, other authors argtte that 
contact among individuals who participate in the same social events 
provides conditions under which pairwise ties among individuals become 
more likely. Third, one can view lhe interaction between actors amI 
events as a social system that is important to study as a whole. Let 
us examine each of these perspectives in more detail, and describe what 
each perspective implies for the analysis of affiliation network data. 

The first, and perhaps most common, motivation for studying affili
ation networks is that the affiliations of actors with events constitute a 
direct linkage, either between the actors through memberships in events, 
or between the events through common members. Examples of this per
spective include studies of interlocking directorates (cited above), Foster 
and Seidman's study of Thai households and ceremonies, and observa
tions of interactions between people in small face-to-face communities. 
Studies of this sort often focus on the frequency of interactions be
tween people compiled from observations or records of peoples' social 
interactions. 

Second, some researchers have treated affiliations as providing condi
tions that facilitate the formation of pairwise ties between actors. In his 
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discussion of the diffusion of innovations, Kadushin notes that "innu
ence patterns flow along the lines of social circles" (page 789). Thus, the 
affiliation of individuals with social groups provides the opportunity for 
interpersonal influence. Similarly, in his discussion of voluntary orga
nizations, McPherson (1982) states that one can "view the members of 
face-to-face organizations as groups with heightened probability of COll
tact" (page 226). Common group membership increases the probability 
of establishing pairwise ties, such as becoming acquainted or becoming 
friends. 

Feld (1981) is one of the key contributors to this perspective. He 
argues that it is important to examine the larger social context or social 
environment within which networks of ties arise, and the ways in which 
this envirorunent influences patterns in network structures (such as tran
sitivity, balance, or clustering). His idea is based on the organization of 
activities around foci. 

A focus is defined as a social, psychological, legal, or physical entity 
around which joint activities are organized (e.g., work places, voluntary 
organizations, hangouts, families, etc.). (page 1016) 

Foci are important for understanding the emergence of dyadic ties, 
because, according to Feld, "individuals whose activities are organized 
around the same focus will tend to become interpersonally tied and 
form a cluster" (1981 :1016). Thus, not only are pairwise ties mOre likely 
between people who share a focus, but these ties are likely to form 
specific kinds of network patterns, such as clusters. 

In formalizing the insights of this perspective, Freeman (1980b) has 
borrowed concepts and terminology from algebraic topology (Atkin 1972, 
1974) to express these ideas. In his analysis of the development of 
friendship among a set of social science researchers, Freeman argues that 
having been located in the same institution (university department) at 
tIie same time, or having attended conferences together, provided the 
opportunity for becoming acquainted and forming friendShips. Atkin 
( 1972, 1974) uses the term "backcloth" to refer to the structure of 
ties among the events and "traffic" to refer to the pairwise ties or 
acquaintanceships that take place on the backcloth. 

The third reason for studying affiliation networks is to model the 
relationships between actors and events as a whole system. Thus, one 
would study the structure and properties of the social system composed 
of actors' affiliations with events, and events' membership, as a whole. 
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However, there are very rew methods for studying actors and events 
simultaneously. 

Each of these three rationales implies a slightly different approach to 
data analysis and modeling. The first motivation would lead one to study 
either the one-mode network of ties between pairs of actors implied by 
their affiliations with events, or the one-mode network of ties between 
pairs of events implied by the actors they have in common. The second 
motivation implies that the researcher has measured both an affiliation 
network and a one-mode relation of pairwise ties either between actors 
or between events, and that these pairwise ties would be more likely to 
occur along lines defined by the affiliations. The third motivation would 
analyze both modes simultaneously and focus on the ties between them. 

In the next section we describe several ways to present affiliation 
networks using graph theoretic and other representations. 

8.3 Representing Affiliation Networks 

In this section we discuss several ways to represent affiliation networks. 
We start by defining a matrix that records the affiliations of a set of actors 
with a set of events. We then describe graph theoretic representations of 
affiliation networks, including a bipartite graph and a hypergraph. As 
we will see, all of these representations of affiliation networks contain 
the same information. 

8.3_1 The Affiliation Network Matrix 

The most straightforward presentation of an affiliation network is the 
matrix that records the affiliation of each actor with each event. This 
matrix, which we will call an affiliation matrix, A = {ajj}, codes, for 
each actor, the events with which the actor is affiliated. Equivalently, it 
records, for each event, the actors affiliated with it. The matrix, A, is 
a two-mode sociomatrix in which rows index actors and columns index 
events. Since there are g actors and h events, A is a g x h matrix. There is 
entry of 1 in the (i, j)th cell if row actor i is affiliated with column event 
j, and an entry of 0 if row actor i is not affiliated with column event j. 
From the perspective of the events, there is an entry of 1 if the column 
event includes the row actor, and an entry of 0 if the column event does 
not include the row actor. Formally, 
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Event 
Actor Party 1 Party 2 Party 3 

Allison 1 0 1 
Drew 0 1 0 
Eliot 0 1 1 
Keith 0 0 1 
Ross 1 1 1 
Sarah 1 1 0 

Fig. 8.1. Affiliation network matrix for the example of six children and 
three birthday parties 

ai .  = { 1 if actor i is affiliated with event j 
] 0 otherwise. 

Each row of A describes an actor's affiliation with the events. Similarly, 
each column of A describes the membership of an event. 

Figure 8. 1 gives the affiliation matrix for a hypothetical example of 
six second-grade children (the example introduced in Chapter 2) and 
their attendance at three birthday parties. In this example the actors are 
the children, and the events are the birthday parties. In Figure 8.1, a 1 
indicates that the row child attended the column birthday party. Looking 
at the first row of Figure 8.1, we see that Allison attended Parties 1 and 
3 and did not attend Party 2. Similarly, looking at column 2, we see 
that Drew, Eliot, Ross, and Sarah attended Party 2, and that Allison and 
Keith did not attend that party. 

Several properties of A are important to note. Since the l's in a row 
code the events with which an actor is affiliated, the row marginal totals 
of A, {ai+}, are equal to the number of events with which each actor is 
affiliated. If a row marginal total is equal to 0, it means that the actor 
did not attend any of the events, and if a row marginal total is equal 
to h, the total number of events, it means that the actor attended all of 
the events. Similarly, the column marginal totals, {a+j}, are equal to the 
number of actors who are affiliated with each event. A column marginal 
total equal to 0 means that the event had no actors affiliated with it, and 
a column marginal total equal to g means that all actors are affiliated 
with that event. 

8.3.2 Bipartite Graph 

An affiliation network can also be represented by a bipartite graph. A 
bipartite graph is a graph in which the nodes can be partitioned into two 
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subsets, and all lines are between pairs of nodes belonging to different 
subsets. An affiliation network can be represented by a bipartite graph 
by representing both actors and events as nodes, and assigning actors to 
one subset of nodes and events to the other subset. Thus, each mode of 
the network constitutes a separate node set in the bipartite graph. Since 
there are g actors and h events, there are g + h nodes in the bipartite 
graph. The lines in the bipartite graph represent the relation "is affiliated 
with" (from the perspective of actors) or "has as a member" (from the 
perspective of events). Since actors are affiliated with events, and events 
have actors as members, all lines in the bipartite graph are between nodes 
representing actors and nodes representing events. 

Figure 8.2 presents the bipartite graph for the hypothetical example of 
six children and three birthday parties (from Figure 8.1). Notice that, as 
required, all lines are between actors and events. 

The bipartite graph can also be represented as a sociomatrix. The 
sociomatrix for the bipartite graph has g + h rows and g + h columns. 
There is an entry of 1 in the (i, j)th cell if the row actor "is affiliated 
with" the column event, or if the row event "has as a member" the 
column actor. Letting the first g rows and columns index actors, and the 
last h rows and columns index events, this sociomatrix has the general 
form: 

The upper left g x g submatrix and the lower right h x h submatrix are 
filled with O's, indicating no "affiliation" ties among the g actors (the 
first g rows and columns) or among the h events (the last h rows and 
columns). The upper right submatrix is the g x h affiliation matrix, A, 
indicating "is affiliated with" ties from row actors to column events. The 
lower left h x g submatrix is the transpose of A, denoted by A', indicating 
whether or not each row event includes the column actor. 

Figure 8.3 gives the sociomatrix for the bipartite graph of the affiliation 
network of six children and three birthday parties (from Figure 8.2). Since 
there are g = 6 children and h = 3 parties, this sociomatrix has 6 + 3 = 9 
rows and 9 columns. 

A bipartite graph highlights some important aspects of an affiliation 
network. As is usual in a graph, the degree of a node is the number of 
nodes adjacent to it. In the bipartite graph, since lines are between actors 
and events, the degree of a node representing an actor is equal to the 
number of events with which the actor is affiliated. Similarly, the degree 
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Allison 

Drew Party 1 

Eliot 

Party 2 

Keith 

Ross Party 3 

Sarah 

Fig. 8.2. Bipartite graph of affiliation network of six children and three 
parties 

of a node representing an event is the number of actors who are affiliated 
with it. An advantage of presenting an affiliation network as a bipartite 
graph is that the indirect connections between events, between actors, 
and between actors and events are more apparent in the graph than in 
the affiliation matrix, A. Paths of length 2 or more that are obscured in 
the sociomatrix representation can be seen more easily in the graph. For 
example, in Figure 8.2 we can see that Allison and Sarah are connected 
to each other through their attendance at Party 1. 

Bipartite graphs have been used to represent affiliation networks by 
Wilson (1982), and have been generalized to tripartite graphs by Fararo 
and Doreian ( 1984). We will return to the bipartite graph below when 
we discuss reachability and connectedness in affiliation networks. 
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8.3.3 Hypergraph 

Affiliation networks can also be described as collections of subsets of 
entities. The duality of affiliation networks is apparent in this approach 
in that each event describes the subset of actors who are affiliated with 
it, and each actor describes the subset of events to which it belongs. 
Viewing an affiliation network this way is fundamental to the hypergraph 
approach. Hypergraphs were defined in general in Chapter 4. A more 
extensive discussion of hypergraphs can be found in Berge (1973, 1989). 
In this section we show how hypergraphs can be used to represent 
affiliation networks. 

Both actors and events can be viewed as subsets of entities. We begin 
with each event in an affiliation network defining a subset of the actors 
from %. Since there are h events, there are h subsets of actors defined by 
the events. Similarly, each actor can be described as the subset of events 
from J!t with which it is affiliated. Since there are g actors, there are g 
subsets of events defined by the actors. 

Recall that a hypergraph consists of a set of objects, called points, 
and a collection of subsets of objects, called edges. In a hypergraph 
each point belongs to at least one edge (subset) and no edge (subset) is 
empty. In studying an affiliation network it seems natural to start by 
letting the point set be the set of actors, %, and the edge set be the set 
of events, J!t. The hypergraph consisting of actors as the points and the 
events as the edges will be denoted by :ff = (%, J!t). In order for a set 
of affiliation network data to meet the hypergraph definition, each actor 
must be affiliated with at least one event, and each event must include at 
least one actor. 

An important aspect of the hypergraph representation is that the data 
can be described equally well by the dual hypergraph, denoted by :Yf*, by 
reversing the roles of the points and the edges. The dual hypergraph for 
an affiliation network would be :ff* = (J!t, %). In the dual hypergraph 
for an affiliation network the events are represented as points and the 
actors are represented as edges. 

To describe subsets defined either by actors or by events, we will 
introduce some notation to indicate when an event or an actor is viewed 

as a subset, and when an event or an actor is viewed as an element of a 
subset. We will use capital letters to denote subsets. Thus, when we view 
event j as a subset of actors we will denote it by Mj, where Mj ,; %. 
Similarly, when we view actor i as the subset of events with which it is 
affiliated we will denote it by N" where N, ,; J!t. 
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The hypothetical example in Figure 8.1 can be described either in 
terms of the subsets of actors who are affiliated with each event 

Ml = {nl, nS, n6} 
M2 = {n2, nJ, ns, n6} 
M3 = {n" nJ, n4,ns} 

or in terms of the subsets of events with which each actor is affiliated 

N, = {m" m3} 
N2 = {m2} 
NJ = {m" m3} 
N4 = {m3} 
Ns = {m" m2, m3} 
N6 = {m"m2}' 

These subsets can also be displayed visually by representing the entities 
in the point set as points in space, and representing the edges as "circles" 
surrounding the points they include. For example, in Figure 8.4a we 
give the hypergraph, :Yf = (%, .A), with the six children as points, and 
indicate the subsets of children defined by the guest lists of the parties as 
circles including their members. Figure 8.4b shows the dual hypergraph, 
:Yf* = (.A, %), obtained by reversing the roles of the children and the 
parties. In the dual hypergraph the parties are the points and the children 
define circles that contain the parties they attended. 

In either the hypergraph or the dual hypergraph we say that points 
are incident with edges. Thus, for affiliation networks, actors are incident 
with the events they attend, and events are incident with the actors they 
include. Returning to the affiliation matrix, A, we see that all of the 
information for the hypergraph is contained in this matrix. If actors are 
viewed as points, and events are viewed as the edges, then A describes 
which points (actors) are incident with which edges (events). For this 
reason, the affiliation matrix A has been called an incidence matrix for 
the hypergraph (Seidman 1981a). The transpose of A, denoted by A', 
presents the incidence matrix for the dual hypergraph, and shows which 
points (representing events) are incident with which edges (representing 
actors). 

One of the shortcomings of a hypergraph for representing an affiliation 
network is that both the hypergraph and the dual hypergraph are required 
to show simultaneously relationships among actors and events (Freeman 
and White 1993). 
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Party 3 

Party 2 

a. Hypergraph: .ff(£..ff) 

Drew 

h. Dual Hypergraph: f*(JI,,A/) 

Fig. 8.4. Hypergraph and dual hypergraph for example of six children 
and three parties 

Hypergraphs have been used by Seidman and Foster to study the social 
structure described by Thai households' attendance at ceremonial events 
(Foster and Seidman 1984) and to describe urban structures (Foster and 
Seidman 1 982). McPherson (1982) has used hypergraphs to examine 
participation in voluntary organizations, and has discussed issues of 
sampling and estimation. Berge (1973, 1989) presents a mathematical 
discussion of graphs and hypergraphs. 
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8.3.4 OSimplices and Simplicial Complexes 

Simplices and simplicial complexes provide yet another way to represent 
affiliation networks using ideas from algebraic topology. This approach 
draws heavily on the work by Atkin (1972. 1974), and exploits a more 
geometric, or topological, interpretation of the relationship between the 
actors and the events. 

A simplicial complex is useful for studying the overlaps among the 
subsets and the connectivity of the network, and can be used to define the 
dimensionality of the network in a precise mathematical way. Simplicial 
complexes can also be used to study the internal structure of the one
mode networks implied by the affiliation network by examining the 
degree of connectivity of entities in one mode, based on connections 

defined by the second mode. Although simplices and simplicial complexes 
are considerably more complex than hypergraphs, they share much in 
common with a hypergraph representation, as has been noted by Seidman 
(1981a) and Freeman (1980b). 

Simplicial complexes have been used to study social networks by Gould 
and Gatrell ( 1979), who described a soccer match; by Freeman (1980b), 
who looked at the development of friendships in a scientific community 
against the "backcloth" of shared contacts ; and by Doreian (1979a, 1980, 
1981), who used this methodology to study conflict within a group, and 
to examine the evolution of group structure through time. 

8.3.5 Summary 

The two-mode sociomatrix, the bipartite graph, and the hypergraph are 
alternative representations of an affiliation network. All contain exactly 
the same information and thus any one can be derived from another. 
Each representation has some advantages. The sociomatrix is an effi
cient way to present the information and is most useful for data analytic 
purposes. Representing the affiliation network as a bipartite graph high
lights the connectivity in the network, and makes the indirect chains of 
connection more apparent. The subset representation in a hypergraph 
makes it possible to examine the network from the perspective of an 
individual actor or an individual event, since an actor's affiliations Of an 
event's members are listed directly. However, the hypergraph and bipar
tite graph can be quite unwieldy when used to depict larger affiliation 
networks. Since there is no loss or gain of information in one or another 
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representation, the researcher's goals should guide selection of the best 
representation. 

8.3.6 An example: Galaskiewicz's CEOs and Clubs 

As an example of an affiliation network, we will use the data collected by 
Galaskiewicz on chief executive officers (CEOs) and their memberships 
in civic clubs and corporate boards (described in Chapter 2). The 
affiliation network matrix, A, for this affiliation network is presented in 
the Appendix. This data set consists of a subset of twenty-six CEOs and 
fifteen clubs from Galaskiewicz's data. These are the fifteen largest clubs 
and boards and the most "active" twenty-six CEOs. 

8.4 One-mode Networks 

Substantive applications of affiliation networks often focus on just one 
of the modes, either the actors or the events. For example. research on 
interlocking directorates usually studies corporate boards of directors (as 
events) and the ways that these boards overlap by sharing members. The 
members are important in that they serve as links between corporate 
boards. In contrast, research on interactions among people focuses on 
the frequency with which pairs of people interact. The occasions on 
which people interact (the events) are only important in that they link 
people. Such one-mode analyses of actors or of events use matrices 
derived from the affiliation matrix, A, or use graphs defined by these 
one-mode matrices. 

One-mode analyses require "processing" the affiliation network data 
to give the ties between pairs of entities in one mode based on the 
linkages implied by the second mode. Both of these one-mode relations 
are nondirectional and valued. 

8.4.1 Definition 

First, suppose we want to consider the number of events shared by pairs 
of actors. Returning to the affiliation network matrix, we see that two 
actors who are affiliated with the same event will both have 1's in the 
same column of their re�pective rows in A. If actors i and j are both 
affiliated with event, k, then aik = a jk = 1. Thus, counting the number of 
times that two actors have 1's in the same columns gives the number of 
events the two actors have in common. The number of co-memberships 
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for actors i and j is equal to the number of times that aik � ajk � 1 
for k � 1, 2, . . . , h. Let us define xi} as the number of events with which 
both actors i and j are affiliated. We use the superscript Ji,r to indicate 
that the ties on this relation are between the actors in JV. We can see 
that xC' takes on values from a minimum of 0, if actors i and j are not 
affiliated with any of the same evenls, to a maximum of h, if actors i 

and j are both affiliated with all of the events. Furthermore, this count 
is symmetric ; XiI' = Xjr· Formally, we can express each value of xf[ as 
the product of the corresponding rows in A :  

The product, 0ikajko is equal to 1 only if both actors i and j are affiliated 
with event k, and is equal to 0 if either one or both of the actors is not 
affiliated with event k. 

We can summarize the co-membership frequencies in a g x g socioma
trix, XX � (Xi)}, whose entries record the number of events each pair 
of actors shares. The relationship between the sociomatrix for the co
membership relation, Xx, whose entries indicate the number of events 
jointly attended by each actor, and the affiliation matrix, A, that indicates 
which events each actor is affiliated with, can be expressed concisely in 
matrix notation. Denoting the transpose of A as A', the sociomatrix X x 
is given hy the matrix product of A and A' : 

(8.1) 

The matrix XX records the co-membership relation for actors. It is a 
symmetric, valued sociomatrix, indicating the number of events jointly 
attended by each pair of actors. In contrast to a usual sociomatrix, the 
values on the diagonal of XX are meaningful. These diagonal entries 
count the total number of events attended by each actor; x{ � ai+. 

Now, consider the number of actors who are affiliated with each pair 
of events. Studying the overlap of events requires comparing the columns 
of the affiliation matrix, A. Two events that have members in common 
will have I's in the same rows. Looking at the affiliations of a given actor, 
i, with two events, k and I, we see that if aik � ail � 1 then events k and 1 
both include actor i. Counting the number of times that aik � ail � 1 for 
i = 1 , 2, . . .  : g gives the number of actors included in both events k and 
l. We will let x;!r be the number of actors who are affiliated with both 
events k and l. We use the superscript At to indicate ties on this relation 
are between events in At. If events k and 1 have no actors in common 
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then x({ takes on its minimum value of O. If aU actors are affiliated with 
the two events, then x({ wiJI be equal to g, its maximum possible value. 
More formaUy, each value of x({ is the product of the corresponding 
columns in A :  

We can now define an h x h sociomatrix, X ..It  = (x({), that records the 
number of actors each pair of events has in common. The relationship 
between the sociomatrix, X..It, and the affiliation network matrix, A, is 
expressed in matrix notation by: 

X·1f = A'A. (8.2) 

The matrix X..It is a one-mode, symmetric, valued sociomatrix indicating 
the number of actors that each pair of events shares. The values on the 
diagonal of X..It are the total number of actors who are affiliated with 
each event; x{f = a+k. 

It is important to note that, together, equations (8.1) and (8.2) express 
the duality of actor co-memberships, X.K, and event overlaps, X·It, as 
functions of the affiliation matrix, A. The affiliation matrix, A, uniquely 
defines both the overlaps between events and the co-memberships of 
actors. Thus, the formal duality of the relationship between actors and 
events is expressed in the pair of equations (8.1) and (8.2) (Breiger 1974). 

Co-membership matrices are quite common in social network appli
cations, though this might not be obvious at first glance. One common 
form of co-membership data is the count of the number of interactions 
observed between each pair of actors in a network. InitiaUy, such data 
consist of observations of which subsets of actors are interacting at each 
observational time point. These observational data are affiliation net
works in which each subset of interacting actors constitutes an event. 
The one-mode sociomalrix, Xx, derived from these observations con
tains pairwise interaction frequencies that are essentiaUy co-membership 
frequencies. 

8.4.2 Examples 

We now illustrate the actor co-membership matrix, XJiI, and the event 
overlap matrix, X..It, using both the hypothetical example of six children 
and three birthday parties and Galaskiewicz's data on CEOs and their 
membership in clubs and corporate boards. 
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nl "2 n3 n4 "5 n6 

"I 2 0 1 1 2 1 
", 0 1 1 0 1 1 
n3 1 1 2 1 2 1 
"4 1 0 1 1 1 0 
", 2 1 2 1 3 2 
n, 1 1 1 0 2 2 

Fig. 8.5. Actor co-membership matrix for the six children 

ml m, m3 

ml 3 2 2 
m2 2 4 2 
m3 2 2 4 

Fig. 8.6. Event overlap matrix for the three parties 

First consider the six children and their attendance at three birthday 
parties, presented in Figure 8.1 .  Figure 8.5 gives the co-membership 
matrix, X Y, for this example. Since there are g = 6 children, X Y is a 
square, 6 x 6 sociomatrix. From this matrix we see that Allison (nl) and 
Drew (n,) attended no parties together; xli = O. However, Allison and 
Ross (n5) attended two parties together. No pair of children attended 
more than two parties together (2 is the largest off-diagonal value in 
the matrix). The diagonal entries show that Ross attended the most 
parties (X5� = 3) and Drew and Keith each attended only one party 
(X2'i = X4'4 = 1). Figure 8.6 shows the event overlap matrix, X·.tI, for the 
example in Figure 8.1 .  This matrix shows that all pairs of parties shared 
two children. The largest parties were 2 and 3, with four children each. 

Now let us illustrate the actor co-membership and event overlap ma
trices for Galaskiewicz's CEOs and clubs network. First, consider the 
co-membership matrix for actors. Figure 8.7 presents the co-membership 
matrix, X.¥, for the twenty-six CEOs. This 26 x 26 matrix records for 
each pair of CEOs the number of clubs or corporate boards to which 
both belong. Focusing on the diagonal entries, we see that the number 
of memberships for the CEOs in this sample ranges from 2 to 7. CEO 
number 14 belongs to 7 of the fifteen clubs and boards, more than any 
other CEO. Considering the off-diagonal entries, we see that the number 
of co-memberships for pairs of CEOs ranges from 0 to 5. 

We can also study the overlap among the clubs. The event overlap 
matrix, X.H, is presented in Figure 8.8. This 15 x 15 matrix records, for 
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each pair of clubs, the number of CEOs in this sample of twenty-six who 
belong to both clubs. The diagonal entries in the event overlap matrix 
record the number of CEOs in this sample who belong to each club or 
board. We can see that Club 3 is the largest with 22 CEOs, and there 
are three clubs or boards with only 3 CEOs. Looking at the off-diagonal 
entries, the number of overlaps in club memberships ranges from a low 
of 0 to a high of 11  (for Clubs 2 and 3). It is interesting to note that Club 
2 has 1 1  members (xt, = 11 )  all of whom are also members of Club 3 
(xt, = 1 1). Thus, for this sample of CEOs, the membership of Club 2 is 
completely contained within the membership of Club 3. There are other 
inclusion relationships among clubs in this example. 

We next discuss properties of affiliation networks, including properties 
of the one-mode networks of actors and of events, and of the two-mode 
affiliation network. 

8.5 Properties of Affiliation Networks 

In this section we define and describe several properties of affiliation 
networks and show how these properties can be calculated from the 
affiliation matrix, A, or from the one-mode sociomatrices, X.ff and X.ll 
We first consider properties of individual actors or events (including 
rates of participation for actors and the size of events) and then discuss 
properties of networks of actors and/or of events (including the density 
of ties among actors or among events and the connectedness of the 
affiliation network). 

8.5.1 Properties of Actors and Events 

Some simple properties of actors and events can be calculated directly 
from the affiliation matrix or from the one-mode sociomatrices. In this 
section we consider rates of participation by actors and the size of events. 

Rates of Participation. One property of interest is the number 
of events with which each actor is affiliated. These quantities are given 
either by the row totals of A or the entries on the main diagonal of 
X.ff. Thus, the number of events with which actor i is affiliated is given 
by a,+ = 2::; aij = xii· The number of events with which an actor is 
affiliated is also equal to the degree of the node representing the actor in 
the bipartite graph. 
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2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 3 0 2 3 0 1 1 1 1 1 0 0 0 0 1 
2 0 1 1  11 2 1 3 0 1 1 0 3 3 3 2 6 
3 2 11  22 8 3 4 2 3 5 1 4 4 4 3 8 
4 3 2 8 12 1 1 3 2 4 3 3 2 2 0 4 
5 0 1 3 1 3 0 1 0 1 0 1 1 0 0 1 
6 1 3 4 1 0 4 0 1 0 0 0 0 1 1 3 
7 1 0 2 3 1 0 4 0 1 1 0 0 0 0 0 
8 1 1 3 2 0 1 0 4 0 1 0 0 0 1 1 
9 1 1 5 4 1 0 1 0 6 0 0 1 1 0 1 

10 1 0 1 3 0 0 1 1 0 3 1 0 0 0 0 
11  0 3 4 3 1 0 0 0 0 1 4 2 1 0 3 
12 0 3 4 2 1 0 0 0 1 0 2 5 2 0 3 
13 0 3 4 2 0 1 0 0 1 0 1 2 5 1 3 
14 0 2 3 0 0 1 0 1 0 0 0 0 1 3 0 
15 1 6 8 4 1 3 0 1 1 0 3 3 3 0 9 

Fig. 8.8. Event overlap matrix for clubs from Galaskiewicz's CEOs and 
clubs data 

As McPherson (1982) has noted, this qnantity is used quite frequently 
by researchers who are interested in people's rates of participation in 
social activities. For example if one were studying memberships in 
voluntary organizations, these totals would give the number of voluntary 
organizations to which each person belongs. 

One can also consider the average number of events with which actors 
are affiliated. The mean number of memberships for actors is calculated 
as: 

"g "h . . "g % _ ui L.J j au a++ �i Xii aj+ = = -- = . 
g g g 

This quantity gives the mean rate of affiliation for actors, or the mean de
gree of actors in the bipartite graph. It could be used to compare people's 
rates of participation in voluntary organizations between communities. 

Size of Events. One might also be interested in the size of events. 
The size of each event is given by either the column totals of A or the 
entries on the main diagoT'ol of X..ll. Thus, a+j = I:r a'j = xff gives the 
number of actors affilia\._ ,ith event j. The size of an event is equal to 
the degree of the node representing the event in the bipartite graph. 

One can also consider the average size of the events. The mean number 
of actors in each event is calculated as: 

"g "h "h ..II 
_ L..fI L.J J al] a++ L.JJ X jj a+] = h = h = -h-
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This quantity gives the average number of actors in each event, or the 
mean degree of nodes representing events in the bipartite graph. It could 
be used to study the average sizes of clubs or voluntary organizations 
in different communities. Sometimes the size of the events is constrained 
by the data collection design or by external factors. For example, a 
corporation may require that its board of directors be made up of a fixed 
number of people. 

An Example. To illustrate rates of participation for actors and 
the size of events, consider Galaskiewicz's CEOs and clubs data. The 
mean number of club memberships for CEOs in this sample is equal 
to L:;�1 x{{/g � 98/26 � 3.769. Thus, on average, each CEO belongs 
to 3.769 of the fifteen clubs in this sample. The mean size of clubs is 
equal to L:;�1 xff /h = 98/15 = 6.533. Thus, on average each club has a 
membership of 6.533 CEOs from this sample. 

These measures of the rates of participation for actors or the size 
of events are appropriate for describing affiliation networks when we 
assume that all actors and events of interest are included in the data 
set. However, if the g actors are considered as a sample from a larger 
population (as in the subset of Galaskiewicz's CEOs and clubs data that 
we analyze here) then other measures are necessary in order to estimate 
the mean size of the events in the population. Similarly, if the h events 
are a sample from a population of events, then one must estimate the 
rates of affiliation for actors. Issues of sampling and estimation for 
affiliation networks are discussed in McPherson (1982) and Wasserman 
and Galaskiewicz (1984). 

We now turn to properties of the one-mode networks and of the 
affiliation network. 

8.5.2 Properties of One-mode Networks 

In this section we describe properties of one-mode networks. We first 
consider the density of ties among actors and among events. We then 
discuss the reachability and connectedness of the affiliation network. 

Density. Since the density of a one-mode network is a function 
of the pairwise ties between actors or between events, we will first 
consider these pairwise ties before defining and discussing the density of 
the one-mode networks derived from an affiliation network. 
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In  studying overlaps between events it is important to note that the 
number of overlap ties between events is, in part, a function of the 
number of events to which actors belong. Similarly, the number of co
membership ties between actors is, in part, a function of the size of the 
events (McPherson 1982). Since an actor only creates a tie between a 
pair of events if it belongs to both events, an actor who belongs to only 
one event creates no overlap ties between events. An actor who belongs 
to exactly two events creates a single tie (between those two events), an 
actor who belongs to three events creates three ties (between all pairs of 
events from among the collection of three events to which it belongs), 
and so on. In generaL an actor who belongs to a,+ events creates 
a,+(a,+ - 1)/2 pairwise ties between events. Similarly, events create ties 
among the actors who are their members. An event with a single member 
creates no co-membership ties between actors. In general, an event with 
�j members creates a+j(a+j - 1)/2 ties between pairs of actors. Thus, 
the rates of niembership for actors influence the number of ties between 
events, and the sizes of the events influence the number of ties between 
actors. 

In a substantive context, McPherson and Smith-Lovin ( 1982) discuss 
how differences in the sizes of men's and women's voluntary organiza
tions influence differences between men and women in the potential for 
establishing useful network contacts. Larger organizations provide more 
potential contacts for their members, and men typically belong to larger 
organizations than do women. 

Now let us consider the density of ties in the one-mode networks of 
actor co-memberships and event overlaps. Density was defined and dis
cussed in Chapter 4. Here we will focus on calculation and interpretations 
of density for affiliation networks. Since both the. co-membership and 
overlap relations are initially valued, we will consider both the density 
of the valued relation and the density of the dichotomous relation that 
can be derived by considering simply whether ties are present or absent. 
In either case, the density of a relation is the mean of the values of 
the pairwise ties. For a dichotomous relation, density is interpreted as 
the proportion of ties that are present. For a valued relation, density is 
interpreted as the average value of the ties. To begin, let us consider the 
valued relations. 

The density of a valued graph is the average value attached to the 
lines in the graph. For the co-membership relation defined on actors, the 
density, denoted by d(.A') (with the subscript .;V indicating that it is the 
density of ties among the actors in .;V), is calculated by: 
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"g "g % L\. _ L..d=l L...j=l xi) 

IS) - g(g _ 1 )  
, (8.3) 

where i i= j. The value of !l(%) for the co-membership relation can be 
interpreted as the mean number of events to which pairs of actors belong. 
Values of !l(%) range from 0 to h. 

For the overlap relation among events the density L\.(...It) (where the 
subscript indicates that the density is among events in JIt) is defined as: 

"h "h A 
!l - �k�[ �l�l Xkl (A) - h(h - l) , (8.4) 

where k i= 1. The value of d(A) for the overlap relation can be interpreted 
as the mean number of actors who belong to each pair of events. d(A) 
takes on values from 0 to g. 

It is often useful to consider simply whether a tie is present or absent 
between a pair of actors or between a pair of events. For example, we 
might be interested in whether each pair of actors was affiliated with one 
or more of the same events, or whether each pair of events shared at least 
one actor. These relations can be studied by dichotomizing the valued 
relation of co-membership or of event overlap. In the dichotomous 
relation a tie is coded as present if the original value of the tie is greater 
than or equal to 1, and absent if the original value of the tie is equal to O. 
We can then consider the density of each new dichotomous relation. The 
density of the dichotomous actor co-membership relation is interpreted as 
the proportion of actors who share membership in any event. The density 
of the dichotomous event overlap relation is interpreted as the proportion 
of events that share one or more members in common. These densities 
can be calculated using the formulas given above or in Chapter 4. 

Density for both valued and dichotomous relations has been used to 
study affiliation networks. (For the first see Breiger 1990b, and for the 
second see McPherson 1982). McPherson (1982) discusses estimation and 
interpretation of the density of memberships in voluntary organizations 
collected using surveys. Breiger (1990b) discusses the relationship between 
the density of ties between actors and the density of ties between events. 
Interestingly, he demonstrates that, for the dichotomous relation in which 
ties are coded as present or absent, the co-membership relation can have 
a density equal to 1, while, for the same affiliation network, the density of 
the dichotomous event overlap relation can be less than 1. To illustrate, 
consider a simple affiliation network in which the events consist of all 
possible subsets of two actors. Thus, each pair of actors shares exactly 
one event in common, and the density of the dichotomous co-membership 



8.5 Properties of Affiliation Networks 

relation is equal to 1. However, if there are more than three actors, then 
the density of the dichotomous event overlap relation must be less than 
1, since there are some events that do not share any members. 

An Example: Galaskiewicz's CEOs and Clubs. We will use Ga
laskiewicz's data on CEOs and their memberships in clubs and boards to 
illustrate the density of ties among actors and among events. We will use 
both the valned and dichotomous relations of actor co-memberships and 
event overlaps. First consider the co-membership ties among the CEOs. 
The sociomatrix for the valued co-membership relation is presented in 
Figure 8.7. The density of this valued relation is Ll(X) = 1.412. This means 
that on average, pairs of CEOs share memberships in 1.412 clubs. The 
dichotomous co-membership relation among the CEOs records whether 
or not each pair of CEOs both belong to any of the same clubs (coded 
1)  or not (coded 0). The density of this relation is Ll(X) = 0.874. This 
means that 87.4% of the pairs of CEOs were co-members of one or more 
of the clubs in the sample. 

For the valued relation of overlap between clubs (presented in Fig
ure 8.8), the density is Ll(Jt) = 1.486. Thus, on average, each pair of 
clnbs shares 1.486 CEOs (from this sample of CEOs). For the dichoto
mous relation, coding whether or not each pair of clubs shares one or 
more members, the density is Ll(Jt) = 0.629. Thus, 62.9% of the pairs 
of clubs share at least one member in common (from the CEOs in this 
sample). 

Reachability, Connectedness, and Diameter. As noted above, one 
of the key reasons for studying affiliation networks is that affiliations 
create connections both between actors through membership in events, 
and between events through shared members. Common membership in 
organizations creates a linkage between peqple, and sharing members 
creates a linkage between groups that have one or more members in 
common. If we consider ties between actors or between events as potential 
conduits of information, then the connectedness of the affiliation network 
is important because information originating at any event (or with any 
actor) can potentially reach any other event (or other actor). Thus it 
becomes important to study the connectedness and reachability between 
actors and events in an affiliation network. 

We can study both whether an affiliation network is connected (that 
is, whether each pair of actors and/or events is joined by some path) 
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and the diameter of the affiliation network. If we consider the valued 
relations, we can also study cohesive subgroups of actors or of events. 

A useful way to study reachability in an affiliation network is to 
consider the bipartite graph, with both actors and events represented as 
nodes. There are g + h nodes in the bipartite graph, and there is a line 
between two nodes if one node representing an actor "is affiliated with" 
another node representing an event (or a node representing an event "has 
as a member" a node representing an actor). Thus all lines are between 
nodes representing actors and nodes representing events. 

Recall that two nodes in a graph are adjacent if there is a line between 
them, and they are reachable if there is a path between them. In 
a bipartite graph representing an affiliation network, since actors are 
adjacent to events (and vice versa) no pair of actors is adjacent and no 
pair of events is adjacent. If pairs of actors are reachable, it is only via 
paths containing one or more events. Similarly, if pairs of events are 
reachable, it is only via paths containing one or more actors. 

Clearly, there can be no path of length 1 between actors, since all 
affiliation ties are between actors and events. Similarly, there are no 
paths of length 1 between events. However, we can consider whether two 
actors are reachable through some longer path. If two actors attended 
the same event, then they are reachable by a path of length 2. For 
example, if actors represented by nodes n; and nj both are affiliated with 
the event represented by node rnk, then the path n;, rnk, nj exists between 
nodes nj and nj. Similarly, two events that both contain the same actor 
are reachable by a path of length 3. We can also consider reachability 
via longer paths. Actors who are not affiliated with the same event may 
also be reachable, but through a path with length greater than 2. 

One can study reachability among pairs of nodes (including actors 
and events) by analyzing the bipartite graph using ideas discussed in 
Chapter 4. In studying affiliation networks one could analyze the (g + 
h) x (g + h) sociomatrix representing the bipartite graph to see whether 
all pairs of nodes (both actors and events) are reachable. If so, the 
affiliation network is connected. One can also study the diameter of the 
affiliation network. The diameter of an affiliation network is the length 
of the longest path between any pair of actors and/or events. 

One can also consider connectedness and reachability by focusing on 
the affiliation matrix, A, and the sociomatrioes, X% and X-". Breiger 
(1974) demonstrates that any affiliation network that is connected in the 
graph of co-memberships among actors is necessarily connected in the 
graph of overlaps among events (if no event is empty). Similarly, any 
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affiliation network that is connected in the graph of overlaps among 
events is connected in the graph of co-memberships among actors (if 
each actor belongs to at least one event). 

Examples. To illustrate connectedness and diameter in affilia
tion networks, we will consider both the hypothetical example of six 
second-grade children and their attendance at three birthday parties, and 
Galaskiewicz's CEOs and clubs network. 

The affiliation network for the six children and three birthday parties 
is connected; that is, there exist paths between all pairs of children, all 
pairs of parties, and all pairs of children and parties. One way to see 
the connectedness of this affiliation network is to see that all children 
attended at least one party, all parties contained at least one child, and 
furthermore, all children attended at least one party with Ross (the fifth 
row/column of X % has entries that are all greater than or equal to 
I). Thus, all children are reachable to/from Ross and all parties are 
reachable to/from Ross (Ross is included in all three parties). Although 
paths between pairs of children and/or parties do not need to contain 
Ross, it is possible to reach any child or party through paths that do 
include Ross. It is important to note that a connected affiliation network 
need not contain an actor who is affiliated with all events. 

Although all pairs of parties in this network are reachable through 
paths of length 2 or less, this is not true for all pairs of actors. To 
illustrate, a shortest path (geodesic) from Drew to Keith is: Drew, Party 
2, Ross, Party 3, Keith. This shortest path contains four lines. Since 
the longest geodesic in this network is of length 4, the diameter of this 
affiliation network is equal to 4. 

We can also consider the connectedness of Galaskiewicz's CEOs and 
clubs affiliation network. This affiliation network is connected. Notice 
that there are several CEOs who belonged to some club with every other 
CEO (consider the rows/columns in XJt that have no 0 entries). Thus, 
each member of the network can reach one of these CEOs. Since the 
network is connected in the ties among actors, and each event contains 
at least one actor, the affiliation network as a whole is connected. The 
longest geodesic in the network is of length 5, thus the diameter of this 
affiliation network is equal to 5. 

In studying the connectedness of affiliation networks, we have consid
ered whether or not paths exist between pairs of actors and/or events. 
We can also consider the value or strength of the paths by studying the 
number of shared memberships (for actors) or the number of shared 
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members (for events). Looking at the valued relations of co-membership 
and! or overlap will allow us to consider cohesive subgroups within the 
one-mode networks and to study parts of the affiliation network that are 
more strongly connected. 

Cohesive Subsets of Actors or Events. In Chapter 7 we discussed 
cliques for valued graphs. Recall that a clique is a maximal complete 
subgraph of three or more nodes. In a valued graph we can define 
a clique at level c as a maximal complete subgraph of three or more 
nodes, all of which are adjacent at level c. That is, all pairs of nodes 
have lines between them with values that are greater than or equal to 
c. By successively increasing the value of c we can locate more cohesive 
subgroups. 

For the co-membership relation for actors, a clique at level c is a 
subgraph in which all pairs of actors share memberships in no fewer 
than c events. For the overlap relation for events, a clique at level c 
is a subgraph in which all pairs of events share at least c members. 
It is important to emphasize that although a clique in a co-membership 
relation for actors (or an overlap relation for events) consists of a subset of 
actors (or events) the interpretation of such cliques is limited to properties 
of pairs of actors (or events). We return to issues of interpretation below, 
after we illustrate cohesive subgroups for the one-mode networks. 

An Example, Galaskiewicz's CEOs and Clubs. To illustrate 
cliques in the one-mode valued networks of co-memberships and over
laps, we will use Galaskiewicz's CEOs and clubs data. We first consider 
the co-membership relation for actors. We used the program UCINET 
IV (Borgatti, Everett, and Freeman 1991) to do this analysis. Recall that 
the largest value in the X ff sociomatrix is equal to 5. For c = 5 there is 
only a single pair of CEOs who share that many memberships, thus there 
can be no cliques (with three or more members). Reducing the value of 
c to 4, we see that there is a single clique with three members. Reducing 
c to 3 gives seven cliques. The members of the cliques for c = 3 and 
c = 4 are presented in Table 8.1. Notice that the clique defined at c = 4 
is contained within the first clique for c = 3. A clique at a given value of 
c must be a clique or be contained within a clique at any smaller value 
of c. Reducing c to 2 for this example gives eighteen cliques. 

For the overlap relation among clubs the largest value in X..It is equal 
to 8 (for a single pair of clubs). The largest value of c that yields any 
cliques (with three or more members) is c = 6, with a single clique of 
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Table 8.1. Cliques in the actor co-membership relation for Galaskiew/cz's 
CEOs and clubs network 

c = 4  c = 3  

14, 17, 20 4, 14, 15, 17, 20, 23 
14, 15, 20, 23, 24 
1, 13, 19 
7, 14, 20 
14, 15, 25 
14, 17, 26 
15, 16, 23 

Table 8.2. Cliques in the event overlap relation for Galaskiewicz ',I C EOs 
and clubs network 

c = 6  c = 5  c = 4  c = 3  c = 2  

2, 3, 15 2, 3, 15 2, 3, 15 2, 3, 6, 15 
2, 3, 11, 15 
2, 3, 13, 15 

3, 4, 15 3, 4, 1 1, 15 
2, 3, 12, 15 

3, 4, 9 3, 4, 9 

2, 3, 6, 15 
2, 3, 4, 1 1, 12, 15 
2, 3, 4, 12, 13, 15 

3, 4, 9 
1, 3, 4 
2, 3, 14 
3, 4, 7 
3, 4, 8 

three members. This is also the only clique for c = 5. For c = 4 there are 
three cliques. Reducing c to 3 gives seven cliques, and for c = 2 there arc 
eight cliques. The members of these cliques are presented in Table 8,2, 
We have listed the cliques and their members to facilitate comparison of 
subgroups between values of c. 

For the co-membership relation among actors, CEOs 14, 15, 17, lind 20 
belong to many cliques (these are also active CEOs who belong to mnny 
clubs). For the overlap relation among clubs, Club 3 (a metropolitan 
club), is included in every clique (at all values of c). Clubs 2 (a country 
club), 4 (a metropolitan club), and 15 (a board of a cultural organization) 
are also included in many cliques. 

Although we have used cliques to study the co-membership and overlap 
relations, one could also use other cohesive subgroup ideas, such as n
cliques or k-plexes for valued graphs, to study these relations, 

Reachability for Pairs of Actors. An alternative way to study 
cohesive subgroups in valued graphs is to use ideas of connectedness for 
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valued graphs. The goal is to describe the subsets of actors all of whom 
are connected at some minimum level, c. Recall that the value of a path 
in a valued graph as the smallest value of any line included in the path. 
We can use this idea to study cohesive subgroups based on levels of 
reachability either among actors in the co-membership relation or among 
events in the overlap relation. Thus we focus on the one-mode valued 
relation of co-membership for actors or the one-mode valued relation 
of overlap for events. In the valued graph nodes represent the actors 
and the values attached to the lines are the number of events shared by 
adjacent actors (or nodes represent events and the values are the number 
of actors shared between adjacent events). One can use the definitions 
for the value of a path (see Chapter 4) to define connectedness for pairs 
of actors in the valued graph. Two nodes are c-connected (or reachable 
at level c) if there is a path between them in which all lines have a value 
of no less than c. One can then locate subsets of actors all of whom are 
reachable at level c. 

In a similar context, but using the idea of simplicial complexes, Dor
eian defines a set of actors connected at level q as a subset such that 
all pairs of actors in the path were co-members of at least q + 1 events. 
Computationally, finding pairs of actors who are q-connected is equiv
alent to finding paths of level q in the valued graph (Doreian 1969). A 
q-analysis consists of finding subsets of actors all of whom are connected 
at level q. 

8.5.3 Taking Account of Subgroup Size 

An important issue to consider when analyzing the one-mode net
works that are derived from an affiliation network is that both the 
co-membership relation for actors and the overlap relation for events 
are valued relations based on frequency counts. The frequency of co
memberships for a pair of actors can be large if both actors are affiliated 
with many events, apart from whether these actors are "attracted" to 
each other. Similarly, the overlap between two events can be large be
cause both include many members, apart from whether these two events 
"appeal to" the same kinds of actors. Several authors have argued that 
it is important to "standardize" or "normalize" the frequencies in order 
to study the pattern of interactions, apart from the marginal propensity 
of actors to be affiliated with many events, or for events to contain many 
actors (Bonacich 1972a; Faust and Romney 1985a). 
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In focusing on event overlap, one idea is to construct a measure 01' 
overlap that is "logically independent of group size" (Bonaeieh 1 972, 
page 178). One possible pairwise measure of overlap uses oddH-l'lI lioH 
to study the association between pairs of events, based on the number 
of actors common to both events, the number of actors who belong 10 
neither event, and the numbers of actors who belong to one evenl bul 
not the other. Recall that x{f is the number of actors who are amlial,,,1 
with both events k and l. We will denote the number of actors who arc 
affiliated with neither event as xi!{, the number affiliated with k but not 
I as x;J, and the number affiliated with I but not k as xi!(. For a given 
pair of events, mk and ml, each of the g actors must be either in evenl " 
or not, and either in event I or not, thus: 

A A .4t .4t 
Xkl + xiJ + xk) + Xlii = g. 

For each pair of events, one can arrange these frequencies in a two-by-two 
contingency table that classifies the g actors in ..¥ by their membership 
or lack of membership in the two events. 

Member of mk 
Not member of mk 

Member of ml Not member of ml 

One measure of overlap between events that is independent of the size 
of the events is the odds ratio, denoted by 8kl. For events k and I, 01< / is 
calculated as: 

AI A A A 
e 

xkl Xlii Xkl xiJ 
(8.5) kl = AI A y;:« A'  Xkl Xfi kl xkl 

The odds ratio, ekl. is equal to 1 if the odds of being in event k to not 
being in event k is the same for actors in event I as for actors not in event 
l. In other words, ekl is equal to 1 if membership in event 1 (or not in l) 
does not influence the likelihood of membership in event k (or not in k ) ;  
the memberships of the two events are independent. If ekl is greater than 
1, then the odds of being in event k to not being in event k is greater for 
actors who are in event 1 than for actors who are not in event I (and the 
odds of being in event I to not being in event 1 is greater for actors in 
event k than for actors not in event k). In other words, if ekl is greater 
than 1, then actors in one event tend to also be in the other, and vice 
versa. If ekl is less than 1, then actors in one event tend not to be in the 
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other, and vice versa. As desired, Ok' is independent of the size of the 
events. One could also take the natural logarithm of equation (8.5), as is 
common with odds ratios (Fienberg 1980; Agresti 1990): 

log ek' = log 
(x�x�) . 
xiii Xkl 

(8.6) 

One drawback of logs of odds ratios is that they are undefined if a cell 
of the two-by-two table is equal to 0, and so are not recommended if g 
is small. 

Bonacich (1972) has proposed a measure of subgroup overlap which 
is also independent of the size of the events. His measure is analogous 
to the number of actors who would belong to both events, if all events 
had the same number of members and non-members. Bonacich analyzes 
these overlap measures by treating them as analogous to correlation 
coefficients, and calculating the centrality of the events based on their 
overlap. An alternative way to deal with different levels of participation 
of actors, or different sizes of events, is to "normalize" the XX matrix 
(for actors) or the X-II matrix (for events) so that all row and column 
totals are equal. This strategy is equivalent to allowing all actors to 
have the same number of co-memberships or all events to have the same 
number of overlaps (Faust and Romney 1985a). 

We now turn to some important issues to consider when studying the 
one-mode networks that are derived from an affiliation network. 

8.5.4 Interpretation 

A one-mode analysis of an affiliation network studies a single mode of 
the network, either the co-membership relation for actors or the overlap 
relation for events. Both of these are nondirectional, valued relations, 
measured on pairs of actors or events, and can be analyzed using standard 
social network analysis procedures for valued relations. Interpreting the 

results, however, requires remembering that the fundamental information 
that generated the one-mode networks is, in fact, two-mode affiliation 
network data measured on subsets of actors and events. In this section 
we discuss some important issues in interpreting the results of one-mode 
analyses of affiliation networks. 

In constructing either the co-membership matrix, X %, or the event 
overlap matrix, X·It, from the affiliation network matrix, A, one loses 
information that is present in the original affiliation network. In the 
actor co-membership matrix, one loses the identity of the events that 
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link the actors. In the event overlap matrix, one loses information about 
the identity of the actors who link the events. One only has information 
on how many events each pair of actors has in common, or about 
how many actors are both affiliated with each pair of events. Thus, 
although the co-membership matrix has information about the frequency 
of co-memberships for each pair of actors, there is no information 
about which events were attended, or about the characteristics of the 
events (such as their size), or about the identities of the other actors 
(if any) who attended the events. Some caution is therefore required in 
interpreting the information in either the co-membership matrix or the 
overlap matrix. 

Although the affiliation matrix A uniquely determines both the matrix 
of co-memberships for actors, Xx, and the matrix of overlaps for events, 
X./{, the reverse is not true. In general, a given set of ties in XX (or 
in X./{) can be generated by a number of different affiliation matrices 
(Breiger 1990b, 1991). Thus, the specific affiliations of actors with events 
cannot be retrieved from either the pairwise records of co-memberships 
of actors or the pairwise records of event overlaps. In general, therefore, 
it is not possible to reconstruct the original affiliation network data from 
the one-mode matrices. 

Another important issue arises in the interpretation of cohesive sub
groups that result from analysis of one-mode networks of actor co

. memberships or event overlaps. For example, one might be tempted 
to infer the existence of cliques based on a cohesive subgroup anal
ysis of the pairwise ties in the co-membership matrix, X..v. How
ever, cliques (that is, maximal complete subgraphs) identified in XX 

need not be events in A. As an illustration, note the clear difference 
between a single conversation involving three people and three sepa
rate conversations between pairs of individuals (Seidman 1981a; Wilson 
1982). 

To illustrate, consider the actor co-membership matrix, Xx, in Fig
ure 8.5, which records the number of parties each pair of children 
attended together, and focus on Allison, Eliot, Ross, and Sarah (1, 3, 5, 
and 6). These four children form a maximal complete subgraph (clique) 
in the co-membership relation. Within this subset of four children, all 
pairs of children attended some party together (as seen by the non-zero 
entries for all pairs in the XX matrix). However, if we return to the affil
iation matrix, A, we see that Allison and Eliot attended Party 3, Allison 
and Sarah attended Party 1, and Eliot and Sarah attended Party 2, and 
although Ross was at all parties, Allison, Eliot, Ross, and Sarah were 
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never all four present at any party. In his application of hypergraphs 
to social networks, Seidman (1981a) uses the term "pseudo-event" to 
refer to a subset of actors that form a "clique" in the one-mode co
membership relation but are not together in any event in the affiliation 
network. 

Even though the original affiliation network consists of information 
about subsets of actors rather than pairs, the entries in the co-membership 
matrix, X AI' , pertain to pairs of actors, and entries in the overlap matrix, 
X..It, pertain to pairs of events. Thus, usually one cannot infer any 
properties of subgroups larger than pairs from the entries in X.¥ or X..It 
(Breiger 1991). 

8.6 0Simultaneous Analysis of Actors and Events 

By far the most interesting, yet least developed, methods for affiliation 
networks study the actors and the eveuts at the same time. A complete 
two-mode analysis should show both the relationships among the entities 
within each mode, and also how the two modes are associated with each 
other. A two-mode analysis of an affiliation network does this by looking 
at how the actors are linked to the events they attend and how the events 
are related to the actors who attend them. In this section we describe 
two approaches for studying the actors and the events simultaneously. 

8.6.1 0Gaiois Lattices 

Two important features of affiliation networks are the focus on subsets 
and the duality of the relationship between actors and events. The idea of 
subsets refers both to subsets of actors contained in events and subsets of 
events that actors attend. The idea of duality refers to the complementary 
perspectives of relations between actors as participants in events, and 
between events as collections of actors. The formal representation of a 
Galois lattice incorporates both of these ideas, and can be used to study 
both modes of an affiliation network and the relationship between them 
at the same time. Although Galois lattices have a fairly long history 
in mathematics (they were first introduced by Birkhoff in 1940), they 
have only recently been used to study social networks (Wille 1984, 1990; 
Duquenne 1991 ;  Preeman 1992b; Preeman and White 1993). 

A Lattice. We first define a lattice, and then define a special kind 
of lattice, called a Galois lattice, that can be used to study affiliation 
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networks. Our description parallels Freeman and White (1993), and the 
reader is encouraged to consult their paper and the references cited there 
for more applications of Galois lattices to social networks. 

Consider a set of elements % = {nj, n2, . ' "  ng}, and a binary relation 
",0;" that is reflexive, antisymmetric and transitive. Formally, 

• nj :::;; nj 
• nj :::; nj and nj :::; nj if and only if ni = nj 
• nj :::; nj and nj � 11k implies � :::;; nk 

Such a system (a relation that is reflexive, antisymmetric, and transitive) 
defines a partial order on the set %. 

For any pair of elements, n" nj, we define their lower bound as that 
element nk such that nk ,0; n, and nk ,0; nj. A pair of elements may have 
several lower bounds. A lower bound nk is called a greatest lower bound 
or meet of elements n, and nj if n, ,0; nk for all lower bounds, n" of n, and 
nj. For any pair of elements, n" nf, we define their upper bound as that 
element nk such that n, ,0; nk and nf ,0; nk. An upper bound nk is called a 
least upper bound or join of elements n, and nf if nk ,0; n, for all upper 
bounds n, of n, and nf. 

A lattice consists of a set of elements, %, a binary relation, ":::;," 
that is reflexive, antisymmetric, and transitive, and each pair of elements, 
n" n f, has both a least upper bound and a greatest lower bound (Birkhoff 
1940). A lattice is thus a partially ordered set in which each pair of 
elements has both a meet and a join. 

An example of a lattice is the collection of all subsets from a set of 
elements % and the relation "is a subset of" ,;. Each pair of subsets has 
a smallest subset that is their union or join (there may be several subsets 
that contain all of the elements from both subsets, but the smallest of 
these is their join) and a largest subset that is their intersection or meet 
(there may be several subsets that contain only elements that are found 
in both subsets, but the largest of these is their meet). Thus the collection 
of all subsets from a given set along with the relation ,; form a lattice. 

A lattice can be represented as a diagram in which entities are presented 
as points, and there is a line or sequence of lines descending from point 
j to point i if i ,0; j. 

We can also use a lattice to represent a collection of subsets from a set 
of elements along with the null set (0), the universal set, and the relation 
,;. Thus the collection does not include all possible subsets. This is 
important for representing an affiliation network using a lattice, since an 
affiliation network only includes some subsets, and does not, in general, 
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contain all possible subsets of actors (defined by the events) or subsets 
of events (defined by the actors). 

An Example. We can use a lattice to represent subsets defined by 
either one of the modes in an affiliation network. For example, consider 
the set of actors, JV, and the collection of subsets of actors defined by 
the membership lists of the events. This collection of subsets of actors, 
along with the null set, the universal set, and the relation �, can be 
represented as a lattice. We can also represent the collection of subsets 
of events defined by the actors' memberships, along with the null set, the 
universal set, and the relation � as a lattice. 

To illustrate, let us consider the hypothetical example of six children 
and three birthday parties. We will begin with the subsets of children 
defined by the guest lists of the parties. We include a subset of children if 
there is some party that consisted of exactly that collection of children. 
There are three parties, and thus three subsets of children plus f/J and 
the universal set. Figure 8.9 shows these subsets as a lattice. In this 
diagram each point represents a subset of children � a subseL defined 
by attendance at a party, the null set (f/J), or the complete set of children 
(JV) � and the labels on the points are the names of the parties. Each 
party, mj, defines a subset of children JV'J � JV by its guest list, where 
n, E JV'1 if party j included child i. There is a line in the diagram 
descending from one point, labeled by mj, to another point, labeled by 
mk, if JV Sk ::;;;: .At Sr In this example, since no parties are contained in each 
other, there are no subset or inclusion relationships among these parties, 
though each party is a subset of the set of all children, and has the null 
set as one of its subsets. 

We can also represent subsets of parties as a lattice. In this lattice 
a subset of parties is included in the collection of subsets if there is 
some child who attended exactly that suhset of parties. In this example 
there are six children, and thus six subsets of parties (we also include f/J). 
Figure 8.10 shows these subsets of parties along with the relation � as a 
lattice. In this diagram each point represents a subset of parties. Since 
children define subsets of parties by their attendance, the labels on this 
diagram are the names of the children. Each child, n" defines a subset of 
parties At" � At, where mj E At" if child i attended party j. There is a 
line in the diagram descending from one point, labeled by n" to another 
point, labeled by n/, if At" � At" . For example, there is a line going 
down from Ross to Allison since the collection of parties that Allison 
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{Allison. Drew, Eliot, Keith, Ross, Sarah} 

Party 3 Party 1 

Party 1: {Allison, Ross, Sarah} 
Party 2: {Drew, Eliot, Ross, Sarah} 
Party 3 :  {Allison, Eliot, Keith, Ross} 
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Party 2 

Fig. 8.9. Relationships among birthday parties as subsets of children 

attended (Parties 1 and 3) is a snbset of the parties that Ross attended 
(Parties 1, 2, and 3). 

Notice that in both Figure 8.10 and Figure 8.9 the points are identified 
by a single label (in other words, a single subset). Thus, it takes two 
separate lattices to represent both the actors and the events in the 
affiliation network. In a Galois lattice each point is identified by two 
labels (two subsets), and thus a Galois lattice can represent both actors 
and events simultaneously. 

A Galois Lattice. A Galois lattice focuses on the relation be
tween two sets. First, consider two sets of elements .K = {nt, n2 . . . .  , ng} 
and .ft = {m/,m2, . . .  , mg}, and a relation A. In general, the relation A is 
defined on pairs from the Cartesian product ,AI' x .ft. Thus the relation 
is between elements of ,AI' and elements of .ft. In studying an affiliation 
network we let the sets vi'" and .ft be the set of actors and the set of 
events, and let A be the relation of affiliation. Thus, n,Jcmj if actor i is 
affiliated with event j. We also have the relation A-i where mjA-in, if 
everit j contains actor i. Again, we focus on subsets, but now we will use 
subsets from both ,AI' and .ft. 
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Allison 

Keith 

Drew: {Party 2} 
Keith: {Party 3} 
Sarah: {Party 1, Party 2} 
Eliot : {Party 2, Party 3} 
Allison: {Party I, Party 3} 

Ross 

Elio 

Ross: {Party 1, Party 2, Party 3} 

Sarah 

Drew 

Fig. 8.10. Relationships among children as subsets of birthday parties 

Just as we have considered an individual actor and the subset of events 

with which it is affiliated, we can also consider a subset of actors and the 
subset of events with which all of these actors are affiliated. Similarly, we 
can consider a subset of events and the subset of actors who are affiliated 
with all of these events. 

Let us define a mapping t : .!V, -+ .4t, from a subset of actors .!V, £; .!V 
to a subset of events .4t, <;; .4t such that t (.!V,) � .4t, if and only if 

n,Amj for all n, E .!V, and all mj E .4t,. In terms of an affiliation network, 
the t mapping goes from a subset of actors to that subset of events with 
which all of the actors in the subset are affiliated. The subset of events 
might be empty (.4t, = 0). For example, if there is no event with which 
all actors in subset .!V, are affiliated, then t (.!V,) = 0. 

We can also define a dual mapping L :  .4t, -+ .K, from a subset of 
events .4t, to a subset of actors .!V, such that L (.4t,) = .!V, if and only 
if mjA-1 n, for all mj E .4t, and all n, E .!V,. In terms of an affiliation 
network, tbe L mapping goes from a subset of events to tbat subset of 
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actors who are affiliated with all of the events in the subset. If there 
is no actor who is affiliated with all of the events in subset .;fI., then 
t (.;fI,) = 0. 

To illustrate the i and 1 mappings, let us look at the hypothetical 
example of six children and three birthday parties. Consider the subset 
of children : {Allison (nl), Sarah (n6)}. Thus X, = {n" n6}. Since Allison 
attended Parties 1 and 3 and Sarah attended Parties 1 and 2, the subset 
of parties that both attended is .;fI, = {mI}. The mapping i (./V,) for 
this subset of children consists of the subset of parties that both Allison 
and Sarah attended ; thus � (ff,) = .;fI, = {mI}. We can also consider 
a subset of parties and the subset of children who attended all parties 
in the subset. Consider the subset parties: {Party 1 (ml), Party 2 (m,)}. 
Thus .;fI, = {m"m,}. The t mapping maps this subset of parties to 
the subset of children who attended both parties. Since only Ross (ns) 
and Sarah (n6) attended both Parties 1 and 2, for this subset of parties, 
t (.;fI,) = ff, = {n" n6}. 

Now, we can define a special kind of lattice, called a Galois lattice. In 
a Galois lattice, each point is labeled by a pair of entities (ni, mj). The 
binary relation "s" is defined as (nk ,m,) S (ni,mj) if ni S;; nk and mj :2 mi. 
A Galois lattice can be presented in a diagram where each point is a 
pair of entities (ni, mj) and there is a line or sequence of lines descending 
from the point representing (ni,mj) to the point representing (nk,m,) if 
(nk,ml) s (ni,mj); equivalently: ni S;; nk and mj :2 mi. 

We can use a Galois lattice to represent an affiliation network by 
considering the sets .;V and .A, the affiliation relation, and the mappings 
i and t· In a Galois lattice for an affiliation network, each point 
represents both a subset of actors and a subset of events. 

In the diagram for a Galois lattice the labeling of points is simplified 
so that labels for entities that are implied by the relation of inclusion 
are not presented. Thus, in a Galois lattice for an affiliation network 
an actor's name is given as a label at the lowest point in the diagram 
such that the actor is included in all subsets of actors implied by lines 
ascending from that labeled point. An event is given as a label for the 
highest point in the diagram, such that the event is included in subsets 
of events implied by lines descending from the labeled point. 

A n  Example. Figure 8.1 1  shows the hypothetical example of six 
children and three birthday parties as a Galois lattice. We used the 
program DIAGRAM (Vogt and Bliegener 1990) to construct this diagram 
from the affiliation network in Figure 8.1. Each point in this diagram 
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represents both a subset of children and a subset of parties. The labels on 
the points are simplified as described above so that labels for children or 
parties that can be inferred from the inclusion relations are not presented. 
The top point in the diagram indicates the pair consisting of the set of all 
children and the empty set of parties. The point at the bottom represents 
Ross and the set of all parties (because Ross attended all parties, his 
name is associated with that collection of parties). Reading from bottom 
to top in the diagram, there is a line or sequence of lines ascending from 
a child to a party if that child attended the party. For example, there are 
lines ascending from Sarah to Party 1 and to Party 2 since Sarah attended 
Parties 1 and 2. There are sequences of lines ascending from Ross to all 
three parties since Ross attended all three parties. Keith and Party 3 label 
the same point; Keith attended only that party. Reading the diagram 
from top to bottom, there is a line or sequence of lines descending from 
a party to all children who attended the party. For example, Party 2 
included Drew, Sarah, Eliot, and Ross, but not Keith and Allison. These 
relationships show which children attended which parties. 

We can also consider relationships among the children and among the 
parties. In the Galois lattice we can see which children attended any of 
the same parties, or whether they were never at parties together. Since 
lines going up from each child lead to the parties they attended, if we 
consider two children we can see whether or not they attended any of the 
same parties by considering whether any lines ascending from them join 
at any parties. For example, Allison and Sarah both have lines going up 
to Party 1, so both were present at that party. However, lines ascending 
from Keith and Drew only intersect at the top point, indicating the empty 
set of parties. Thus Keith and Drew were never at the same party. The 
relationship of inclusion between subsets is also visible in the diagram. 
If a line goes up from one child to another, the upper child was never 
present at a party unless the lower child was also there. Thus, the set 
partie, for the higher child is contained in the set of parties attended by 
the lower child. In this sense, the children at the bottom of the diagram 
are more toward the center of the group, and the children toward the 
top are more likely to be outliers. 

Summary. The advantages of a Galois lattice for representing 
an affiliation network are the focus on subsets, and the complementary 
relationships between the actors and the events that are displayed in the 
diagram. The focus on subsets is especially appropriate for representing 
affiliation networks. In addition patterns in the relationships between 
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Keith 

Party 3 

Allison 

Party 1 

Eliot 

Ross 

Fig. 8.11. Galois lattice of children and birthday parties 

333 

Drew 

Party 2 

Sarah 

actors and events may be more apparent in the Galois lattice than 
in other representations. Thus, a Galois lattice serves much the same 
function as a graph or sociogram as a representation of a one-mode 
network. 

There are a number of shortcomings of Galois lattices. First, the 
visual display of a Galois lattice can become quite complex as the 
number of actors and/or the number of events becomes large. This is 
also true for graphs and directed graphs. Second, there is no unique 
"best" visual representation for a Galois lattice. Although the vertical 
dimension represents degrees of subset inclusion rel ationships among 
points, the horizontal dimension is arbitrary. As Wille (1990) has pointed 
out, constructing "good" pictures for Galois lattices is somewhat of an 
art, since there is a great degree of arbitrariness about placement of the 
elements in the diagram. Finally, unlike a graph as a representation of 
a network, which allows the properties and concepts from graph theory 
to be used to analyze the network, such properties and further analyses 
of Galois lattices are not at all well developed. Thus, a Galois lattice 
is primarily a representation of an affiliation network, from which one 
might be able to see patterns in the data. 
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8.6.2 0Correspondence Analysis 

We now turn to another method for analyzing affiliation networks that 
allows one to study the actors and the events simultaneously. This 
method has the advantage that it provides an objective criterion for plac
ing both actors and events in a spatial arrangement to show optimally 
the relationships among the two sets of entities. The method we describe 
in this section is correspondence analysis. Correspondence analysis is a 
widely used data analytic technique for studying the correlations among 
two or more sets of variables. The technique has been presented many 
times, under several different names including dual scaling, optimal scal
ing, reciprocal averaging, and so on. The history of correspondence 
analysis is discussed in several places ; among the most accessible general 
treatments are Nishisato (1980), Greenacre (1984), and Weller and Rom
ney (1990). Since our treatment of the topic is brief, we encourage the 
interested reader to consult these sources for more detailed discussions. 
Correspondence analysis and closely related approaches have been used 
by several researchers to study social networks (Faust and Wasserman 
1993; Kumbasar, Romney, and Batchelder n.d.; Levine 1972; Noma 
and Smith 1985b; Romney 1993; Schweizer 1990; Wasserman and Faust 
1989; Wasserman, Faust, and Galaskiewicz 1990). 

Even a brief perusal of the literature reveals that there are many pos
sible ways to motivate, derive, and interpret a correspondence analysis. 
In this section we will describe only one such motivation, the reciprocal 
averaging interpretation, since it is one of the most natural interpreta
tions for an affiliation network. This approach is used widely in ecology 
to describe the distribution of species across a number of locations (Hill 
1974 1982). In that field, the goal is to describe locations (sites) in 
terms of the distribution of plant or animal species that are present, 
and simultaneously, to describe the plant or animal species in terms of 
their distribution across locations. (See, for example, Greenacre's 1981 
analysis of the kinds of antelopes found at different game reserves.) The 
derivation of correspondence analysis that is appropriate for this task is 
the weighted centroid interpretation, or the method of reciprocal averaging 

(Hill 1974, 1982). 
We begin with a two-way, two-mode matrix that records the incidence 

of entities in one mode at the locations indicated by the other mode. The 
affiliation network matrix, A, is such a table since it records the presence 
of actors at events. The goal of correspondence analysis is to assign a 
score to each of the entities in each of the modes, to describe optimally 
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(in a way we specify below) the correlation between the two modes. One 
can then study these scores to see the similarities among the entities in 
one mode, and the location of an entity in one mode in relation to all 
entities of the other mode. One can also study the dimensionality of the 
data by looking at how many sets of scores are necessary to reproduce 
the original data. Also, we will see that these scores have nice geometric 
properties that will allow us to display graphically the correlations among 
the entities in the two-modes. 

More specifically, correspondence analysis of affiliation network data 
will result in the assignment of scores to each of the g actors in .;V 
and to each of the h events in .$I, and a principal inertia ry' summa
rizing the degree of correlation between the actor scores and the event 
scores. We will then be able to use these scores to display each actor 
in terms of the events with which it is affiliated, or to display each 
event in terms of the actors who are affiliated with it. Following the 
weighted centroid (or reciprocal averaging) interpretation, the score that 
is assigned to an actor is proportional to the weighted average of the 
scores assigned to the events with which the actor is affiliated, or the 
scores assigned to the events are proportional to the weighted averages 
of the scores of the actors who are affiliated with the event. This allows 
us to locate each actor in a space defined by the events with which it 
is affiliated, or to locate each event in a space defined by the actors it 
includes. 

Definition. In this section we describe the mathematics of corre
spondence analysis of the affiliation network matrix, A. Our treatment 
is descriptive, rather than statistical, and emphasizes interpretations that 
are appropriate for affiliation network data. One of the advantages of 
correspondence analysis is that it allows the researcher to study the cor
relation between the scores for the rows and the scores for the columns 
of the data array. In this section we show how these two sets of scores 
are related to each other via reciprocal averaging. The score for a given 
row is the weighted average of the scores for the columns, where the 
weights are the relative frequencies of the cells. 

In fact, correspondence analysis results in a number of sets of scores (or 
dimensions) where the number of dimensions depends on the number of 
rows and columns in the matrix being analyzed. We will let W = min{(g-
1), (h - Ill. The number of dimensions resulting from a correspondence 
analysis is less than or equal to W .  
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Recall that the affiliation network matrix, A = {aij}, is a g x h matrix 
that records the affiliation of each actor with each event. Correspondence 
analysis of A results in three sets of information: 

• a set of g row scores on each of W dimensions {Uik}, for i = 
1 ,2, . . .  ,g, and k = 1,2, . . .  , W ,  pertaining to the actors, 

• a set of h column scores on each of W dimensions {Vjk}, for 
j = 1,2, . . . , h, and k = 1,2, . . . , W ,  pertaining to the events, and 

• a set of W principal inertias {ryn, for k = 1 ,2, . . . , W that 
measure the correlation between the rows and the columns. 

As we mentioned above, the scores assigned to an actor, the u's, are a 
weighted average of the scores for the events that the actor is affiliated 
with, and the scores assigned to an event, the v's, are a weighted average 
of the scores of the actors included in the event. By definition, 

is proportional to 

is proportional to (8.7) 

It is customary to describe the solution to this problem as the triple 
(ry, U, v), where ry is the proportionality constant from equation (8.7), and U 

and v are the vectors of row and column scores, respectively. Substituting 
ryk into equation (8.7), we get the following equations, relating the row 
and column scores: 

(8.8) 

The scores that satisfy these equations have the desired property that 
the row scores will be proportional to the weighted averages of the 
column scores and the column scares will be proportional to the weighted 
averages of the row scores. 

Equation (8.8) shows why correspondence analysis is sometimes re
ferred to as reciprocal averaging; the scores for one set of variables are 
the weighted averages of the scores for the other set, and vice versa. 
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Solution of these equations requires a singular value decomposition of 
an appropriately scaled A matrix, and can be accomplished with stan
dard correspondence analysis programs, such as Greenacre's SIMC;1 
(Greenacre 1986). 

The u's and v's are commonly scaled so tha� within each of the W 
sets, the weighted mean is 0 and the weighted variance is equal to rfl : 

(8.9) 

for each set k = 1,2, . . .  , W .  When u and v are scaled as in equation (8.9) 
they are referred to as the principal coordinates (Greenacre 1984). The 
advantage of this scaling is that the variance of each set of scores, 
within each dimension, is equal to the principal inertia, �f' for that 
dimension. 

Interpreting results of correspondence analysis requires a bit of care. 
Let us first distinguish between two different kinds of interpretations 
that we might make. First we might want to examine the relationships 
among the entities in each of the modes, either all of the actors or all 
of the events. Second, we might want to examine how the two modes 
are related to each other. Clearly since our concern is in studying the 
relationship between the two modes, we are interested in the second kind 
of interpretation. 

The geometry of the correspondence analysis allows one to relate the 
score for a single entity of one mode to the entire set of scores from 
the other mode. In other words, we can relate a single actor score, one 
value of Uik, to the entire set of event scores, the collection of h Vjk'S. 
Or, we can relate a single event score, a Vjk. to the entire set of g actor 
scores, the Uik'S. However, as Carroll, Green, and Schaffer (1986) have 
pointed out, this requires careful scaling of the row and column scores. 
If we return to equation (8.8) we can see that the relationship between 
the u's and the v's depends on the proportionality constant, �k. It is 
therefore useful to rescale one set of scores (either the row scores or 
the column scores) by dividing each by the corresponding value of �k. 

Therefore, we define a new scaling of the scores, denoted by u and il, as 
follows: 
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(8.10) 

These scores have weighted mean equal to 0, and weighted variance equal 
to 1 :  

g h 
� _  ai+ � _  Q+j L Uik -- = L Vjk -- = 0 
i=l a++ j=1 Q++ 

g h 
L -2 Qi+ - L -2 Q+j 

- 1 U"k - v "k -- -
I a } a i=l ++ j=1 ++ 

(8. 1 1 )  

for all k .  When scaled this way, the il and v are referred to as standard 
coordinates (Greenacre 1984, 1986). 

With this rescaling, we can express a given row score Uik scaled in 
principal coordinates in terms of the collection of column scores Vjk'S, 
scaled in standard coordinates. Combining equations (8.8) and (8.10) we 
see that: 

(8.12) 

In words, the score assigned to a given actor, a U{k , is the weighted 
average of the scores assigned to the events, the Vjk'S, that the actor is 
affiliated with, where the weights are the cell frequencies of the affiliation 
matrix, aij, divided by the appropriate row total, a;+. We can use 
these scores to locate each individual actor in a space defined by the 
events. Similarly, we can express a given column score scaled in principal 
coordinates in terms of the collection of row scores scaled in standard 
coordinates : 

(8.13) 

Using this scaling, the score assigned to a given event is the weighted 
average of the scores assigned to the actors who are affiliated with 
the event. 
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We can translate (rescale) from one scaling of the row and/or the 
column scores into the other scaling using the following equations : 

(8.14) 

It is common to use the scores from a correspondence analysis to 
display graphically the entities represented by the row points and the 
column points. To study the two modes together using the reciprocal 
averaging interpretation we will plot points for entities in one of the 
modes using standard coordinates and points for entities in the other 
mode using principal coordinates. Thus, we will either use standard 
coordinates for actors (the u's) and principal coordinates for events (the 
v's) or we will use standard coordinates for events (the ii's) and principal 
coordinates for actors (the u's). 

An Example. As an example of correspondence analysis of an 
affiliation network, consider Galaskiewicz's CEOs and clubs network. 
Table 8.3 presents the first two sets of correspondence analysis scores for 
rows (actors) and columns (events) for this example. We used Greenacre's 
program SIMCA to do this analysis (Greenacre 1986). For these data 
ryf = 0.5756 and ry� = 0.4074. These two dimensions account for 19.79% 
and 14.01 % of the data, respectively. The first two sets of scores are 
displayed in Figure 8.12. We have displayed the scores for the CEOs (nis) 
in principal coordinates and the scores for the clubs (m/s) in standard 
coordinates. Thus, we can interpret the location of a point for a CEO 
on a given dimension as the weighted mean of the locations of the clubs 
with which that CEO is affiliated. 

There are a couple of interesting features of the plot in Figure 8.12. 
First, notice that the points for the clubs (the m/s) are more widely 
dispersed throughout the figure than are the points for the CEOs (the 
n;'s). This is a function of the scaling that we have chosen for the 
row and column scores. Since scores for the column points (for the 
clubs) are in standard coordinates, they have larger variance than do 
the scores for the row points (for the CEOs) and thus have greater 
variability on each of the dimensions. If we had used the alterna
tive scaling (row points in standard coordinates and column points 
in principal coordinates) the n;'s would have greater dispersion than 
the m/s. Second, notice the fairly dense collection of points toward 
the upper right of the figure. This collection contains the CEOs and 
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Fig. 8. 12. Plot of correspondence analysis scores for CEOs and clubs 
example - CEOs in principal coordinates clubs in standard coordinates 

clubs that we had identified as belonging to "cliques" at high lev
els in the valued relations of actor co-memberships and event over
laps (notice CEOs numbered 14, 17, and 20, and Clubs 2, 3, and 
15). CEO 14 belongs to more clubs than any other CEO (a to
tal of seven) and CEO 17 belongs to the second most clubs (a to
tal of six). Club 3 is the largest dub (with twenty-two members) 
and Club 2 is the second largest (with eleven members). Thus, this 
analysis in part identifies a "core" of active CEOs and clubs with 
large memberships. 



8.6 �Analysis of Actors and Events 341 

Table 8.3. Correspondence analysis scores for CEOs and clubs 

Row Score 
Un Ui2 Un Ui2 

nl -0.404 0.502 -0.533 0.787 
n2 -0.920 1.079 -1.213 1.692 
n, 0.518 0.767 0.683 1.203 
n, 0.641 0.027 0.844 0.043 
n5 0.933 -0.510 1.229 _O.7f!f\ 
n,; 0.913 -0.534 1.203 -0.836 
n7 -0.766 -0.232 -1.009 -0.363 
n8 -1.968 -0.247 -2.593 -0.387 
n, -1.315 -1.409 -1.733 -2.209 
n10 -0.063 0.785 -0.083 1.231 
n 1 1  0.291 0.527 0.384 0.826 
n12 -1.780 0.402 -2.345 0.630 
n13 -0.450 0.932 -0.593 1.461 
n14 0.386 0.288 0.509 0.452 
n15 0.766 -0.242 1.009 -0.380 
n16 0.639 -1.107 0.842 -1.735 
n17 0.357 0.704 0.470 1.103 
n18 0.182 0.550 0.240 0.862 
nl' -1.026 0.181 -1.352 0.284 
n20 0.181 0.110 0.239 0.173 
n21 -0.391 -0.825 -0.515 -1.293 
n22 0.179 -0.829 0.236 -1.300 
n23 0.692 -0.323 0.9 11 -0.507 
n24 -0.153 -0.567 -0.201 -0.889 
n25 0.787 0.080 1.037 0.125 
n" 0.679 0.515 0.894 0.807 

Column Score 
VjI Vj2 VjI Vj2 

ml -1 .096 -0.938 -1.444 -1.470 
m2 0.759 0.007 1.000 0.010 
m3 0.227 0.095 0.299 0.148 
m4 -0.824 -0.041 -1.086 -0.065 
ms -0.445 1.418 -0.587 2.222 
m6 0.641 -0.877 0.844 -1.375 
m7 -1 .876 0.554 -2.472 0.869 
mg -0.293 -1.634 -0.385 -2.561 
"'" -0.323 0.908 -0.426 1.423 
m10 -1 .779 -0.986 -2.344 -1.546 
m11 0.052 0.341 0.069 0.535 
m12 0.559 0.885 0.737 1.387 
m13 0.805 0.052 1.061 0.082 
ml' 1.092 -1.123 1.439 -1.760 
m15 0.473 -0.049 0.623 -0.077 
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Correspondence analysis of an affiliation network formally represents 
two important theoretical aspects of these data. First, recall Simmel's ob
servation that an individual's social identity is defined by the collectivities 
to which the individual belongs. In correspondence analysis, this insight 
is translated formally, and quite literally, in the reciprocal averaging in
terpretation expressed in equati ons (8.12) and (8.13). Geometrically, an 

actor's location in space is determined by the location of the events with 
which that actor is affiliated. The second theoretically important feature 
of affiliation networks is the duality of relationship between actors and 
events. This duality is captured in the fact that one can either view actors 
located within a space defined by the events, or one can view the events 
located within a space defined by the actors, and can plot scores for 
entities in both modes simultaneously. 

To illustrate these ideas, consider the score for CEO 2 in the analysis 
of Galaskiewicz's CEOs and clubs data, presented in Table 8.3 and 
Figure 8.12. CEO 2 belongs to three clubs (Clubs 3, 5, and 7), thus its 
score on the first dimension, U21 = -0.920, must be the weighted average 
of the scores for these three clubs on this dimension (the Vjl'S). Notice 
that the score for an actor is only a function of the scores for the events 
to which it belongs. Following equation (8.12) we see that 

15 
L 

a2j _ -V)'l 
a j=l 2+ 

-0.920 1 1 1 3(0.299) + 3(-0.587) + 3(-2.472). (8.15) 

In Figure 8.12 we see that n, is the weighted average (or weighted 
centroid) of the points m3, ms, and m7. 

In Figure 8.12 CEOs are located at the weighted averages (weighted 
centroids) of the clubs to which they belong, since scores for CEOs are 
presented in principal coordinates and scores for clubs are in standard 
coordinates. Locating clubs at the weighted averages of their mem
bers would require the alternative scaling (scores for clubs in prinCipal 
coordinates and scores for CEOs in standard coordinates). 

8.7 Summary 

In conclusion. let us reiterate some of the important features of affiliation 
networks that make them distinctive from the one-mode networks that 
we have discussed prior to this chapter, and briefly review some of the 
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important issues to consider when analyzing affiliation networks. First, 
affiliation networks are two-mode networks that focus on the affiliation 
of a set of actors with a set of events. Since each event consists of 
a subset of actors, and each actor is affiliated with a subset of events, 
affiliation network data cannot be studied completely by looking at pairs 
of actors and/or pairs of events. Next, there is an important duality in 
the relationships among the actors and the events ; actors create linkages 
among the events, and simultaneously the events create linkages among 
the actors. Although affiliation networks are two-mode networks, and 
the most comprehensive analyses would study both actors and events 
simultaneously, it is also possible to study the one-mode networks, of 
actors or of events. However, since affiliation networks are defined on 
subsets (not pairs) of actors and events there is loss of information 
and potential for misinterpretation when studying only the one-mode 
networks. 

For the most part the analyses that we have described in this chapter 
assume that one has a complete affiliation network. That is, that all actors 
and all events constituting the network are included. If, on the other 
hand, the actors in % are a sample of actors from a larger population, 
or if the events in A are a sample from a larger population of events, 
then one must consider issues of sampling and estimation of the relevant 
network quantities. McPherson (1982) discusses how to estimate key 
network affiliation measures (including the average size of events, and 
average rates of affiliation). 
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Structural Equivalence 

Many methods for the description of network structural properties are 
concerned with the dual notions of social position and social role. In 
social network terms these translate into procedures for analyzing ac
tors' structural similarities and patterns of relations in multirelational 
networks. These methods, which have been referred to as positional, 
role, or relational approaches, are the topic of Part IV. Although these 
methods are mathematically and formally diverse, they share a common 
goal of representing patterns in complex social network data in sim
plified form to reveal subsets of actors who are similarly embedded in 
networks of relations and to describe the associations among relations in 
multirelational networks. 

The diversity of methods and potential complexity of mathematics has 
influenced our organization of topics in the following chapters. We begin 
this chapter with an overview of the theoretical and historical background 
for network role and positional analysis. We then discuss the basics of 
positional analysis. These basics will occupy Chapter 9 and the first 
part of Chapter 10. Chapters 9 and 10 discuss how to perform basic 
positional analysis using measures based on the mathematical notion of 
structural equivalence. In Chapters 1 1  and 12 we take up more advanced 
approaches to the notions of role and position and explore alternative 
formal definitions of these concepts. These chapters are concerned with 
the algebraic analysis of role systems using relational algebras (Chap
ter 11) and more general definitions of equivalence (Chapter 12). 

This chapter introduces the theoretical background for studying social 
network roles and positions and presents an overview of positional analy
sis of social networks. It also defines and illustrates structural equivalence 
as an approach for studying network positions. 

347 
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9.1 Background 

In this section we review the theoretical definition of social role and 
social position, present a brief history of the development of these ideas, 
and give an overview of how ideas of role and position are used to study 
social networks. 

9.1.1 Social Roles and Positions 

The related notions of social position and social role provide the the· 
oretical motivation for most of the methods we discuss in this part of 
the book. Although historically these notions have been most widely 
used by sociologists (for example, Merton 1957), anthropologists (Linton 
1936; Nadel 1957), and social psychologists (Newcomb 1965), the formal 
definition of these theoretical concepts using network methods has en
couraged their use to study social networks in many fields, for example 
political science (Snyder and Kick 1979) and management (Krackhardt 
and Porter 1986). 

It is important to note that there is considerable disagreement among 
social scientists about the definitions of the related concepts of social 
position, social status, and social role. Among the most straightforward 
definitions of social role and social status are those given by Linton, who 
uses the term "status" in a way that is identical to our use of the term 
"position." Linton defines a status as "the polar position in . . .  patterns 
of reciprocal behavior." When a person "'puts the rights and duties which 
constitute the status into effect, he is performing a role" (1936, pages 
113-114). There are two important and related concepts here: position 
and role. In social network analysis position refers to a collection of 
individuals who are similarly embedded in networks of relations. while 
role relers to the patterns of relations which obtain between actors or 
between POSitiQllS. The notion of position thus refers to a collection of 
actors who are similar in social activity, ties, or interactions, with respect 
to actors in other position�,-

Since position is based on the similarity of ties among subsets of actors, 
rather than their adjacency, proximity, or reachability, this theoretical 
concept, and its formalization network terms, are quite different from 
the notion of cohesive subgroup. Actors occupying the same position 
need not be in direct, or even indirect, contact with one another. For 
example, nurses in different hospitals occupy the position of "nurse" by 
virtue of similar kinds of relationships with doctors and patients, though 
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individual nurses may not know each other, work with the same doctors, 
or see the same patients. 

The notion of social role is conceptually, theoretically, and formally 
dependent on the notion of social position. Whereas network position 
refers to a collection of actors, network role refers to associations among 
relations that link social positions. Thus, role is defined in terms of 
collections of relations and the. associations among relations. In contrast 
to most social network methods that focus on properties of actors or 
subsets of actors, network role analysis focuses on associations among 
relations. For example, kinship roles can be defined in terms of combina
tions of the relations of marriage and descent. Roles within a corporate 
organization might be defined in terms of levels in a chain of command 
or authority. It is also important to note that roles are defined not sim
ply on the linkages between two positions, but On how relations link the 
entire collection of actors and positions throughout the network. Thus, 
roles in social networks can be modeled at three different levels : actors. 
su bsets of actors, and the network as a whole. 

As Nadel (1957) and Lorrain and White (1971) have observed, role is 
not just a theoretical construct invented by social scientists, but also can 
be expressed in our everyday language. People recognize and label roles ; 
even roles based on the combination..oLse.v.eral relations. For exam.ple. 
some roles. fliat can be defined by combinations of relations include : a 
_hoss's boss, a brother's friend" or an al1y's enemy. In addition, some 
kinship roles based on combmations of relations have simple linguistic 
labels : brother-in-law, grandmother, uncle, aunt, and so on. However, 
not all network roles have simple linguistic labels, and we will also be 
interested in studying such roles. 

As these examples show, social roles are usually based on multiple 
relations and the_cmnbinations.of these relations Historically, the study 
of network roleo systems began with mode.ls. for kinship systems based on 
combinations of relations (Boyd 1969; White 1963). In studying kinship 
one must both consider marriage and descent. Another example where 
multiple relations are important is the study of roles and positions within 
the world economic system. One might argue that roles of countries in 
the world system must be understood in terms of the associations among 
several types of economic exchanges that occur between countries. For 
example, the association among the relations of "exports raw materials 
to" and "imports manufactured goods from" might be critical for un
derstanding patterns of economic dependence among nations. What is 
important in these examples is the association among two or more rela-
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tions. In their foundational paper, White, Boorman, and Breiger (1976) 
observe that the most informative role or positional analyses require 
many types of relations. Thus, the most interesting and detailed role 
and positional analyses will probably involve multirelational networks. 
However, more limited conclusions and results are possible for single 
relational social networks .... 

Positional analysis of a social network rests on the assumption that .the 
role structure of the group and positions of individuals in the group are 
apparent in the measured relations present in a set of network data. This 
assumption appears early in the history of role and positional analysis 
of social networks. In their path breaking work, Lorrain and White 
comment, 

the total role of an individual in a social system has often been described 
as consisting of sets of relations of various types linking this person as 
ego to sets of others. (1971, page 50) 

In this quote by Lorrain and White we see that role becomes identified 
with the "sets of relatiom." where relations are the measured ties in a 
social network, and position becomes identified with the "sets of others." 
the subsets of actors who are similarly tied to others in the network. 

The use of the word position to refer to a subset of actors is clearly 
stated in White, Boorman, and Breiger's discussion of blockmodeling : 

each of the sets into which the population is partitioned is a position. 
(1976, page 769) 

We note that our use of the term "network position" to refer to a 
collection of equivalent actors differs somewhat from Burt's usage. Burt 
( 1976) states: 

a position in a network [is] the specified set of relations to and from 
each actor in a system. (1976, page 93) 

Burt's approach conceptualizes a position as a collection of ties in which 
an actor is involved. These ties can be summarized as a "vector" of 
ties to and from the actor. This usage of position is the same as White, 
Boorman, and Breiger's role set (1976, page 770), and is perhaps closer 
to our use of the term "role," especially in the context of individual roles 
(which we discuss in Chapter 12). 

The tasks of role and positional analysis of a social network are to 
provide. explicit definitions of important social concepts and to idenlilJ 
and describe roles and positions in social networks. These two theoretical 



9.1 Background 351 

motivations can be used to give an overview of the different, though 
related, tasks in positional and role analysis of social networks. 

9.1.2 An Overview of Positional and Role Analysis 

There are two key aspects to the positional and role analysis of social 
networks: identifymg social positions as collections of actors who are 
similar in their ties with others, and modeling social roles as systems 
of ties between actors or between positions. These two aspects are 
apparent in the foundational works by White, Boorman, and Breiger 
(1976), who focused on methods for partitioning actors, and Boorman 
and White ( 1976), who focused on models for collections of relations. 
In practice, many applications of these methods to substantive problems 
emphasize one or the other of these tasks. In fact, most analyses 
emphasize the similarity of actors (that is, the identification of positions) 
with considerably less attention to the relations among the positions. 

Schematically, one can present the task of a full positional and role 
analysis of a social network as in Figure 9.1 (see Sailer 1978; Pattison 
1982). Beginning with a set of network data consisting of a collection of 
relations (a multirelational data set), the ultimate goals are to "group" 
actors into positions based on their relational similarity, and simulta
neously to describe the association among relations based on how they 
combine to link actors or positions (White, Boorman, and Breiger 1976; 
Boorman and White 1976; Sailer 1978; Breiger and Pattison 1986; Pat
tison 1982, 1988). As shown in this figure, the alternative paths involve 
(from top to bottom) grouping actors, the standard positional analysis, 
and (from left to right) studying the associations among relations, the 
usual role analysis. A complete positional and role analysis would result 
in both an assignment of actors to positions and a model of the system 
of relations that link these positions. 

Let us think about the tasks of analyzing network positions and an
alyzing network roles separately for the moment. We will start with a 
one-mode network and a collection of relations. First consider the posi
tional analysis problem (the left path from top to bottom in Figure 9.1). 
The major task here is to locate subsets of actors who are similar across 
the collection of relations. Similarity will be defined in terms of the equiv
alence of actors with respect to some formal mathematical prooerty. The 
formal mathematical property specifies which actors will be "grouped" 
together in a network position. We can think of a positional analysis, 
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Mu ltirelational ______ ---------_+_ • 
Data {group relations} 

{group actors} 

Usual POsitiona,!.' ____ -,-__ --: __ :-___ _+_ 
Analysis {group relations} 

Fig. 9.1. An overview of positional and role analysis 

Usual Role 

Analysis 

{group actors} 

Roles and 

Positions 

the vertical path on the left side of the diagram, as mapping actors into 
equivaleuce classes, where (ideally) an equivalence class consists of all 
actors who are identical on the specified mathematical property. Struc
tural equivalence, which we discuss in this chapter, is one such formal 
mathematical property for defining equivalence classes. We discuss other 
properties in Chapter 12. 

In practice a positional analysis involves several steps. We will describe 
these steps m detrul in the remainder of tbis chapter, and illllS.trate tbem 
with example_s, 

Now, let us consider the usual role analysis. A role analysis is concerned 
with the associations runong relations. Schematically, a role analysis will 
traverse the horizontal paths in Figure 9.1, either along the top or 
along the bottom of this diagrrun. The distinction between the top 
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path and the bottom path is related to the distinction between "global" 
roles, which describe associations among relations for an entire grou p, 
and " individual" or "local" roles, which describe associations among 
relations from the perspectives of individual actors or subsets of actors. 
We will discuss "global" roles in Chapter 11, and take up the topic of 
"individual" roles in Chapter 12. 

Once equivalence classes (or positions) of actors have been identified, 
the ties between these positions must be described. Modeling ties between 
positions is the task represented by the horizontal arrow on the bottom 
of the figure. The task here is to describe the system of relations between 
the positions. Image matrices and density tables (which we discuss in this 
chapter) and blockmodels (which we discuss in Chapter 10) are common 
ways to model ties between positions. 

The horizontal path along the top of the diagram outlines another 
approach to role analysis. Starting with a collection of relations the 
task is to describe the association among the relations. For example, in 
an analysis of kinship relations, one might note that the combination 
of relations "mother of" and "sister of"-gwes rise to a meaningful 
compound relation - "mother's sister," which (in standard American 
English kinship terms) is labeled "aunt." Or, to give a non-kinship 
example, consider the relations "friend of" and "enemy of." We would 
expect that the combination of these two relations might lead to other 
meaningful relations: "friend of a friend is a friend," "enemy of a friend 
is an enemy," and so on. Modeling the association among relations is 
the basis for the network role system. 

The final step moving from top to bottom along the right side of the 
diagram requires grouping actors into equivalence classes based on the 
description of the role system resulting from the previous step. Here, as 
on the left side of the diagram, the critical decision is how to measure 
similarity among actors. The result is both a model of associations among 
relations (the network roles) and a partition of actors into equivalence 
classes that relate similarly to one another according to the roles. 

In this brief overview we have described these alternative routes 
through a positional and role analysis as different analytic sequences, 
requiring grouping actors and then describing associations among rela
tions, or describing the associations among relations and then grouping 
actors - with one of the two tasks coming before the other in the anal
ysis. The most desirable strategy would accomplish these simultaneously. 
A simultaneous model of actors and relations would be indicated by 
a direct arrow from the upper left to the bottom right of Figure 9.1. 
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Intuitively this would require defining equivaleuce classes of actors and 
relational systems at the same time. An important question (see Sailer 
1978; Pattison 1982; Breiger and Pattison 1986, 1993) is whether alterna
tive paths through this diagram give comparable results. The approach 
described by Breiger and Pattison (1986) is designed to model actor 
relational systems and network role structure at the same time. 

The scheme in Figure 9.1 can be used to organize the topics we discuss 
in the next four chapters. Chapter 9 is concerned with the vertical 1?ath on 
the left side of the diagram; methods for locating subsets of equivalent 
actors. Chapter 16 discusses statistical models for locatim! subsets of 
stochastically equivalent actors. Chapters 10 and 1 1  are concerned with 
'the horizontal paths; describing role systems, either based on a prior 
aggregation of actors (blockmodels along the lower path) or from the 
perspective of individuals (along the upper horizontal path). Chapter 12 
expands on methods for aggregating actors (using different equivalence 
definitions) and describing relations among these subsets, and so is 
concerned with the vertical paths. 

Although a complete analysis would study both network positions. and 
the ways in which the positions are lIed to each other (network roles), 
in practice much can be learned about the structure of a network from 
analyzing the similarities among actors. Most applications of positional 
analysis to substantive problems focus on identifying subsets of equivalent 
actors in a network. 

9.1.3 A Brief History 
The earliest and foundational formal statements of roles and positions 
in social networks arose in the anthropological study of kinship systems 
(White 1963; Boyd 1969). Using relational concepts, rules for marriage 
and descent could be stated in formal terms, and complex kinship systems 
could be described as mathematical strnctures. These algebraic statements 
give elegant descriptions of prescriptive and preferential marriage systems 
(as described by ethnographers), but the algebraic tools were initially less 
useful for analyzing social networks of measured ties between individuals 
(rather tban between marriage classes or clans). In addition, White 
(1963) drew the analogy between the algebra of kinship systems and the 
structure of formal organizations. The use of formal role and positional 
analysis to study social networks with a wider variety of relations started 
in the 1970's, with the publication of Lorrain and White's (1971) paper 
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on structural equivalence. Their goal was to bring algebraic techniques 
to the formal study of social roles in a wide variety of settings. 

The mathematical concept of structural equivalence. or some general
ization of it, is fundamental to virtually all positional and role analyses. 
The concept of structural equivalence allowed rapid development of 
this area in the mid-1970's, and subsequent work on ITleaSUrement of 
structural equivalence and representation of positional and relational 
structures by numerous researchers brought attention and popularity to 
this approach. Notable contributions here include the procedures for 
finding subsets of structurally e'l.uivalent actors (Breiger, Boorman, and 
Arabie 1975; Burt 1976), methods for representing ties between positions 
as blockmodels (White, Boorman, and Breiger 1976; Arabie, Boorman, 
and Levitt 1978; Arabie and Boorman 1979), algebraic approaches for 
modeling relational systems (Boorman and White 1976; Pattison 1982, 
1993; Boyd 1990), and clarification of the notions of structural equiva
lence and social position (Burt 1976; Sailer 1978; White and Reitz 1983, 
1989). 

Since the late 1970's attention has turned to developing alternative 
approaches to positional and role analysis. Extensive attention has been 
devoted to developing other equivalence definitions (besides structural 
equivalence) that are more faithful to the original theoretical concepts of 
social position and social role (Borgatti, Boyd, and Everett 1989; Borgatti 
and Everett 1989; Borgatti 1988; Breiger and Pattison 1986; Everett, 
Boyd, and Borgatti 1990; Mandel 1983; Pattison 1982, 1988, 1993; 
Sailer 1978; White and Reitz 1983, 1985, 1989; Winship and Mandel 
1983; Wu 1983). In admtion, some researchers have extended these 
initially descriptive methods using probabilistic approaches (Anderson, 
Wasserman, and Faust 1992; Holland, Laskey, and Leinhardt 1983 ; 
Wang and Wong 1987; Wasserman and Anderson 1987; Wong 1987). 

There is a growing consensus in the social network community that 
structural similarity of actors (formally translated into network position) 
is one of the key structural properties in network analysis (Borgatti and 
Everett 1992a; Burt 1976, 1978a, 1980, 1982). One of the consequences of 
the importance of this property is a proliferation of methods and formal 
approaches for the positional analysis of social networks. Methods for 
positional and role analysis of social networks developed rapidly in the 
1970's, and this continues to be an active area of investigation in net
work analysis (Boorman and White 1976; Borgatti 1988; Borgatti, Boyd, 
and Everett 1989; Borgatti and Everett 1989; Boyd 1983, 1991 ; Breiger, 
Boorman and Arabie 1975; Breiger and Pattison 1986; Burt 1976, 1990; 
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Everett, Boyd, and Borgatti 1990; Lorrain and White 197 1 ;  Mandel 
1983; Marsden 1989; Pattison 1993; Sailer 1978; White, Boorman, and 
Breiger 1976; White and Reitz 1983, 1989; Winship and Mandel 1983; 
Wu 1983). Although methods in this area employ some of the most so
phisticated mathematics used to study social networks, simple positional 
analysis techniques can be quite straightforward, and can provide rela
tively clearculinsights into the structure of a social network. Perhaps this 
snnplicity and the widespread aVailability of positional analysis proce
dux.es. (for example in the computer programs :nKUCTURE (Burt 1989) 
and UCINET) (Borgatti, Everett, and Freeman 1991) have contributed 
to the fact that positional analysis techniques are among the most widel¥ 
used descriptive methods for social network analysis. 

Positioual and role analyses are areas of network analysis where the 
power of mathematics has served well in the development of theoretical 
ideas and substantive applications. In particular, most of the advances in 
positional analysis derive in one way or another from the mathematical 
property of structural equivalence or its generalizations. 

9.2 Definition of Structural Equivalence 

Structural equivalence, introduced and .de.fined in the now classic pap.er 
by Lorrain and White (1971), is a mathematical property of subsets 
of actors. in a.network (or nodes in a graph). Briel1y, two actors are 
structurally equivalent if they have identical ties to and from all otber 
actors in the networK. 

9.2J Definition 

We begin with a collection of R dichotomous relations (!!tl,!!t" . .  ,!!tR). 
We will denote the presence of a tie between actors i and j on relation !!t, 
as i ::. j. This notation generalizes our standard notation, which denotes 
a tie from i to j as i .... j, or as Xij' = 1. Here we have further specified 
that the tie is on relation !!t ,. 

We have the following definition of structural equivalence: Actors i 
and j are structurally equivalent if, for all actors, k = 1 , 2, . . .  , g (k i i, j), 
and all relations r = 1,2, . . .  , R, actor i has a tie to k, if and only if j also 
has a tie to k, and i has a tie from k if and only if j also bas a tie from 

k. More fonnally, i and j are structurally equivalent if i ::. k if and only 
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if j � k, and k � i if and only if k � j, for all actors, k = 1 , 2, , , . ,  g 
(k 1= i,j), and relations, r =  1 ,2, , , . , R. 

Alternatively, the definition may be expressed using the more usual 
sociometric notation. Letting X'j' indicate the presence or absence of 
a tie from actor i to actor j on relation !!l'" then actors i and j arc 
structurally equivaknt if Xikr = Xjkr and Xkir = Xkjr for k = 1 , 2, . . . , g, 
and r = 1 ,2, , , .  , R. If actors i and j are structurally equivalent, then ties 
from i terminate at exactly the same actors as ties from j, and ties to i 
originate from the same actors as the ties to j. We will use the notation 
i == j to denote the equivalence of actors i and j. 

The definition of structural equivalence specifies the precise formal 
conditions that must hold for actors to be equivalent. Structurally 
equivalent actors have identical ties to and from identical actors, on all 
R relations. 

We will use the term "equivalence class" or "position" to refer to a 
collection of equivalent (or approximately equivalent) actors. We will 
denote a position by [!6k and let B be the number of positions in the 
network. In addition, we will use the notation q,(i) = [!6k to denote the 
assignment of actor i to position [!6k. If actors i and j are structurally 
equivalent, i == j, then they are assigned to the same position; thus, if 
i == j then q,(i) = q,(j) = [!6k. 

9.2.2 An Example 

Consider the example in Figure 9.2. In this graph actors 3 and 4 are 
structurally equivalent since both have ties to actor 5 and both have ties 
from both actors 1 and 2. In addition, actors 1 and 2 are structurally 
equivalent because both have ties to actors 3 and 4. Looking at the 
sociomatrix for this example, we see that structurally equivalent actors 1 
and 2 have identical rows and columns in the sociomatrix (as do actors 3 
and 4). In this example, there are B = 3 subsets of structurally equivalent 
actors ; [!6j = {1, 2}, [!62 = {3,4}, and [!63 = {5}. 

Notice that if two actors are structurally equivalent then their respective 
rows and columns in the sociomatrix will be identical. Rows in a 
soclOmatfix, containing their choices made, will contain l's and D's in 
exactly the same columns, and the columns, containing choices received, 
will contain l's and D's in exactly the same rows. If there is more than one 
relation, then the two structurally equivalent actors will have identical 
entries in their respective rows and columns in all sociomatrices. 
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Sociomatrix 
1 2 3 4 5 

1 0 1 0 
2 0 1 0 
3 0 0 0 1 
4 0 0 0 1 
5 0 0 0 0 

1 

Fig. 9.2. Sociomatrix and directed graph illustrating structural equiva
lence 

In terms of the structural information in a network, if two (or more) 
actors are structurally equivalent, then there is no structural (that is, 
network or graph theoretic) information pertaining to one actor and not 
to the other. If actors i and j are structurally equivalent, then the ties from 
i are identical to those from j and the ties to i are identical to those to j. 
Thus, i and j are .adjacent to and from identical other actors. If actors i 
and j are structurally equivalent then they are substitutable {Lorrain and 
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White 1971 ;  Sailer 1978). There is no loss of structural information by 
combining the two (or more) structurally equivalent actors into a single 
subset and representing them together as a single structural entity called 
an equivalence class or position. 

9.2.3 Some Issues in Defining Structural Equivalence 

In defining structural equivalence, it is important to note exactly how 
the definition applies to the different kinds of r.elations that can arise in 
a social network study. Specifically, we must first note whetheethe data 
set is single or .multirelational. Then, for each relation, we must consider 
whether it is: 

(i) Dichotomous or valued 
(ii) Directional or nondirectional 
(iii) A relation on which self-ties (the diagonal elements of the so

ciomatrix) are substantively meaningful 

Multiple Relations. The definition of structural equivalence ap
plies quite naturally to multirelational networks. For two actors to be 
structurally equivalent in a multirelational network, they must have iden
tical ties to and from all other actors, on all relations. Actors i and 
j are structurally equivalent in a multirelational network if and only if 
X;!a = Xj!a and Xk;, = Xkj, for k = 1, 2, . . .  , g, (k of i,j) and r = 1, 2, . . .  , R. 

Valued Relations. Structural equivalence is defined easily for di
chotomous relations, since a tie between a pair of actors is either present 
or absent. However, when relations are valued the question of whether 
two actors are structurally equivalent is less clear-cut. This is especially 
true when one has to measure how closely two actors come to being 
perfectly structurally equivalent (a topic we discuss below). For example, 
consider the valued relation of acquaintanceship in Freeman's EIES net
work. This quantity is measured as each person's reported friendship with 
each other member of the group on a five-point scale: 1) "unknown," 
2) "person I've heard of," 3) "person I've met," 4) "friend," or 5) "close 
personal friend." In the strictest sense, two actors are structurally equiv
alent if they name and are named by exactly the same close personal 
friends, exactly the same friends, had met and been met by exactly the 
same others, and so on. For two actors to be structurally equivalent on 
a valued relation they must have ties with identical values to and from 
identical other actors. 
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Some authors have argued that actors are approximately structurally 
equivalent if they have the same pattern of ties to and from other 
actors (Burt 1980). If we consider a relation measuring the frequency of 
interactions observed among members of a group, then two actors would 
have the same pattern of ties if they interacted frequently with exactly 
the same others and interacted infrequently with exactly the same others, 
but the exact number of frequent or infrequent interactions would not 
have to be the same for the two actors. The similarity of pattern of ties 
is an important property when we consider how to measure structural 
equivalence. 

Nondirectional Relations. For nondirectional relations there is 
no distinction between the origin and destination of a tie. Since there 
IS no dnectlOn to the tIes on a nondirectional relation there is no dis
tinction between ties sent and ties received. Thus, the sociomatrix for a 
nondirectional relation is symmetric, X;Ju- = Xki" arid one only needs to 
consider either the rows or the colnmns of the sociomatrix, but not both. 

Self-ties and Graph Equivalence. Often it is the case that self
ties in a network are undefined. For example, in the relation "seeks 
advice from" self-ties would probably be meaningless. In such cases 
the diagonal entries in a sociomatrix are treated as undefined and are 
ignored in computations. In analyzing the structural equivalence of pairs 
of actors on such relations the calculation of structural equivalence would 
exclude self-ties. 

On the other hand, sometimes reflexive ties are substantively important 
and should be considered. For example, consider recording the number 
of memos sent between and within departtnents in a corporation. In 
this example, the actors are departments in the corporation and the 
relation is the number of memos sent between or within departments. 
The values on the diagonal of the sociomatrix for this relation count 
the number of memos sent within each department. When a relation 
is reflexive (i .... i for all i) and self-ties are considered substantively 
meaningful, then diagonal entries in the sociomatrix should be included 
in calculation of structural equivalence. 

In the special case of a single reflexive nondirectional relation, or a 
single reflexive directional relation on which Xij = Xfi for all i,j, Guttman 
(1977) has defined a property called graph equivalence. Graph equivalence 
is closely related to structural equivalence, though since its definition is 
confined to a single relation with special properties, it is less general than 
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structural equivalence. Actors i and j are graph equivalent if Xik = X}I, 
for all actors, k = 1, 2, .. . g. An interesting property of graph equivalence 
(that is not true of structural equivalence) is that since the relation is 
reflexive (i .... i and j .... j), if i and j are graph equivalent then both the 
i --> j and the j --> i ties. must be present. Since i "chooses" i, j must also 
"choose" i in order for i and j to be graph equivalent. This has interesting 
implications for interpretation of equivalences. Specifically, collections 
of actors who are graph equivalent form complete subgraphs, and thus 
these subsets are in some ways similar to cohesive subgroups. Graph 
equivalence is a more restrictive equivalence definition than structural 
equivalence since actors who are graph eqlj�valent are also structurally 
equivalent, but actors may be structurally equivalent without being graph 
equivalent. / 

Up to this point, we have described structural equivalence as an ideal 
mathematical property of pairs or subsets of actors in a social network. 
However, a positional analysis of a social network is more involved than 
simply identifYing subsets of equivalent actors. Before moving on to 
more technical details, we will give an overview of positional analysis of 
a social network, and outline the specific steps that are involved. 

9.3 Positional Analysis 

One of the major objectives of a positional analysis is to simplify the 
information in a network data set. This simplification consists of a 
representation of the network in terms of the positions identified by an 
equivalence definition and a statement of how these positions are related 
to each other. In this section we do two things. First, we describe 
an ideal positional analysis using structural equivalence to illustrate the 
steps involved. Second, we present a list of the steps that are required 
for a complete positional analysis. 

93.1 Simplification of Multirelational Networks 

Consider the network represented by the sociomatrix and digraph in 
Figures 9.3a and b. In this form it is difficult, if not impossible, to see 
any regularities or patterns that might exist in this network. However, if 
we were to permute both the rows and the columns of the sociomatrix, 
in the same way, and present them in the order shown in Figure 9.3c, 
then we would see considerable regularity in the ties among subsets of 
actors. We can also partition the actors into subsets, iJBk. Specifically, 
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we see that the rows and columns may be divided into three subsets: 
iJiJ, = {6,3, 8}, iJiJ, = {2, 5, 7}, and iJiJ3 = {4, 1,9}. Within each subset 
actors are structurally equivalent. These three subsets of equivalent 
actors are the equivalence classes, or positions in the network. Recall 
that <I>(i) = iJiJk denotes the assignment of actor i to position iJiJk. For 
example, in Figure 9.3 <1>(6) = iJiJ, since actor 6 is in position iJiJ,. These 
equivalence classes define a partition of the actors ; each actor belongs to 
one, and only one, of these classes. 

If all actors within each subset are structurally equivalent, then when 
the rows and columns of the original sociomatrix are permuted so that 
actors who are assigned to the same equivalence class occupy rows and 
columns that are adjacent, the submatrices corresponding to the ties 
between and within positions are filled with either all O's or alii's. 

Once we have permuted the rows (and simultaneously the columns) of 
the sociomatrix so that actors in the same position are adjacent in the 
sociomatrix, we can further simplify the sociomatrix by collapsing the 
rows and columns that contain equivalent actors and present the matrix 
in a reduced form called an image matrix. In the image matrix rows and 
columns refer to positions, rather than individual actors. Since B is the 
number of positions in the network, the image matrix is of size B x B. 
A "I" in row k, column /, of this matrix indicates that position iJiJk has 
a tie to position iJiJl' When the model is perfect (as in Figure 9.3) so that 
all subrnatrices are either filled with 1's or filled with O's, then there is 
no ambiguity about whether a tie exists between positions. Figure 9.3c 
shows the image matrix for this example. 

The image matrix describes the ties between positions, and can be 
presented in a reduced graph. In the reduced graph, nodes represent 
positions and lines or arcs represent ties between positions. The reduced 
graph therefore has fewer nodes and fewer lines than the original graph. 
We use the following rule to construct the reduced graph. If there is 
a tie from actor i to actor j in the original graph, then there will be 
a tie between their respective positions in the reduced graph. More 
specifically, if actor i is assigned to position iJiJk and actor j is assigned 
to position BIll, then i -> j implies iJiJk -> iJiJl; i -> j implies <I>(i) -> <I>(j). 
This is also the definition of a graph homomorphism, which is important 
in the discussions of blockmodels and relational algebras (in Chapters 
10 and 1 1 ). This rule for constructing a reduced graph includes both 
a rule for assigning actors to positions and a rule for assigning ties 
between positions based on the presence or absence of ties between 
actors. 
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In Figure 9.3 there are the following ties between positions: .1111 H iJIIJ, 
i!B2 <-+ i!B" i!B3 <-+ i!B3 (reflexive ties), and i!B1 ---> i!B3. These ties arc present 

between positions because all actors in one position have ties to all actors 

in another position For example, all actors in i!Bj have ties to all actors in 

position i!B3. The reduced graph for this example is shown in Figure 9.3c. 

The reduced graph, along with the assignment of actors to positions, 

contains all of the structural information in the original graph, since all 

actors within a position are perfectly structurally equivalent. However, 
the reduced graph is clearly much simpler. An image matrix (for a single 

relation) or a collection of image matrices (one for each relation in a 

multirelational network) along with a description of which actors are 
assigned to which positions is called a blockmodel. 

If the actors within the positions are not perfectly structurally equiva

lent, then submatrices contain both O's and l's, and not all actors in the 

position have ties to all actors in the other positions. In that case, the 

description of how positions are related to each other is not straightfor

ward. We discuss this situation briefly at the end of this chapter and in 
detail in Chapter 10. 

This example illustrates some of the results of positional analysis 

methods: a partition of the actors into discrete subsets (called positions) 

and a simplified description of the original social network data presenting 

the ties between positions rather than among individual actors. In 

practice a complete positional analysis requires four steps, which we will 
now describe. 

9.3.2 Tasks in a Positional Analysis 

Specifying the equivalence definition by which actors will be assigned to 
the same equivalence class is only the first step in a positional analysis. 
As we saw in the previous examples, there are several steps, resulting in 
a simplified representation of the original network data. In addition, we 

also need an assessment of how good the representation is. These steps 

are: 

(i) A formal definition of equivalence 

(ii) A measure of the degree to which subsets of actors approach 
that definition in a given set of network data 

(iii) A representation of the equivalences 

(iv) An assessment of the adequacy of the representation 
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a. Sociomatrix h. Graph 

2 3 4 5 6 7 8 9 

1 0 0 1 0 0 0 0 1 
2 0 0 0 1 0 1 0 0 5 
3 1 0 1 1 1 1 
4 1 0 0 0 0 0 0 1 1 
5 0 1 0 0 0 1 0 0 

be 
6 1 0 1 1 0 0 1 1 
7 0 1 0 0 1 0 0 0 
8 1 0 1 1 0 1 0 1 4 9 
9 1 0 0 1 0 0 0 0 

6 

c. Permuted and partitioned sociomatrix 

6 3 8 4 1 9 2 5 7 

6 - 1 1 0 0 0 1 1 1 
3 1 - 1 0 0 0 1 1 1 
8 1 1 - 0 0 0 1 1 1 

4 0 0 0 - 1 1 0 0 0 
1 0 0 0 1 - 1 0 0 0 
9 0 0 0 1 1 - 0 0 0 

2 0 0 0 0 0 0 - 1 1 
5 0 0 0 0 0 0 1 - 1 
7 0 0 0 0 0 0 1 1 -

d. Image matrix e. Reduced graph 

rEt rE, rE, rEt 

rEt 1 0 1 
rE, 0 1 0 o rE2 rE, 0 0 1 

rE, 

Fig. 9.3. Example simplifying a network using structural equivalence 

Equivaleuce Definition. In the first step, the equivalence definition 
specifies the formal mathematical conditions uuder which we will consider 
actors in a network to be equivalent. Structural equivalence is one such 
equivalence definition, but there are many others (which we discuss in 
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Chapter 12). In all cases the equivalence definition is stated in terms of 
properties of ties among actors in a network. 

In actual network data, it is unlikely that any actors will be exactly 
equivalent. Therefore the second step requires a measure of the extent to 
which actors are equivalent, for a given definition. Doreian (1988a) makes 
the useful distinction between the equivalence definition and the proce
dure for detecting the property of equivalence (a "detector"). Pattison 
(1988) makes a similar distinction between the model and the algorithm 
for fitting the model to data. We will refer to the detector as a measure 
0/ equivalence. A good measure of equivalence should be based on the 
mathematical properties that define the relevant equivalence. 

Measure of Equivalence. The second step is a measure of equiv
alence. This measure is a quantity that allows us to decide, for any 
given equivalence definition, whether or not (and perhaps to what ex
tent) subsets of actors in a network are equivalent according to the 
given definition. An important consideration here is that the measure of 
equivalence in fact measures what it is supposed to measure. 

Representation. The third step in a positional analysis is rep
resentation of the assignments of actors to equivalence classes, and a 
statement of the relationships between and within the classes (Pattison 
1988). In the model actors are assigned to classes so that, ideally, actors 
within each class are equivalent to each other on the specified equivalence 
definition. The most common kind of representation is a discrete model 
that provides a partition of the actors in the network into a collection 
of equivalence classes. It is also sometimes useful to present equivalences 
among actors in a continuous (spatial) model. 

Another important aspect of the representation is a statement of how 
the positions relate to each other. The reduced graph, image matrix, and 
blockmodel are examples of representations. A complete representation 
thus consists of a partition of the actors into equivalence classes and a 
statement of the presence or absence of ties between and within positions. 

Assessment of Adequacy. The fourth step in a positional analysis 
is assessment 0/ the adequacy of the representation. Since assessment of 
adequacy (sometimes called goodness-o/jit) usually requires probability 
models, we defer the discussion of this topic until later in the book. Even 
without this assessment, we will see that we can learn much about the 
structure of a set of network data and positions within the network using 
descriptive methods in an exploratory way. 
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We have already discussed the definition of structural equivalence. We 
now examine the measurement and representation of structural equiva
lence in detail. 

9.4 Measuring Structural Equivalence 

Structural equivalence is a mathematical property which is seldom ac
tually realized in a set of social network data. For various reasons, 
including measurement error, variability in respondents' answers, restric
tions on answer formats, changing relational systems, or the use of static 
models for representing dynamic systems, it is unlikely that two actors 
will be exactly structurally equivalent in a set of network data. Positional 
analysis methods based on structural equivalence, therefore, seek to lo
cate and identify subsets of actors who are approximately structurally 
equivalent. Measurement of equivalence is the second task in a posi
tional analysis. We will use the same formal definition of equivalence, 
specifically, structural equivalence, but will also have a measure of the 
degree to which subsets of actors approach this definition. 

We first assume that we have a single dichotomous relation, and 
describe alternative approaches for measuring the degree of structural 
equivalence among actors based on this single relation. We then discuss 
various generalizations, for example, to multiple relations and to valued 
relations. 

If we assume that self-ties are undefined, then diagonal elements in 
the sociomatrix, Xii, will be treated as undefined and will not be included 
in the calculations. On the other hand, if the relation is reflexive, or 
if meaningful self-ties are present, the researcher may wish to include 
diagonal elements. 

Since structural equivalence is defined as the presence of identical 
ties to and from subsets of actors, for a directional relation we exantine 
both the rows and columns of the sociomatrix in order to determine 
whether subsets of actors are structurally equivalent. For directional 
relations, structurally equivalent actors have identical entries in their 
corresponding rows and columns of the sociomatrix. To the extent that 
two actors are not perfectly structurally equivalent, the entries in their 
respective rows and columns in the sociomatrix will be different. Thus, we 
can think about a continuum along which structural equivalence between 
pairs (and subsets) of actors can be measured. For example, actors i and 
j may have a large number (or proportion) of identical ties but still 
have a few ties that they do not share. In contrast, actors k and I may 
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have very few identical ties, and thus a large number of unique others 
to whom they are tied. So, I and j would be more nearly structurally 
equivalent than would k and I. 

The first measure we discuss is based on the Euclidean distance caicu
lated between the values of the ties to and from pairs of actors. 

9.4.1 Euclidean Distance as a Measure of Structural Equivil/('lIce 

The use of Euclidean distance as a measure of structural equivalcnce was 

developed by Burt (Burt 1976, 1978a, 1980, 1987; Burt and Billner 198 1) 
and has been applied to a wide range of substantive and theoretical 
problems. 

Let Xik be the value of the tie from actor I to actor k on a single relation. 
We define a distance measure of structural equivalence for actors i and j 
as the Euclidean distance between the ties to and from these aclors. F'"or 
actors I and j, this is the distance between rows I and j and columns i 
and j of the sociomatrix : 

g 
dij = I)<X;k - Xjk? + (Xk; - Xkj)'] 

k=l 

for i i= k, j i= k. 

(9. I) 

If actors i and j are structurally equivalent, then the entries in their 

respective rows and columns of the sociomatrix will be identical, and thus 
the Euclidean distance between them will be equal to O. To the extent 
that two actors are not structurally equivalent, the Euclidean distnncc 
between them will be large. Euclidean distance has the properties of II 
distance metric : the distance from an object to itself is 0 (d/l = 0), it is 
symmetric (d;j = dp), and all distances are greater than or cqull i to 0 
(dij ;;, 0). For a single directional dichotomous relation on which diagonal 
entries are undefined, the maximum possible value of dij is J2(g - '2). 

Euclidean distances are computed between all pairs of actol's in a 
network. These pairwise distance measures are then the entries in a g x g 
matrix, which we denote by D = {dij}. Each entry in D mcaSUl'es the 
structural equivalence of the row actor and the column aclol'. 

Multiple Relations. Now, suppose that we have mOl'e thun olle 
relation. We can generalize equation (9.1) to measure slructuwl equiv. 

alence across the collection of several relations. As usual, there arc n 
relations, and X;k' is the value of the tie from actor i to actor k 011 relation 
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Er,. We define the distance measure of structural equivalence for actors 
i and j as the Euclidean distance between the ties to and from actors i 
and j across the collection of R relations: 

R g 

dij = I: I: [(x,,, - Xjk,)' + (Xki' - Xkj' J21 (9.2) 
r=l k=l 

for i <fo k, j <fo k. The quantity in equation (9.2) will be 0 if two actors are 

structurally equivalent, and will be larger if actors are not structurally 

equivalent. For R dicbotomous directional relations on which diagonal 

entries are undefined, the maximum possible value of d'l is �2R(g 2). 

An Example. We now illustrate measurement of structural equiv

alence using Euclidean distance. The example we will use is the advice 

relation for Krackhardt's high-tech managers. Recall that this relation 
was measured by asking managers: "To whom do you go for help and 

advice on the job?" We used the program UCINET IV (Borgalli, EVerett, 

and Freeman 1991) to calculate the Euclidean distances. 

Calculations include values in both rows and columns of the socioma
trix, since the relation is directional, and exclude diagonal entries. These 

distances are presented in Figure 9.4, as the lower left triangle of the 

matrix D. Each entry in this matrix is a measure of the extent to which 

the row actor and the column actor are structurally equivalent on the 

advice relation. Notice that no pairs of actors are structurally equivalent, 

since none of the off-diagonal distances is equal to O. 

9.4.2 Correlation as a Measure of Structural Equivalence 

A second widely used measure of structural equivalence is the correlation 

coefficient. Using correlation to measure structural equivalence is quite 

similar to using Euclidean distance. The correlation between actor i and 
actor j is the usual "Pearson product-moment" correlation coefficient, 

computed on both the rows and columns of the sociomatrix (if the 

relation is directional). We denote tbe mean of the values in row i of 
the sociomatrix as Xi., and similarly denote the mean of the values in 

column i as X'i, where the calculation excludes diagonal elements. We 

will begin by defining correlation as a measure of structural equivalence 
for a single relation. We then have: 

2:)Xki - X.i)(Xkj - Xej) + 2:(Xik - Xi.)(Xjk - Xj.) 
'u = f�==-��=��=:,�c....;����f=Fi�=:=',;, (9.3) )2)Xk; - x.;)2 + l:(X;k - x;.)' )l:(xki - x'i)2 + l:(Xik - x).)2 
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where all the sums are over k, and i i= k, j i= k. These corrclati()llH 

are arranged in a g x g correlation matrix, which we denote by C I. 
The (i,j)th element of C1 is the Pearson product-moment correlation 

coefficient, rij, between the ith row and column and the jth row and 

column of the sociomatrix. Diagonal elements of the sociomatrix are 

excluded from calculation of the correlation. The elements of C1 measure 
the extent of structural equivalence of pairs of actors. If two actors are 
structurally equivalent, then the correlation between their respective rows 

and columns of the sociomatrix will be equal to +1. 

Multiple Relations. Calculating correlations on multirelational 

networks is straightforward. We generalize equation (9.3) to include 
multiple relations, r = 1,2, . . . , R. However, the equation is somewhat 

simpler if the collection of matrices on which we calculate correlations 

includes both the sociomatrices, X" and their transposes, X;. Since the 
columns of the original matrix become the rows in its transpose, including 

the transposes in the calculation allows us to compare ties both to and 
from the actors. Since there are R relations, there are R sociomatrices 

and R transposed matrices, and thus 2R matrices when we consider both 

sociomatrices and their transposes. 
Denoting the value of the tie from actor i to actor k on relation gr, 

as X;", and assuming that we include the transposes of relations in our 

collection, we generalize equation (9.3) to: 

rij = _r=��I:�;��1�I:�1-�1"'( X=, ;:;k'=-r=X;;;,�)(:= x }�'k�' =-=X",i;,;' )=== (9.4) 

VI:;!l I:l�l (x,., - x;'?VI:;!l I:t�l (xik, - Xi'? 
for i i= k, j i= k. As with correlations calculated on a single relation, 

these correlations are arranged in a g x g correlation matrix, denoted by 

Cl. 

An Example. We now illustrate the use of correlation as a mea
sure of structural equivalence using the advice relation for Krackhardt's 
high-tech managers. Figure 9.5 presents the lower left triangle of the 
correlation matrix C1, calculated on the ties sent and received on this 

relation. Diagonal entries were excluded from calculations. These correla

tions were computed using UCINET IV (Borgatti, Everett, and Freeman 
1991), but a standard statistical package, such as SYSTAT (Wilkinson 
1987), will give identical results (so long as diagonal entries are treated 

as missing data and both the sociomatrix and its transpose are included). 
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In Figure 9.5, since there are no off-diagonal entries of + 1.0, there are 
no actors who are structurally equivalent on the advice relation. This 
is the same conclusion that we reached using Euclidean distance as a 
measure of structural equivalence. 

9.4.3 Some Considerations in Measuring Structural Equivalence 

We now turn to some considerations in the measurement of structural 
equivalence. OUf comments focus on selecting a good measure for a given 
relation and a comparison of the two measures (Euclidean distance, and 
Pearson product-moment correlation coefficient). 

Other Measures of Structural Equivalence. Any measure of struc
tural equivalence quantifies the extent to which pairs of actors meet the 
definition of structural equivalence. Euclidean distance and correlation 
are only two of a number of possible measures that could be used to mea
sure structural equivalence. They are the most commonly used measures, 
perhaps because they are both part of more comprehensive positional 
analysis procedures (Euclidean distance in STRUCTURE Burt (1989). 
and correlation in CON COR), and both are widely available in network 
analysis computer programs as well as in standard statistical analysis 
packages. However, since measuring structural equivalence fundamen
tally involves comparing "profiles" of two actors' rows and columns in 
a sociomatrix, the researcher could consider alternative similarity (or 
dissimilarity) measures. Two natural candidates for alternative measures 
are a simple match coefficient that counts the number or proportion of 
ties that are identical between two actors (for a dichotomous relation), or 
a measure of ordinal association (for a relation measured as an ordered 
scale ). 

Multiple Relations and Multiple Sociomatrices. Calculating a 
measure of structural equivalence usually involves calculations across 
two or more sociomatrices. Since structural equivalence is defined as 
identity of ties both to and from actors, one must calculate measures 
using both the sociomatrix and its transpose (unless the relation is 
nondirectional). Also, if the network data set is multirelational, then 
there are R sociomatrices, to start, and an additional R transposed 
matrices (for a total of 2R matrices). When using standard statistical 
packages (such as SYSTAT, SPSS, or SAS) rather than network analysis 
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programs (such as STRUCTURE, or UCINET) to calculate a Illeasure 

of structural equivalence, it is useful to construct a data array that in

cludes all sociomatrices (and transposes) that are to be analyzed. The 

idea is to "stack" the sociomatrices by appending one SOciolllHlrix to 

the bottom of another, to form a single rectangular data array. II' there 

are R relations, each of size g x g, then the "'stacked" array has g 
columns and 2R x g rows. The "stacked" data array can be t rell ted 

as a "cases by variables" array, with 2R x g rows as "cases," and g 
columns as "variables." Correlations or distances are then calculated 

between variables (columns). The main "trick" is to code diagonal ell .. 
tries in each sociomatrix and its transpose as missing data, if sclfNtics nrc 
undefined. 

Comparison of Some Measures of Structural Equivalence. As w� 
have noted, actors in a social network are almost never structul'ltlly 
equivalent. This has led to the common practice of using a mensurc 

of the degree to which pairs or subsets of actors approach structural 
equivalence. Measures such as correlation or Euclidean distance, which 
are commonly used to measure structural equivalence, do nol always give 
the same results. The correlation between two actors may be equal to 
+ 1, indicating perfect structural equivalence by that measure, while the 

Euclidean distance between the same two actors on the same relation(s) 
may be non-zero, indicating that the actors are not perfectly structlll'ally 
equivalent, if means and variances differ. Therefore, as Hdctcctol'f:t of' 
structural equivalence, correlation and Euclidean distance differ in how 
two actors in a social network may fail to have identical ties, and thcrci'OI'o 
not be structurally equivalent. It is important to understand the \(l1'Iuul 
properties of these measures in order to choose the appropriate IllCUSlirc 

for a given application. 
The problem of measuring degree of structural equivalcnce is the 

problem of measuring the similarity (or dissimilarity) of thc tics to und 
from pairs of actors On a given set of network data. Thus, it is U spedne 
instance of a more general question of measurement of the similnl'ity 
(or dissimilarity) of two data "profiles." In analyzing network dutu, the 

"profiles" are the rows and columns in the sociomatrices corresponding 

to two actors' ties. Numerous authors, both inside and outside the 
network community, have examined the relationships among ultc1'I1utive 
measures of similarity and dissimilarity. We will restrict Olll' attention 
here to correlation and Euclidean distance, and the formal relationship 
between them. 
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The formal relationship between correlation and Euclidean distance is 
well known (Cronbach and GIeser 1953; Coxon 1982; Fox 1982; Rohlf 
and Soka11965; Sneath and Soka1 1973; Sokal and Sneath 1963). We will 
present this relationship in terms of the distance and correlation between 
two rows of a sociomatrix on a single relation. The relationship can be 
generalized to rows, columns, and layers of a multi relational sociomatrix. 
We will denote the means of the values in rows i and j of the sociomatrix 
as Xi_ and Xje, and similarly denote the variances of rows i and j as 
sf. and S].. Calculations exclude diagonal elements and the elements 
xij and x ji, because these values are also excluded in the calculation of 
distance and/or correlation between rows i and j. We can then express 
the relationship between the Euclidean distance, dii (equation (9.1)), and 
the correlation, rij (equation (9.3)), between rows i and j of a sociomatrix 
as: 

(9.5) 

One can see from equation (9.5) that for a given correlation, rij, 
the Euclidean distance, dij, between two rows increases as the difference 
between the means of the rows increases and as the difference between the 
variances increases. Thus, Euclidean distance reflects a smaller amount 
of structural equivalence than does a correlation coefficient if the actors 
differ in the mean and variance of their ties. To illustrate, consider 
the single relation of acquaintanceship for Freeman's EIES network. 
Suppose two actors differed only in their use of the response rating scale, 
one consistently giving higher and the other consistently giving lower 
ratings, but otherwise had exactly the same acquaintances and friends. 
The two actors would then be measured as less equivalent by Euclidean 
distance than by correlation. 

Some authors have described structural equivalence as the similarity 
in pattern of ties between two actors. If the researcher wants to measure 
similarity in pattern, then the correlation coefficient is the preferred 
measure. However, if one desires a measure of the identity of ties, 
then Euclidean distance may be preferable. The difference between 
Euclidean distance and correlation is especially acute when relations 
are valued, and when there are large differences among actors in the 
mean level (overall strength) of their ties. For dichotomous relations, 
large differences in actor degree would lead to different results using 
correlation or Euclidean distance. In sociometric data collected using 
rating scales, differences among people in their use of response categories 
(for example, variability across people in the tendency to over- or under-
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estimate degrees of friendship, or to name few or many friends) would 

lead to different results. In records of interaction frequencies, differential 

rates of participation among actors would lead to different levels of 

structural equivalence when equivalence is measured using Euclidean 
distance. This problem has been debated in the literature (see Faust and 
Romney 1985a, 1986; Burt 1986). 

One approach to this problem is to standardize relational data to reo 

move differences in means and variances among actors before computing 

structural equivalence. If relations are standardized, so that all actors' 

rows and columns have equal mean and variance, then both correlation 

and Euclidean distance will give identical results; both are identical to 
correlations on the unstandardized data. Many network analysis com· 
puter programs (UCINET IV and STRUCTURE for example) have 
procedures for standardizing network data prior to analysis. 

In summary, measures of structural equivalence are used to assess how 
close pairs of actors are to perfect structural equivalence. Further, these 

measures may be used to study structural equivalence for all of the kinds 

of relations we have discussed: single or multiple relations, dichotomous 
or valued relations, and directional or nondirectional relations. 

9.5 Representation of Network Positions 

The third step in a positional analysis includes representation of the 
positions and a statement of how the positions are related to each other. 
The major goals of a representation are to present the information in 
a network data set in simplified form and provide an interpretation for 
the results. Our discussion of representing network positions is divided 

into two parts. We first describe methods for partitioning actors into 
subsets so that actors within each subset are closer to being equivalent 
than are actors in different subsets. There are many informative ways to 
do this, including hierarchical clustering and CONCOR. We then discuss 
methods for representing how the subsets relate to each other, including 
density tables, image matrices, and blockmodels. Since blockmodels and 

their interpretation are discussed in detail in Chapter 10, these topics 
receive less attention in this chapter. 

9.5.1 Partitioning Actors 

In this section we continue to analyze the advice relation for Krackhardt's 
high·tech managers that we have been using throughout this chapter. 
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One reason to study the positional structure of this corporation is to see 

which subsets of managers give and receive advice from the same other 
managers. Also, representing the eqnivalences among actors based on the 

advice relation can help us understand the informal organization of the 
company, and actors' positions in the advice giving and seeking network. 

If we look at a matrix of distances or correlations that measure 
structural equivalence (for example in Figures 9.5 and 9.4) it is virtually 
impossible to see any pattern in the values. Therefore it is necessary to use 
some method to represent the similarities (or dissimilarities) among the 
actors based on their degree of structural equivalence. In general, we seek 

a partition of the actors into subsets (positions) so that actors within 
each subset are more nearly equivalent, according to the equivalence 
definition, and actors in different subsets are less equivalent. Actors who 

are more nearly structnrally equivalent will be placed in the same subset, 
and actors who are far from being structurally equivalent will be placed 

in different subsets. 

Partitioning Actors Using CONCOR. Historically, one of the 
earliest approaches to partitioning actors into positions based on struc
tural eqnivalence is the procedure commonly known as CON COR (for 
CONvergence of iterated CORrelations). This method was first used for 
analyzing social networks by H. Wbite and others (Breiger, Boorman, 
Arabie, and Schwartz, among others) in the course of their research on 
the application of social networks to the algebraic study of roles (Breiger, 
Boorman, and Arabie 1975, White, Boorman, and Breiger 1976), and has 
been used extensively in network research in many fields (Anderson and 

Jay 1985; Breiger 1979; Breiger and Ennis 1979; Friedkin 1984; Knoke 
and Rogers 1979; Mitchell 1989; Mullins, Hargens, Hecht, and Kick 
1977). 

CONCOR is a procedure based on the convergence of iterated cor
relations. This refers to the observation that repeated calculation of 
correlations between rows (or columns) of a matrix (when this matrix 

contains correlations from the previons calculation) will eventually result 
in a correlation matrix consisting only of + I's and -1's. Furthermore, 
these correlations of + 1 and -1 occur in a pattern such that the items 
that are being correlated may be partitioned into two subsets where 

all correlations between items assigned to the same subset are equal to 
+ 1 and all correlations between items in different subsets will be equal 

to -1. This phenomenon was discovered both by the group working 
on social network analysis with H. White (Boorman and White 1976; 
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Breiger, Boorman, and Arabie 1975; Schwartz 1977; White, Boorman, 
and Breiger 1976) and by McQuitty and Clark, working on a completely 
different problem, in educational psychology (McQuitty 1968; MCQuitty 
and Clark 1968; Clark and McQuitty 1970). 

The CON COR procedure starts with a sociomatrix (or a collection of 
sociomatrices) and first computes correlations among the rows and/or 
the columns of the matrix (or matrices). As we saw in the previous 
section, these correlations, which are arranged in a correlation matrix 
Cj, are one possible measure of structural equivalence. The distinctive 
part about the CONCOR procedure is that it then uses this correlation 
matrix, Cl, as input, and calculates correlations on the rows or columns 
of this matrix. In this second step, correlations are computed between all 
rows (or between all columns) of the first correlation matrix Cl. These 
"correlations of correlations" are then arranged in a second correlation 
matrix, which we label C2. The entries in C2 are correlations calculated 
on the first correlations. Now, C2 is taken as input, and correlations 
are computed between all rows (or columns) of this matrix. These 
"correlations of correlations of correlations" are then the entries in a 
new correlation matrix, C3. Now, suppose we continue this procedure, 
using the correlation matrix resulting from a given round as "input" 
to the correlation calculations on the next round. So finally we have 
"correlations of correlations of correlations of correlations of . . .  " 

At first glance, it seems as though this process might go on forever, 
each round resulting in a new, and different, correlation matrix. However, 
it turns out that after several iterations of this procedure, the values of 
all correlations in the matrix are equal to either + 1 or � 1 (except in 
some quite unusual circumstances). Let us denote the final correlation 
matrix (after t iterations) as Ct. This matrix contains only + I's and -1's. 
In addition, it is possible to permute the rows, and simultaneously, the 
columns of the matrix Ct, so that it can be partitioned and simplified 
(blocked) to have the following form: 

� 

� 

The entities corresponding to the rows and columns of the correlation 
matrix may be partitioned into two subsets where the correlations (in the 
final correlation matrix Ct) between pairs of entities within each subset 
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are equal to + 1 and the correlations between pairs of entities belonging 
to different subsets are equal to -1. 

Since the entities in this correlation matrix are the actors in the network, 
this partition gives a partition of the original set of actors. Each of these 
subsets contains actors who have similar ties to and from other actors 
in the network. These two subsets can be used to define positions within 
the network. 

Certainly there may be more than two positions within a network ; 
thus CONCOR may be repeated on the submatrices defined by an earlier 
partition to produce finer partitions. For example, one of the positions 
arising from the initial split into two positions may be split further 
by applying iterated correlations to the submatrix of the sociomatrix 
containing members of the subset of actors and the ties of those actors 
to and from the members of the whole network. Repeated application 
of iterated correlations to subsets of the data will produce a series of 
finer and finer partitions, each time splitting a prior subset into two 
smaller subsets. In this sense CON COR may be thought of as a (divisive) 
hierarchical clustering method. Beginning with the entire set of actors 
in the network, the first application of iterated correlations divides the 
actors into two groups. Further applications to these subsets produce 
finer splits, and so on. 

An important decision in an analysis using CON COR is how fine 
the partition should be ; in other words, when should one stop splitting 
positions? Theory and the interpretability of the solution are the primary 
considerations in deciding how many positions to produce. In practice, 
since correlations computed on small numbers of elements (here the few 
correlations in the matrix) are quite unstable, it is probably unwise to 
split positions that have three or fewer actors in them. 

One way to display the results of a series of partitions from CONCOR 
is to construct a tree-diagram or a dendrogram indicating the degree of 
structural equivalence among the positions and identifying their members. 
Each level of the diagram indicates the division resulting from a split of 
the previous subset. A dendrogram thus represents a clustering of the 
actors based on the results of CONCOR. The labels for the actors are 
given along the bottom of the diagram. Interpretation of the dendrogram 
is straightforward. Those actors who are connected by branches low in 
the diagram are closer to being perfectly structurally equivalent, whereas 
subsets of actors who are joined only through paths high up the diagram 
are less structurally equivalent (or are not equivalent at all). 
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i?41 : 

{1,8,11,16,17} 
f!J2 : 

{2,6, 7, 12, 14,21} 
!!43: 

{3,4,5,9.15,20} 
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(M4: 
{to, 13, IR, 19} 

Fig. 9.6. Dendrogram of positions from CONCOR of the advice relation 
for Krackhardt's high-tech managers 

Now let us illustrate CONCOR using the advice relation for Krack· 
hardt's high-tech managers. 

An Example Using CON COR. We will use the single relation of 
advice for Krackhardt's high-tech managers including both the ties given 
and received by the managers, but excluding diagonal entries in the 
sociomatrix. We used the program UCINET 3 (MacEvoy and Freemun 
n.d.) to do this analysis. 

Applying CONCOR leads first to a split into two subsets: the first 
subset contains actors 1, 2, 6, 7, 8, 1 1, 12, 14, 16, 17, and 21; the 
second subset contains actors 3, 4, 5, 9, 10, 13, 15, 18, 19, and 20. This 
split required 9 iterations before converging to a matrix containing only 
correlations of + 1's and -1's. Each of the two subsets may be split 
further to give a partition of the actors into four positions: 

• i!Jl: 1,8,11,16,17 

• i!J2: 2, 6, 7, 12, 14,21 

• i!J3: 3, 4, 5, 9, 15, 20 

• 814: 10, 13, 18, 19 

This set of positions is displayed as a dendrogram in Figure 9,6, The 
"branches" in this diagram indicate the partition of actors based on the 
series of splits from repeated applications of CONCOR. 
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Extensions. Generalizing CON CO R to multirelational networks 
and to valued relations is straightforward once we realize that the primary 
matrix that CON COR analyzes is the correlation matrix, Cj, containing 
the Pearson product-moment correlation coefficients as measures of sim
ilarity among pairs of actors. After the first step of computing Cj the 
procedure of iterating correlations is identical regardless of the types of 

relations that were included in the calculation of C!. 

Some Comments. There are several problems with CONCOR as 
a method for finding positions of approximately structurally equivalent 
actors. We comment on these issues in this section. 

First, CON COR's procedure of always splitting a set into exactly two 
subsets imposes a particular form on the resulting positional structure in 
the network. At the end of each round of iterated correlations the result 
is a split of the actors into exactly two subsets. Repeated application 
of iterated correlations in turn splits the subset into exactly two smaller 
subsets. Thus, the form of the result is a series of bi-partitions, or a 
binary tree. This form is defined by the procedure, not by the structure 
of the network. 

Second, in practice, the resulting partition from CON COR often has 
little resemblance to what are intuitively and formally understood to 
be social positions in the network (as discussed at the beginning of 
this chapter). Several authors have applied CONCOR to hypothetical 
networks with known positional structure, and results consistently show 
that the partition from CONCOR does not find subsets of actors who 
intuitively occupy social positions (Doreian 1988c; Faust 1988; Sim and 
Schwartz 1979). 

The third problem is that the formal properties of the procedure are 
not well understood. Schwartz (1977) discusses in detail the mathematical 
properties of iterated covariances and iterated correlations on a socioma

trix, and the relationship between both of these procedures and principal 
component analysis. He shows that the first split of actors produced by 
CONCOR is virtually identical to the pattern of signs ("+" and "-") 
on the first principal component from a principal component analysis of 
an appropriately scaled correlation matrix. Given the close resemblance 
of CONCOR to principal component analysis, the fact that principal 
component analysis results in more detailed information (a number of 
components rather than simply a split of actors), and the fact that the 
exact mathematical properties of CON COR remain obscure (it is not 
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clear what. if anything, it is optimizing), it is advisable to use CON CO}{ 
with a great deal of caution. 

The next approach we describe uses clearly specifiable criteria to par

tition actors into positions. We turn now to a discussion and iIlusll'alion 

of hierarchical clustering to illustrate partitioning actors. 

Partitioning Actors Using Hierarchical Clustering. Hierarchical 

clustering is a data analysis technique that is ideally suited for partitioning 

actors into positions. Hierarchical clustering groups entities into subsets, 
so that entities within a subset are relatively similar to each other. 
There are many texts and articles on hierarchical clustering as a general 

data analysis approach (for example, Aldenderfer and Blashfield 1984; 
Johnson 1967 ; Lance and Williams 1967). 

Consider the task of constructing subsets of actors so that within each 
subset actors are relatively more structnrally equivalent. Specifically, if 
dij is a distance measure of structural equivalence of actors i and j, then 
the researcher must decide on some threshold value, a, such that pairs (or 
subsets) of actors i and j are considered nearly structurally equivalent 
if dij ::s;; rx. If the measure of structural equivalence is the correlation 
coefficient, rij, then the subsets should contain actors among whom the 
correlations are high; rij ;0: IJ.. The task is to find collections of actors such 
that each collection contains actors who are approximately structurally 
equivalent at level a. 

There are numerous hierarchical clustering criteria (for example, com
plete link, single link, average link, and so on). Complete link (also 
called diameter method) hierarchical clustering produces collections of 
entities in which all pairs are no less similar (no more dissimilar) than 
the criterion value. In practice, complete link clustering gives more ho
mogeneous and stable clusters than alternative methods (such as single 
link clustering) and is less subject to problematic results (for example 
"chaining," where a large cluster is constructed by adding a single object 
at a time) (Lance and Williams 1967). The procedure is hierarchical 
because it uses successively less restrictive values of a to define clusters 
of entities. The clusters fonn a hierarchical series that can be displayed 
in a dendrogram. 

Computer routines for hierarchical clustering are widely available, both 
in standard statistical analysis packages, and in network analysis pack
ages. Both STRUCTURE and UCINET include hierarchical clustering 
programs. The input to a clustering program is (usually) a one-mode 
symmetric matrix in which the entries measure the similarity (or dis-
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similarity) of pairs of entities. A positional analysis using hierarchical 
clustering would use a matrix with measures of structural equivalence as 
input (for example. the correlation matrix C[, or the matrix of Euclidean 
distances D). 

Examples Using Hierarchical Clustering. Now, let us return to 
the example of the advice relation for Krackhardt's high-tech managers 
to illustrate hierarchical clustering. To compare Euclidean distance and 
correlation as measures of structural equivalence, we present hierarchical 
clusterings of both. We used the complete link hierarchical clustering 
program in SYSTAT (Wilkinson 1987) to do this analysis. 

The results of the hierarchical clustering of Euclidean distances (from 
Figure 9.4) are presented in Figure 9.7. The least stringent criterion 
separates the actors into two subsets : position 1 :  6, 12, 1 1 , 17, 14, 8, 
16, 1, 2, 7, and 21;  and position 2 :  19, 13, 5, 9, 3, 15, 4, 20, 18, and 
10. A further division into four positions (dividing each of the previous 
subsets) gives :  

• @, : 1, 2, 6, 8, 11, 12, 14, 1 6, 1 7  
• @2: 7, 21 
• @3 : 3, 4, 5, 9, 13, 15, 19, 20 
• @4 : 10, 18 

The results of the hierarchical clustering of correlations (from Fig
ure 9.5) are presented in Figure 9.8. The least stringent criterion separates 
the actors into two subsets: position 1 :  5, 9, 3, IS, 4, 20, 13,  19, 10, and 
18 ;  and position 2 :  11 ,  17, 6, 12, 14, 2, 1, 16, 8, 21, and 7. A further 
division into four positions (dividing each of the previous subsets) gives: 

• @[ : 3 , 4, 5, 9, 15, 20 
• @2: 10, 13, 18, 19 
• @3: 1 , 2, 6, 8, 1 1 , 12, 14, 16, 17 
• @4: 7, 21 

At the two-position level, the results of hierarchical clustering of 
Euclidean distances are identical to the results of hierarchical clustering 
of correlations and both are identical to the two-position split from 
CONCOR. Even at the four-position level the results are quite similar. 

Notice that the result of a hierarchical clustering is a series ofpartitions 
of the set of entities that are being clustered (here the entities are the 
actors in the network). The dendrogram gives this series of partitions in 
the form of a tree diagram (see Figures 9.7 and 9.8). In defining positions 
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Fig. 9.7. Dendrogram for complete link hierarchical clustering of Euw 
clidean distances on the advice relation for Krackhardt's highwtcch 
managers 

of actors, the "trick" is to choose the point along the series that gives a 
useful and interpretable partition of the actors into equivalence classes. 
Theory is the best guide. If the theory posits a specific number of classes 
of actors, then the researcher should use the partition with that number 
of classes. 

Extensions. Although we have illustrated hierarchical clustering 
on a single, dichotomous, directional relation, hierarchical clustering can 
also be used to find subsets of approximately structurally equivalent 
actors in multirelational networks, and in networks where relations are 



384 Structural Equivalence 

5 

9 

3 

15  

_____ -----'r
f-

______ r-

t--
4 

20 

13 

19 

10 

18 

11 

17 

6 

12 

14 

2 

t--

16 

8 

21 

7 

-----� 
----------'1-

Fig. 9.8. Dendrogram for complete link hierarchical clustering of cor
relation coefficients on the advice relation for Krackhardt's high-tech 
managers 

valued and/or nondirectional. The important thing to realize is that the 
input to a hierarchical clustering program is the matrix containing mea
sures of structnral equivalence between all pairs of actors; for example, 
the matrix of Euclidean distances, D, or the ma trix of correlations, C,. As 
we described in the previous section, these measures can be computed for 
multiple relations and/or valued relations. Therefore, once the measure 
of structural equivalence is computed, hierarchical clustering can be used 
to analyze it. When ac tors are assigned to positions in a multirelational 
network the actor assignments are consistent across all R relations. 
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Some Comments. Hierarchical clustering is a useful way to rep
resent positions in social network data. Its main advantages are thill i l  
is a discrete method that gives a partition of the actors into subsets. the 
procedure is explicit, the interpretation is clear, and computer programs 
for hierarchical clustering are widely available. The disadvantages of 
hierarchical clustering are that the decision of how many subsets to use 
is often arbitrary, there are many different hierarchical clustering criteria 
(for example, complete link, single link, and so on), and some procedures 
do not give unique solutions. 

A more important drawback of both CONCOR and hierarchical clus
tering is that a "grouping" (in hierarchical clustering) or a split (in 
CONCOR) that is made at one of the early stages in the analysis canllot 
be undone at a later stage. For example, if two actors are put into two 
different positions in the first split of CON COR, they remain in sepamle 
positions through all further rounds. Similarly, if two actors arc placed 
in the same cluster at an early stage of hierarchical clustering, then Lhey 
remain together in all later, less restrictive, clusters. 

9.5.2 Spatial Representations of Actor Equivalences 

Hierarchical clustering and CONCOR are discrete models of social net
work positions. That is, they result in a partition of actors into mutually 
exclusive and exhaustive subsets. Alternatively, one can study equiva
lences among actors using a continuous (or spatial) model. Multidimen
sional scaling (MDS) is one such model. We briefly describe and illustrate 
multidimensional sealing in this section. Multidimensional sealing is II 
very general data analysis technique, and there are numerous texts and 
articles describing multidimensional scaling (for example, Kruskal and 
Wish 1978; Schiffman, Reynolds, and Young 1981 ;  and Coxon 1982). 

Although multidimensional scaling is a general data analysis technique, 
it has been used in social network analysis for the more specific ta�k 
of representing equivalences among actors. Some of the earliest work 
on network positions used multidimensional scaling (Breiger, Boorman, 
and Arabie 1975; Burt 1976; Ennis 1982) and multidimensional scaling 
continues to be widely used in positional analyses of social networks (for 
example, Breiger and Pattison 1986; Burt 1976 1988b; Doreian 1987, 
1988c; Faust 1988; Faust and Romney 1985a; Johnson 1986). 

Multidimensional scaling is a data analytic technique that seeks to 
represent similarities (or dissimilarities) among a set of entities in low
dimensional space so that entities that are more similar to each other 
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are closer in the space, and entities that are less similar to each other are 
farther apart in the space. The usual input to multidimensional scaling 
is a one-mode symmetric matrix consisting of pairwise measures of 
similarity, dissimilarity, or proximity. To study equivalences among actors 
in a network, the input to multidimensional scaling is some measure of 
pairwise equivalence among actors, such as the Pearson product-moment 
correlation matrix, C" or the matrix of Euclidean distances, D. The 
output of multidimensional scaling is a set of estimated distances among 
pairs of entities, which can be expressed as coordinates in one-, two-, or 
higher-dimensional space. These coordinates can then be used to display 
the points in space. When multidimensional scaling is used to study 
network positions using measures of structural equivalence as input, 
the results show which subsets of actors are more, and which are Jess, 
structurally equivalent. 

To illustrate multidimensional scaling we use the Pearson product
moment correlation coefficients calculated on the advice relation for 
Krackhardt's high-tech managers. We used SYSTAT (Wilkinson 1987) 
to do the multidimensional scaling with the correlation matrix, C" as 
input. The final solution in two dimensions has stress equal to 0.12954 
(Kruskal, stress form 1). This result is presented in Figure 9.9. 

In this figure, actors who are closer to each other in the space are 
relatively more structurally equivalent, whereas actors who are farther 
apart are relatively less structurally equivalent. One way to study this 
figure is to note the attributes of managers in different regions of the 
figure. The president (7) and one vice president (21) are in the lower 
right corner; the other vice presidents (2, 14, and 18) are in the middle 
to upper right. All members from department 1 (managers 6, 8, 12, 
17 and 21) are on the right half of the figure, whereas managers from 
department 2 (3, 5, 9, 13, 14, IS, 19, 20) are, with the exception of 14, on 
the left half of the figure. Managers from department 3 (10, 1 1, 18) tend 
to be toward the top of the figure. 

Another way to study the figure is to compare the proximity of actors 
in the multidimensional scaling figure with the partition that resulted 
from CON COR or from hierarchical clustering of either the Pearson 
product-moment correlations or of the Euclidean distances. Recall that 
these three methods gave the same partition at the level of two positions. 
Looking at the multidimensional scaling figure we can see that this split is 
essentially the right half versus the left half of the diagram. Further if we 
examine the four-position result from the hierarchical clustering of the 
Pearson product-moment correlations, we see a very close correspondence 
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Fig. 9.9. Multidimensional scaling of correlation coefficients on tho 
advice relation for Krackhardfs high-tech managers 

with the multidimensional scaling: members of position i!lh (3, 4, 5, 9, 
15, 20) are all in the lowcr lcft corner, members of position iJ?J, ( 10, 13, 
18, 19) are in the upper left, members of position iJ?J3 (1, 2, 6, 8, I I , 12, 
14, 16, 17) are in the upper right, and finally, members of iJ?J4 (7, 2 1 )  arc 
in the lower right. Clearly these methods give quite similar results for 
this example. 

Several authors have studied the relationship between positional analy
ses using multidimensional scaling, CONCOR, and hierarchical clustering 
(Breiger, Boorman, and Arabie 1975; Ennis 1982). Often researchers usc 
multidimensional scaling in conjunction with some method for partition
ing actors (such as hierarchical clustering) to study positions in networks 
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(for example, Burt 1976; Breiger, Boorman, and Arabie 1975; Breiger 
1981a; Ennis 1982). Comparisons of multidimensional scaling with 
CON COR and hierarchical clustering have shown the results to be quite 
complementary. 

9.5.3 Ties Between and Within Positions 

The task of representing positions in a network has two parts : assigning 
actors to positions, and describing how the positions relate to each other. 
In this section we discuss the second part: describing ties between and 
within positions. There are three common ways to represent the ties 
between and within positions: a density table, an image matrix, and a 
reduced graph. We discuss and illustrate each of these in this section. In 
all cases we assume that we have a partition of the actors into equivalence 
classes or positions to start with. These positions could result from a 
clustering of some measure of equivalence (such as Euclidean distance, 
or correlation) or from CONCOR. 

The starting point for all representations of positions is to permute 
the rows and columns of the original sociomatrix so that actors who are 
assigned to the same position are adjacent in the permuted sociomatrix. 
We use the positions defined by the partition to rearrange the rows and 
columns of the original sociomatrix so that the first rows and columns 
of the permuted sociomatrix contain the members of one position, and 

the next rows and columns of the sociomatrix contain the actors in the 
second position, and so on. Within each position, the order of actors is 
arbitrary. If some of the actors are nearly structurally equivalent, then 
the permuted sociomatrix should reveal regularities in the data that are 
not apparent in the unpermuted sociomatrix. 

Figure 9.10 shows the advice sociomatrix for Krackhardt's high-tech 
managers permuted according to the positions from the hierarchical 
clustering of the correlations. We have also indicated the submatrices 
corresponding to the ties between and within positions. Notice that there 
is only one submatrix that is filled completely with l's or completely with 
O's (all ties among members of !!ii, are present). Also, there are several 
submatrices which are quite dense (for example the submatrices of ties 
from !!iiI to !!ii3 and from iJih to !!ii,) and there are several submatrices 
that are quite sparse (for example the submatrices of ties from !!ii3 to !!iij ,  

from !!ii3 to !!ii2, and from !!ii3 to itself). 
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1 2 1 1 1 1 1 1 1 1 1 2 
5 9 3 5 4 0  3 9 0 8  1 7 6 2 4 2 1 6 8  1 7  
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20 0 0 0 1 0 - 0 0 0 1  1 1 1 1 1 1 1 1 1 1 0  

13 1 1 0 0 0 0  - 0 0 1 0 0 0 0 1 1 1 0 0 0 0  
19 1 0 1 1 0 1  0 - 1 1 1 0 0 0  1 1 1 0 0  o 1 
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17 0 0 0 0 1 0  0 0 0 0  0 - 0 0 0 1 1 0 0 1 1 
6 0 0 0 0 0 0  0 0 0 0  0 0 - 0 0 0 0 0 0  1 0  

12 0 0 0 0 0 0  0 0 0 0  0 0 0 - 0 0 0 0 0  1 1 
i!8, 14 0 0 0 0 0 0  0 0 0  1 0 0 0 0 - 1 0 0 0  1 1 
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i!84 21 0 0 1 0 1 1  0 0 0  1 0 1 1 1 1 1 0 0 1  - 1 
7 0 0 0 0 0 0  0 0 0  1 1 1 1 1 1  1 0 0 0  1 -

Fig. 9.10. Advice sociomatrix for Krackhardt's high-tech managers per
muted according to positions from hierarchical clustering of correlations 

Density Tables_ A useful way to summarize the ties between 
positions is in a density table, or density matrix. A density table is a 
matrix that has positions rather than individual actors as its rows and 
columns, and the values in the matrix are the proportion of ties that 

are present from the actors in the row position to the actors in column 
position. That is, the entries in the density table are Ll's. For the densities 
within positions, diagonal elements (Xii) are excluded from calculations 
if self-ties are undefined. 

We will continue to use the example of the positions identified by 
a hierarchical clustering of the correlations on the advice relation for 

Krackhardfs high-tech managers. Consider the ties from members of &1'1 
to members of &1'2. Since there are six people in &l'j, and four people in 
&1'2 there are 6 x 4 = 24 possible ties that could be present from members 
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i1l1 i1l2 i1l) i1l4 
i1l1 0.367 0.625 0.944 0.833 
i1l, 0.708 0.750 0.528 0.375 
i1l3 0.056 0.167 0.194 0.722 
i1l4 0.250 0.250 0.667 1.000 

Fig. 9.11 .  Density table for the advice relation from Krackhardt's high
tech managers, positions identified by hierarchical clustering of correla
tions 
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Fig. 9.12. Image matrix for the advice relation from Krackhardt's high
tech managers, positions identified by hierarchical clustering of correla
tions 

of i!JJ, to i!JJ2• In Figure 9.10 we see that 1 5  of these 24 possihle choices 
are present, so the density of this submatrix is equal to 0.625. This is 
the entry in row 1, column 2 of the density table. Figure 9.11 shows 
the density table for this example. These densities were calculated using 
ueINEr 3 (MacEvoy and Freeman n.d.). 

Image Matrices. Often we would like to summarize the ties 
between positions in a more parsimonious way. An image matrix is a 
summary of the ties between and within positions, so that each tie is 
coded as either present or absent between each pair of positions. If 
submatrices are filled completely with l's (oneblocks) or completely with 
O's (zeroblocks) then the decision concerning whether a tie exists between 
positions is straightforward. However, since actual network data arc 
seldom so perfect, we need a guideline for deciding whether a tie exists 
between positions. 

There are several rnles for constructing an image matrix from a density 
table, and we discuss these in detail in Chapter 10. For now, let us 
illustrate with one rule, the IX density rule. This rule specifies a tie as 
present between two positions if the density of ties from actors in one 
position to actors in another position is greater than or equal to the 
density of the matrix as a whole. Letting i\. be the density of ties for the 
relation, we define a tie as present from position i!JJk to position i!JJ1 if the 
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density of ties from members of position i!!Jk to members of position ($/ 
is greater than or equal to li. 

Using this rule on the four-position model of the advice relalion Itll' 
Krackhardt's high-tech managers found using hierarchical clustering of 
correlations gives the image matrix in Figure 9.12. The density of thc 
entire sociomatrix is 0.452 Consider the choices from member:.; of 
position i!!Jj to members of position i!!J3. The proportion of tics from 
actors in position i!!Jj to actors in i!!J3 is 0.944. Since this is larger than 
the density for the whole sociomatrix, we code a tie as present [rom ($ I 
to i!!J3 in the image matrix. However, the proportion of ties that am 
present from members of position i!!J3 to members of position i!!J1 is equal 
to 0.056. Since this is less than the density of the sociomatrix, we code 
a tie as absent from position i!!J3 to position i!!Jj. Notice the sharp gap 
between densities coded as present (the smallest of which is 0.528) and 
those coded as absent (the largest of which is 0.375). 

Image matrices are fundamental to blockmodels, and since we devote 
all of Chapter 10 to blockmodels, we will defer further discussion of this 
topic until then. 

Reduced Graphs. A third useful way to present the tics between 
and within positions is in a reduced graph. In a reduced graph positions 
are represented as nodes and ties between positions in the image matrix 
define the arcs between nodes. It is easy to construct the reduced gtaph 
from the image matrix. A "1" in the image matrix indicates that there 
is an arc from the node representing the row position to the node 
representing the column position in the reduced graph. In the reduced 
graph, there is an arc from the node representing position i!!Jk to the 
node representing position i!!J/ if there is a tie from i!!Jk to i!!J/ in the image 
matrix. 

Figure 9.13 shows the reduced graph for the image matrix in Figu!'e 9. 12 
of the advice relation for Krackhardt's high-tech managers. Each of the 
four positions is represented by a node in the graph, and the arcs 
represent ties present in the image matrix. Notice that i!!J3 (containing 
the president and one of the vice presidents) and i!!J4 (containing two vice 
presidents) primarily receive ties, whereas i!!Jj and i!!J2 primarily send ties. 

9.6 Summary 

In conclusion, let us consider some general issues in positional analysis, 
especially positional analysis based on structural equivalence. Although 
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Fig. 9.13. Reduced graph for the advice relation from Krackhardt's 
high-tech managers, positions identified by hierarchical clustering of 
correlations 

structural equivalence is a widely used and informative approach to the 
analysis of social networks, it does have some limitations, which we note 
here. 

Recall that positional analysis of a social network, as summarized in 
Figure 9.1 and described in the early sections of this chapter, is motivated 
by the theoretical notion of social position as a collection of actors all 
of whom are similarly related to actors in other positions. However, 
structural equivalence requires that equivalent actors have identical ties 
to and from identical others. This leads to some potential problems, 
which we comment on here. 

Comparison Between Populations. First, structural equivalence is 
a mathematical property that can only be met by actors who belong to 
the same population (since equivalent actors must have ties to and from 
identical others). This severely limits the generality of applications and 
conclusions that can arise from an analysis using structural equivalence. 
Theoretically, one would like to be able to find actors who are in the 
same general position - for example, all are "uncles"- even if they appear 
in separate data sets collected in Cincinnati and Santa Fe. However, since 
structural equivalence requires identical ties to and from identical other 
actors, comparisons across populations are precluded. The actors that 
belong to one population are almost always different from the actors 
that belong to another population. 

Structural Equivalence and Cobesive Subgroups. Another impor
tant consideration in using structural equivalence is understanding exactly 
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what structural property is specified by a particular equivalence defini
tion. That is, what property do members of an equivalence class have in 
common? Using structural equivalence as the definition, members of an 
equivalence class are adjacent to and from identical other actors. Con
sider how this property relates to the cohesive subgroup ideas discussed 
in Chapter 7. All pairs of actors within a perfect structural equivalence 
. class are connected by semipaths of length 2. In other words, actors 
who are structurally equivalent must be close to each other in a graph 
theoretic sense. 

These problems with structural equivalence have motivated some re
searchers to develop other equivalence definitions that allow comparisons 
across populations and are not "confounded" with closeness or cohesion. 
We examine these alternative equivalences in Chapter 12. 



10 

Blockmodels 

In the previous chapter we discussed how the formal property of struc
tural equivalence could be used to define a partition of actors in a social 
network into equivalence classes, called positions. Each position contains 
actors who relate in similar ways to and from other actors in the net
work. In this chapter we examine how to model the relationships among 
these positions. Our emphasis is on how to interpret the results of a 
positional analysis when the results arc presented as a blockmodel. The 
methods in this chapter are primarily descriptive and focus on properties 
of subsets of actors. Stochastic blockmodels are discussed in Chapter 16 
along with statistical methods for assessing the goodness-of-fit of a given 
blockmodel. Related methods that focus on associations among relations 
rather than on subsets of actors are presented in Chapter I t  

We begin by defining and illustrating the concept of a blockmodel. We 
then show how blockmodels can be used to model network positional 
systems. The most interesting and useful features of blockmodels are 
their theoretical interpretations, their potential for validating structural 
theories, and their usefulness for comparing structural patterns across 
populations. 

Blockmodels were introduced by White, Boorman, and Breiger (1976) 
for the descriptive algebraic analysis of social roles. Since then there have 
been many articles describing blockmodels from a methodological stand
point (Breiger, Boorman, and Arabie 1975; Arabie and Boorman 1982; 
Arabie, Boorman, and Levitt 1978; Light and Mullins 1979; Baker 1986), 
comparing blockmodels with alternative data analytic methods (Breiger, 
Boorman, and Arabie 1975; Schwartz 1977; Ennis 1982), and discussing 
alternative methods for constructing blockmodels (White, Boorman, and 
Breiger 1976; Breiger, Boorman, and Arabie 1975; Heil and White 1976; 
Panning 1982a, 1982b; Arabie, Hubert, and Schleutermann 1990). Burt 

394 
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has developed a complementary methodology for accomplishing many of 
the same goals as blockmodeling, using the concept of structural equiv
alence in conjunction with hierarchical clustering (Burt 1976). Recently 
several authors have generalized blockmodels by describing stochastic 
blockmodels (Holland, Laskey, and Leinhardt 1983; Wasserman and 
Anderson 1987; Wang and Wong 1987; Wong 1987). There have also 
been many applications of blockmodels and related methods to sub
stantive problems throughout the social sciences, including studies of 
community elites (Breiger 1979; Breiger and Pattison 1978), scientific 
communities (Anderson and Jay 1985; Breiger 1976; Burt 1978/79a; 
Doreian and Fararo 1985; Mullins, Hargens, Hecht, and Kick 1977), the 
world economic system (Breiger 1981a; Nemeth and Smith 1985; Snyder 
and Kick 1979), interorganizational networks (Galaskiewicz and Krohn 
1984; Knoke and Rogers 1979), and numerous studies of small group 
structure (Arabie 1984; Breiger, Boorman, and Arabie 1975; Breiger and 
Ennis 1979; White and Breiger 1975). 

We first define a blockmodel. We then discuss different rules for 
constructing the image matrices that represent a blockmodel. Finally, we 
discuss several ways to interpret blockmodels. 

10.1 Definition 

We begin with a set of R dichotomous relations defined on a one-mode 
network of g actors. A blockmodel consists of two things: 

(i) A partition of actors in the network into ruscrete subsets called 
positions 

(ii) For each pair of positions a statement of the presence or absence 
of a tie within or between the positions on each of the relations 

A blockmodel is thus a model, or a hypothesis about a multirelational 
network. It presents general features of the network, such as the ties be
tween positions, rather than information about individual actors (White, 
Boorman, and Breiger 1976). 

We can define a blockmodel more precisely in terms of a mapping of the 
actors in the network onto the positions in the blockmodel. A blockmodel 
is a partition of the actors in .;V into B positions, !!ilt, iJD2, . • .  , iJD., and onto 
mapping, </1, from .;V onto the collection of positions, where cp(i) = iJDk 
if actor i is in position iJDk. A blockmodel also specifies the ties between 
and within the B positions. We let bkl, indicate the presence or absence 
of a tie from position iJDk to position iJD1 on relation !Y."" where bkl, = 1 if 
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there is a tie from position :?4k to position f!4/ on relation :1:" and bk1r = 0 
otherwise. 

A blockmodel is also represented by an image matrix, B = {bk/'}' 
The image matrix is a B x B x R array, with entries bk[, indicating the 
presence or absence of a tie from position {!/Jk to {!/J[ on relation !!C, . Each 
layer of B describes the hypothesized ties between and within positions 
on the specific relation. The matrix B has also been referred to as a 
blockmodel, since it specifies the presence or absence of ties between 
positions. Whereas the original relational data are presented in the usual 
g x g x R multirelational sociomatrix, a blockmodel is a simplification in 
that it consists of a smaller B x B x R array, B, that presents ties between 
positions. 

A blockmodel thus has two components: the mapping, </>, that describes 
the assignment of actors to positions, and the matrix, B, that specifies 
the presence or absence of ties between and within positions on each 

I', relation. Each actor is assigned to one and only one of the positions, and 
If the assignment is the same across relations. 

Each of the entries in the B x B x R matrix B is called a block. Each 
block, bk/" in the blockmodel corresponds to a submatrix of the original 
sociomatrix that contains the relevant interposition or intraposition ties. 
A block containing a I is called a oneblack, and indicates the presence of 
a tie from the row position to the column position. A oneblock may also 
be referred to as a bond (White, Boorman, and Breiger 1976). A block 
containing a 0 is called a zeroblack, and indicates the absence of a tie 
[rmll the row position to the column position. More formally, if there is 
a hypothesized tie from position {!/Jk to position {!/J[ on relation !!C, then 
bk[, = I in the blockmodel; bkh is a oneblock. If there is no hypothesized 
tie from position {!/Jk to position {!/J[ then bk[, = 0 in the blockmodel; bk[, 
is a zeroblock. 

A blockmodel is a simplified representation of multirelational net
work that captures some of the general features of a network's structure. 

Specifically, positions in a blockmodel contain actors who are approxi
mately structurally equivalent. Actors in the same position have identical 
or similar ties to and from all actors in other positions. For example all 
actors in position r!8k have similar ties to actors in positions f?J/, &6nB and 
so on. Thus, the blockmodel is stated at the level of the positions, not 
individual actors. 

The first step in a blockmodel analysis is the assignment of actors to 
positions. As we saw in Chapter 9, there are a number of ways to do 
this, including CON COR, and hierarchical clustering of a measure of 
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structural equivalence. However, assigning actors to positions is only one 
part of constructing a blockmodel. One must also determine whether or 
not ties exist between and within positions. 

1 0.2 Building Blocks 

Suppose that we start with a partition of actors into B positions, and 
have permuted the rows and the columns of the sociomatrix for each 
relation so that actors who are assigned to the same position occupy ad
jacent rows and columns in the permuted sociomatrix. In the permuted 
sociomatrix, all entries, xij, are the observed values of the ties between 
actors in the positions and all ties pertaining to ties between or within 
positions will be contained in submatrices of the sociomatrix. For ex
ample, see Figure 9.10 in Chapter 9 of the permuted advice sociomatrix 
for Krackhardt's high-tech managers. If all actors within each position 
are perfectly structurally equivalent, then all submatrices corresponding 
to ties within and between positions, for all relations, will be filled either 
completely with O's or completely with I's. However, in real network 
data, pairs (or collections) of actors are seldom structurally equivalent. 
In the permuted sociomatrix the submatrices corresponding to inter- and 
intraposition ties will usually contain both l's and O's. Therefore, deter
mining whether a block in a blockmodel is a oneblock or a zeroblock 
is not straightforward. Constructing a blockmodel requires a rule which 
governs the assignment of a 0 or 1 to the tie between positions in the 
model. 

There are several criteria which have proved useful for deciding whether 
a block should be coded as a zeroblock or a oneblock. These include : 

• Perfect fit (fat fit) 
• Zeroblock (lean fit) 
• Oneblock 
• a density criterion 
• Maximum value - for valued data 
• Mean value - for valued data 

We first define each of these rules and then discuss when each one might 
be appropriate. 

In a blockmodel, each of the B x B x R elements of B contains 
the hypothesized value of the tie from the row position to the column 
position on the layer relation. As described above, hi, denotes the value 
of the hypothesized tie from position iJ8k to position 881 on relation r. 
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If the block is a oneblock then bk/, = 1, and if the block is a zeroblock 
then bkl, = O. The decision about whether a tie exists or not in each 
block of B depends on the observed values of the ties between actors 
in the positions. That is, bk[, depends on the values of xu' for i E !!iJk 
and j E !!iJ[. We will let gk be the number of actors in position !!iJk 
and g[ be the number of actors in position [!,I/_ For distinct fJUk and @lL, 
there will be gk x g[ ties from members of position !!iJk to members of 
position !!iJ[. For ties among members of the same position, there will be 
gk x (gk - 1) ties among actors in position !!iJk' Note that in a blockmodel, 
ties from a position to itself are meaningful, and often quite important 
theoretically, in contrast to reflexive ties for actors and diagonal entries 
in a sociomatrix, which are often undefined. 

The most common criteria for defining oneblocks and zeroblocks are 
based on the density of ties within a block. The density of ties in block 
bk[, will be denoted by Ilk[, and (for a dichotomous relation) is defined 
as the proportion of ties that are present. For k + I this proportion is: 

(lO.l) 

The density of ties within a position, for example block bkh, is equal to: 

A LiEYBk LjE£!h Xijr 
ilkkr = 

gk(gk - I) 
(10.2) 

for i + j. 
We can now specify more formally some useful criteria for defining 

zeroblocks and oneblocks in a blockmodel. 

ZO.2.1 Perfect Fit (Fat Fit) 

The perfect fit (or fat fit) blockmodel occurs if all actors in each position 
are structurally equivalent This ideal situation results in submatrices in 
the permuted sociomatrix filled with ali i's or with all O's. The criterion 
for a perfect fit blockmodel requires that the tie between two positions 
on a given relation is equal to 1 only if all actors in the row position 
have ties to all actors in the column position, and a tie between positions 
is equal to 0 only if there are no ties from actors in the row position 
to actors in the column position (Breiger, Boorman, and Arabie 1975; 
Carrington, Heil, and Berkowitz 1979/80) : 

if xii' = 0, for all i E !!iJk, j E !!iJ[, and 
if xii' = 1, for all i E !!iJk, j E !!iJ[. 



10.2 Building Blocks 399 

The only way that this criterion can be met for all blocks is if all actors 
in all positions are structurally equivalent. Thus, it is quite unlikely that 
this criterion will be useful in practice. However, as an ideal, the perfect 
fit criterion can provide a baseline for assessing the goodness-of-fit of a 
blockmodel. a topic that we discuss in detail in Chapter 16. 

ZO.2.2 Zeroblock (Lean Fit) Criterion 

The zeroblock criterion states that the tie between two positions on a 
given relation is 0 only if there are no ties from actors in the row position 
to actors in the column position on the specified relation, otherwise the 
block is a oneblock: 

b _ { O if xij' = 0, for all i E ffBko j E ffB/ 
klr - . 1 otherwIse. 

This criterion was first proposed by White, Boorman, and Breiger (1976) 
(see also Arabie, Boorman, and Levitt 1978). The focus on zeroblocks 
as structurally important phenomena arises because of the expectation 
that while one blocks might not be completely filled with I's, blocks 
that contain no observed ties indicate important structural patterns. 
Substantively, if we expect that effort is required to maintain a tie, then 
a single observed "1" in a submatrix should be taken as an important 
tie in the blockmodel. For example if we recorded the incidence of 
military interventions by countries during a given year, these rare events 
would nevertheless indicate an important political tie, not only between 
individual countries, but also between positions. The zeroblock criterion 
is reasonable if ties are scarce and/or if the density of the sociomatrix 
is small. The fact that although zeroblocks should contain only O's, 
oneblocks might contain both l's and O's gives rise to the alternative 
label lean fit. The oneblocks might be "lean" rather than "fat." 

In practice perfect zeroblocks seem to be quite rare. When ties on 
a given relation are common, and thus the sociomatrix for the relation 
is dense, zeroblocks are unlikely. Also, for some relations zeroblocks 
are substantively uninteresting. For example, relations such as "has 
ever met" are not that effortful for actors to maintain, and therefore 
the presence of a single tie between two actors would not indicate an 
important interposition tie. This contrasts with the argument presented 

by White, Boorman, and Breiger (1976) that the presence of any tie 
between positions should be seen as important. The researcher should 
consider the substance of the relation and its density when choosing the 
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lean fit criterion. In some cases it might be more appropriate to focus on 
dense rather than sparse blocks. 

10.2.3 Oneblock Criterion 

The oneblock criterion focuses on oneblocks rather than on zeroblocks. 
This criterion requires that the submatrix of the sociomatrix correspond
ing to the intra- or interposition ties be completely filled with l's. All 
possible ties from actors in the row position to actors in the column 
position need to be present in order to define a oneblock, otherwise it is 
a zeroblock : 

b _ { I  if Xij' = 1, for all i E eBb j E iJ8, 
klr - 0 otherwise. 

The oneblock criterion might be most appropriate when the relation is 
dense, rather than sparse. However, in practice, oneblocks seem to be 
quite rare. 

10.2.4 � Density Criterion 

Since real social network data rarely contain (perfectly) structurally equiv
alent actors, blockmodels that are based on the property of structural 
equivalence are unlikely to contain blocks all of which are either perfect 
oneblocks or perfect zeroblocks. For various reasons we expect that 
oneblocks might contain some O's and zeroblocks might contain some 
l's. Therefore it is reasonable to define a threshold density, a, such that 
if the observed block density, !'.k/" is greater than or equal to � then the 
block will be coded as oneblock, and if the observed block density is less 
than a then the block is coded as a zeroblock (Arabie, Boorman, and 
Levitt 1978). We define the a criterion as: 

b { o  if !'.k/, < �  
klr = 

1 if !'.k/, � �. 

One guideline for choosing a value of � is that it should depend on 
the density of the relations in the analysis. Two commonly used values 
are the overall (grand) density computed across all relations, or, since all 
relations are unlikely to have the same density, there could be R separate 
a's, one for each relation (a, = !'.,). The literature contains examples of 
both usages: Arabie (1984) uses a single a as a criterion in his study 
of positions in a prison, whereas Ennis (1982), Mullins, Hargens, Hecht, 
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and Kick (1977), and Breiger and Ennis (1979) use a's that vary across 
relations. Alternatively, a could vary across rows of the block model. 
For example, Ennis (1982) uses a equal to the mean value in the row. 
This would emphasize the importance of ties sent from members of row 
positions to members of column positions. Research has shown that 
global interpretations of blockmodels are quite robust under reasonable 
changes in values of a used to define oneblocks (Breiger, Boorman, and 
Arabie 1975; White, Boorman, and Breiger 1976; Breiger and Pattison 
1978). 

10.2.5 Comparison of Criteria 

Criteria for defining one blocks and zeroblocks depend on the density of 
ties in submatrices of the sociomatrices. The zeroblock, a density, and 
oneblock criteria can be viewed as different points on a continuum of 
cutoff values for defining oneblocks in the blockmodel. Each of these 
three criteria sets a value, call it all), such that a block in a block model 
is designated a oneblock if the density in the corresponding submatrix of 
the sociomatrix is greater than or equal to all). The zeroblock criterion 
has the least stringent value for defining a oneb10ck; any block with 
a density greater than 0 is a one block. Thus the oneblock criterion 
specifies a(1) = £ (an arbitrarily small value). Thus, bkl, = 1 if i!.1<lI" ?: e. 
The a density criterion is more stringent than the zeroblock criterion. 
The a criterion specifies cutoff values that depend on the density of the 
relations; "'(I), = i!.,., the density of relation r. Thus, for the (J. criterion, 
bkl, = 1 if i!.kl, ?: i!.,. The oneblock criterion is the most stringent and 
specifies a(l) equal to 1. Thus, bkl, = 1 if i!.kl, = 1. 

10.2.6 Examples 

We will examine two examples in detail to illustrate these criteria for con
structing image matrices. First we will look at a blockmodel for the two 
relations, advice and friendship, for Krackhardt's high-tech managers. 
We will then present a blockmodel of the multirelational network of the 
countries trade network using three relations: manufactured goods, raw 
materials, and diplomatic ties. 

Krackhardt's High-Tech Managers. The high-tech managers net
work contains two relations, advice and friendship. We will use both of 
these relations to constrnct a blockmodel of this network. It is important 
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to realize that since this analysis uses both relations at the same time, 
the results are likely to be different from the single relational analysis of 
these data that we presented in Chapter 9. The first step in constructing 
a blockmodel of these two relations is to partition the actors into subsets 
such that actors within each subset are approximately structurally equiv
alent. We used a complete link clustering of Pearson product-moment 
correlations (including both relations and their transposes, and excluding 
diagonal elements). Both the correlations and the hierarchical clustering 
were done in SYSTAT (Wilkinson 1987). The dendrogram from the hier
archical clustering gave an interesting split at the level of three clusters. 
These three clusters define the following three positions : 

• &61 : 3, 5, 9, 13, 15, 19, 20 
• &62: 1, 4, 7, 8, 10, 16, 18, 21 
• &63 : 2, 6, 11 ,  12, 14, 17 

These subsets show the mapping, q,( i) = i!iJ" for each of the twenty-one 
managers. 

The second step in the blockmodel analysis is to describe the ties 
between and within positions. The starting point for defining these ties 
is the density table. The density tables for the advice and friendship 
relations are presented in Figure 10.1. These density tables contain all 
of the information that is necessary to construct the image matrices for 
the blockmodel. Let us consider the four criteria for constructing image 
matrices. Notice that since the densities in the submatrices are not all 
equal to either 0 or 1, the perfect fit criterion will not yield a blockmodel 
for this partition of actors. Similarly, since there are no submatrices with 
density equal to 1, the oneblock criterion would give an uninteresting 
blockmodel, one filled completely with O's. The zeroblock criterion also 
gives an uninteresting blockmodel. Only the single block containing the 
ties from position i!iJ3 to position i!iJ1 on the advice relation has a density 
of O. Thus, we will use the a criterion, with ctr for each relation equal 
to the density of the relation, d,. The density of the advice relation is 
equal to 0.452, so any submatrix with a density greater than or equal to 
"I = d1 = 0.452 will be coded as a oneblock in the advice image matrix. 
The density of the friendship relation is equal to "2 = d2 = 0.243, so any 
submatrix with a density greater than or equal to 0.243 will be coded as 
a oneblock in the friendship image matrix. 

The image matrices for this blockmodel are presented in Figure 10.2. 
Each image matrix can also be presented as a reduced graph, in which 
nodes represent positions, and the arcs show the ties between positions. 
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Advice 

i!8, i!82 i!8, 

i!8, 0.429 0.714 0.810 
i!82 0.286 0.661 0.562 
i!8, 0.000 0.292 0.133 

Friendship 

i!8, i!82 i!8, 

i!8, 0.286 0.071 0.333 
i!82 0.071 0.196 0.229 
i!8, 0.333 0.417 0.400 

Fig. 10.1. Density tables for advice and friendship relations for Krack� 
hardt's high-tech managers 

Fig. 10.2. Blockmodel image matrices for advice and friendship relations 
for Krackhardt's high-tech managers 

Figure 10.3 gives these graphs. For the moment, simply notice that the 
image matrices and graphs for the two relations are quite different. We 
will examine these differences in more detail in the remainder of this 
chapter. 

Tbe Countries Trade Network Example. The countries trade net
work consists of a set of five dichotomous relations, four trade relations 
coded as imports by the column country from the row country, and a 
diplomatic relation, indicating that the row country has an embassy in 
the column country. These data were described in Chapter 2. For the 
blockmodel analysis we will use three relations : manufactured goods, raw 
materials, and diplomatic ties. All three of these relations are directional 
and dichotomous. 

For this analysis we measured structural equivalence using the Pear
son product-moment correlation coefficient, calculated on the rows and 
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i?Bj 

/\ 
c: ' • 
:9112 i?B3 

Advice Friendship 

Fig. 10.3. Reduced graphs for advice and friendship relations for Krack
hardt's high-tech managers 

columns of the three sociomatrices, excluding diagonal entries. We used 
UCINET to calculate the correlations. Positions were identified using 
complete link hierarchical clustering in SYSTAT (Wilkinson 1987). To 
study the positions in detail, we will use a six position model. These six 
positions and their members are: 

• !JU, : Japan, United Kingdom, United States 
• !JU, : China, Czechoslovakia, Indonesia, Spain, Yugoslavia 
• !JU3 : Argentina, Brazil, Finland, New Zealand, Pakistan, Switzer-

land, Thailand 
• !JU4 : Algeria, Egypt, Syria 
• !JUs : Ecuador, Honduras, Israel 
• !JU6 : Ethiopia, Liberia, Madagascar 

The density tables for the three relations are presented in Figure 10.4. 
These tables show the proportion of ties that are present from countries 
in the row position to countries in the column position. Density tables 
and image matrices were constructed using UCINET 3 (MacEvoy and 
Freeman n.d.). 

Notice that these density tables have some values that are equal to 1.00 
or 0.00, indicating that some submatrices corresponding to intraposition 
or interposition ties are either completely filled with 1's, or completely 
filled with D's. Therefore, it is possible to consider using either the 
zeroblock or the oneblock criterion to construct the image matrices 
for this blockmodel. However, using the oneblock criterion gives a very 
sparse blockmodel, since only twenty-one of the 36 x 3 = 108 submatrices 
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Manufactured Goods 

eBl eB2 eB3 eB, eBs eB6 

eBl 1.000 1 .000 0.952 1.000 1.000 1.000 
eB2 1.000 1.000 0.914 0.933 0.467 0.533 
eB3 0.952 0.857 0.810 0.667 0.571 0.286 
eB, 0.444 0.400 0.095 0.000 0.000 0.111 
eBs 0.556 0.133 0.286 0.000 0.000 0.111 
eB6 0.222 0.067 0.000 0.000 0.000 0.000 

Raw Materials 

eBl eB2 eB3 eB, eBs eB6 

eBl 1.000 1.000 0.952 1.000 0.778 0.667 
eB2 0.867 0.800 0.657 0.600 0.267 0.133 
eB3 0.952 0.917 0.762 0.571 0.476 0.048 
eB, 0.556 0.867 0.238 0.333 0.111 0.000 
eBs 0.778 0.333 0.238 0.000 0.167 0.000 
eB6 1.000 0.333 0.143 0.556 0.222 0.000 

Diplomatic Ties 

eBl eB2 eB, eB, eBs eB6 

eBl 1.000 1.000 0.952 1.000 1.000 1.000 
eB2 1.000 0.900 0.943 1.000 Q.400 0.600 
eB, 0.952 0.857 0.714 0.714 0.429 0.238 
eB, 1.000 1.000 0.667 0.333 0.111 0.667 
eBs 1.000 0.333 0.476 0.222 0.833 0.1 1 1  
eB6 0.889 0.267 0.000 0.333 0.000 0.333 

Fig. 10.4. Density tables for manufactured goods, raw materials, and 
diplomatic ties 

have densities equal to 1 ,  and would thus be coded as oneblocks in the 
blockmodel. The zeroblock criterion gives a very dense blockmodel, since 
only fourteen of the submatrices have densities equal to 0, and would be 
coded as zeroblocks. Therefore, it seems reasonable to use the a density 
criterion to construct the blockmodel image matrices. The densities of 
the three relations are: 

• Exports manufactured goods, density = .562 
• Exports raw materials, density = .556 
• Diplomat resides in, density = .668 

Since there is some variation in the densities of these relations, it is 
reasonable to choose a density cutoff values that are specific to the 
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M[ a

1
nufrctu[ed ?ofds 

1 
1 1 1 1 0 0 
1 1 1 1 1 0 
0 0 0  0 0 0 
0 0 0  0 0 0 
o 0 0 0 0 0 

Raw Materials 
1 1 1 1 1 1 
1 1 1 1 0 0 
1 1 1 1 0 0 
o 1 0 0 0 0 
1 0 0 0 0 0 
1 0 0 0 0 0 

Diplomatic Ties 
1 1 1 1 1 1  
1 1 1  1 0 0 
1 1 1  1 0 0 
1 1 0 0 0 0 
1 0 0 0  1 0 
1 0 0  0 0 0 

Fig. 10.5. Image matrices for three relations in the countries trade 
example 

relations. Using the a density rule with relation specific a's gives the set 
of three image matrices, in Figure lOS 

The collection of three image matrices, along with the assignment of 
countries to positions, constitutes the blockmodel for these data. For the 
moment, notice that no two relations have the identical image matrices, 
though there are features common to all three image matrices. In all 
image matrices all positions have ties to block !Wj, and overall, positions 
!Wj and !W, are involved in more ties than are the remaining positions. 

All of these rules for assigning oneblocks and zeroblocks have assumed 
dichotomous relations. In the next section we discuss how to construct 
blockmodels for valued relations. 

10.2.7 Valued Relations 

Blockmodels can also be constructed for valued relations. Although the 
relations are valued, the ties within and between positions in the image 
matrix B may be either valued or dichotomous. 
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For a valued relation, each submatrix of the sociomatrix corresponding 
to ties within or between positions may contain a range of values. Criteria 
for defining one blocks and zeroblocks are more complicated than the 
rules used for dichotomous relations. The maximum value criterion for 
valued relations is analogous to the zeroblock criterion for dichotomous 
relations. Blocks that contain only small values are defined as zeroblocks, 
and blocks that contain any large values are defined as oneblocks in the 
blockmodel. Using this rule for valued relation, where a high number 
indicated a stronger tie, White, Boorman, and Breiger (1976) argued 
that only the two highest values "were strong enough to invalidate 
a zeroblock" (1976, page 750). Therefore, they defined a zeroblock 
as a block in which all values in the corresponding submatrix of the 
sociomatrix contained only small values. If we define e as the highest 
acceptable value for a zeroblock, then the rule can be stated as: 

b _ { O  if xij' :O; e for all i E i!!h, j  E go, 
kIr - . 

1 otherwIse. 

Another possible criterion is the mean value criterion. This criterion is 
based on the mean value of each relation, X,: 

_ I:f�l I:J�l Xij, 
X, = g(g - l) 

(10.3) 

for i f j. When relation !'l", is dichotomous, x, = 8" the density 
of the relation. If the mean value in the submatrix of a sociomatrix 
corresponding to ties from actors in position {!ih to actors in position 
go, is greater than or equal to the mean of the relation, then the block 
is defined as a oneblock, otherwise the block is defined as a zeroblock. 
This is analogous to the a density rule for a dichotomous relation. More 
precisely we denote the mean value of the tie from actors in position gok 
to actors in position go, on relation !'l", by Xk',. We can then state the 
mean value criterion as: 

b _ { O  if xk" < x, 
k', - 1 ·f - -1 Xklr ;;::: Xr· 

One can also create valued blockmodels in which each block is as
signed a value from within the range of values on the original relation; 
0, 1, . . .  , C -1. Using the mean value within the block as the value assigned 
to each block in the model (bk', = Xk',) is analogous to constructing a 
density table for a dichotomous relation. The value for a block would be 
the mean level of ties within the block. 
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One must consider quite carefully how the relation is measured before 
applying the mean value criterion. If the relation is measured on a 
continuum (such as a rating scale) where small values indicate a sub
stantively negative tie, and large values indicate a substantively positive 
tie, then the mean value, "kin could be a combination of both substan
tively positive and substantively negative ties within a submatrix (Arabie, 
Boorman, and Levitt 1978; and Arabie and Boorman 1982). In that case 
the researcher may prefer to use the maximum value criterion. 

10.3 Interpretation 

Blockmodels are hypotheses about the structure of relations in a social 
network. These hypotheses refer to positions of actors rather than to 
individuals, and they summarize features of the entire network in a 
multirelational system. Although blockmodels may appear deceptively 
simple, since they usually consist of rather small arrays of O's and 1 's, 
the patterns of ties between positions can present theoretically important 
structural properties. In the following sections we discuss three different 
ways to interpret a blockmodel : 

(i) Validation of a blockmodel using actor attributes 
(ii) Descriptions of individual positions 

(iii) Descriptions of the overall blockmodel 

The first way to interpret a blockmodel uses exogenous actor attribute 
variables to describe the positions in the blockmodel. The latter two 
ways provide statements about the form of the blockmodel, B, without 
reference to the attributes of the actors. 

10.3.1 Actor Attributes 

One of the most straightforward ways to interpret a blockmodel is to 
use attributes of actors to describe the positions. If there are systematic 
differences between positions in the characteristics of their members, 
then we have some external validation of the blockmodel. A relationship 
between the actor attributes and the positions in the blockmodel might 
also indicate an association between the attribute and the structural form 
presented in the blockmodel. 

There are many examples of network analyses that have used actor 
attributes to help interpret blockmodels. Investigations of positions in the 
world economic and political system have used growth in GNP per capita 



10.3 Interpretation 409 

measured on countries to help understand the positional structure (Snyder 
and Kick 1979). Researchers studying scientific communities have used 
the date of a scientist's professional degree, the number of articles each 
has published, the number of citations made to their published work, and 
the dollar amount of grant money they have received to help understand 
the structure of scientific networks (Mullins, Hargens, Hecht, and Kick 
1977; Breiger 1976). In his investigation of the social structure among 
prison inmates, Arabie (1984) used ethnicity, level of education, and 
drinking habits to validate a blockmodel. Arabie used discriminant 
analysis to study whether positional assignments could be predicted 
from the actor attributes. 

Depending on one's theoretical orientation, one might argue either 
that the characteristics of the actors are an important determinant of 
their network relations that led to the observed positional structure, or, 
on the other hand, that the structural positions and network processes 
were influential in determining the characteristics of the actors. For 
example, world system theory argues that the position of a country in 
the world system influences the rate of development of the country. On 
the other hand, social psychologists argue that similarity between people 
in their characteristics leads to mutual attraction and the formation of 
friendships, and thus influences the structure of the group. In either case, 
the actor attributes are related to the network structure. 

Examples. We will first examine the three-position model for 
Krackhardt's high-tech managers, and then look at the six-position model 
of the countries trade network. In each case we will present the average 
value of each attribute, calculated within each of the positions in the 
blockmodel. 

Krackhardt's High-tech Managers. In addition to relations, 
Krackhardt recorded the following information about the characteris
tics of the managers in the corporation: their department, level in the 
official organizational chart, the number of years the manager had been 
with the company (tenure), and their age. One might reasonably expect 
that patterns of advice seeking would be related to the experience of 
the managers, and that experience would be reflected in the age of the 
managers and/or in their length of service (tenure) with the company. 
For all managers the mean age is 39.71 years, and the mean length of 
service is 11.75 years. To examine whether age and tenure vary across 
positions we computed the mean and standard deviation of age and 
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Table 10.1. Mean age and tenure of actors in positions for Krackhardt's 
high-tech managers (standard deviations in parentheses) 

Position 
911 912 1iJ3 

Age 41.71 36.00 42.33 
(10.48) (8.23) (10.13) 

Tenure 6.67 11.71 17.72 
(4.52) (7.76) (8.42) 

tenure for the managers within each of the positions. These statistics are 
reported in Table 10.1. 

Notice that members of position iJ83 are oldest on average (42.33 years) 
and have the longest tenure in the company (17.72 years). Position iJ8, 
has, on average, the youngest members (36 years), and members of 
intermediate tenure (1 1.71 years). The president and two of the three vice 
presidents are in position rJl,. 

The Countries Trade Network. Let now consider the countries 
trade example, and examine the characteristics of the countries in each 
of the positions. Considerable research has focused on whether, and how, 
the position of a country in the world system affects its social and eco
nomic development. One prediction is that dependency status within the 
world political and economic system affects the rate of economic devel
opment of countries. Researchers using network data have constructed 
blockmodels of positions in the world system using data on trade, diplo
matic ties, and military interventions (Snyder and Kick 1979, Nemeth 
and Smith 1985 ; Kick n.d.) or for samples of developed nations (Breiger 
1981a). In addition, numerous researchers have attempted to validate 
these blockmodels using characteristics of countries and to compare the 
positions of countries resulting from blockmodels with alternative ways 
of classifying countries (Snyder and Kick 1979; Kick n.d.; Nolan 1983, 
1987, 1988; Lenski and Nolan 1984). Among the variables that have 
been used to study positions of countries are four that we will use: 

• Population, annual growth rate from 1970 to 1981 
• GNP per capita, annual growth rate from 1970 to 1981 
• Secondary school enrolhnent ratio in 1980 
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• Energy consumption per capita (in kilo coal equivalents) in  1980 

At the outset, we expect that GNP per capita growth rate, secondary 
school enrollment ratio, and energy consumption per capita will be 
higher in industrialized nations than in developing nations. In contrast, 
population growth rate is expected to be higher in developing nations 
than in industrialized nations. If level of industrialization of countries 
is related to their position in the world trade network (as depicted in 
the blockmodel) then the distributions of these variables should dilIer 
systematically across the positions in the model. Table 10.2 shows the 
means and standard deviations of these variables within each of the six 
positions. Notice that there is a tendency for the means to be ordered 
across positions. Potoiitions .@1, :!ih, and f!43 have the lowest annual growth 
rate in population, the highest secondary school enrollment ratio, and the 
highest energy consumption. Positions iJ84, iJ85, and iJ86 have the highest 
annual growth rate in population, the lowest secondary school enrollment 
ratio, and the lowest energy consumption. Annual growth rate in GNP 
per capita varies, but less systematically, across the positions, from a 
high of 4.3 for position iJ8, to a low of -0.57 for position iJ86. 

These examples demonstrate that the attributes of the actors diiTcr 
among the positions in these blockmodels. However, a more complete 
interpretation of the blockmodel requires examining how the positions 
are related to each other. 

10.3.2 Describing Individual Positions 

A second way to interpret a blockmodel is to describe how the individual 
positions relate to each other. This requires examining how positions 
send and receives ties in the blockmodel. One useful and informative 
strategy relies simply on the ties to and from the positions in the model 
(Burt 1976; Marsden 1989). Descriptive typologies of positions are useful 
for summarizing tendencies for positions to send and receive ties within 
or outside the position. 

Recall that when we describe nodes in a directed graph, we can use 
nodal indegrees and outdegrees to distinguish four different types of 
nodes:' isolates (nodes with neither indegree nor outdegree), transmitters 
(nodes with only outdegree), receivers (nodes with only indegree), and 
carriers or ordinary pOints (nodes witb both indegree and outdegree) (see 
Harary, Norman, and Cartwright 1965 and Marsden 1989). As Marsden 
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(1989) has noted, this classification is also useful for describing positions 
in networks. Thus the same labels may be used to describe how positions 
relate to each other. 

These rather neutral labels refer simply to the presence or absence of 
ties to and from positions. If we also take into account the prevalence of 
ties among actors that are made within a position, then the description 
can be more informative. Burt (1976) provides a typology of positions 
that is useful for positively valued, affective interpersonal ties, such as 
respect, liking, or esteem. His typology takes into account both whether 
ties occur primarily within a position, and whether ties are directed to 
members of the position from others. First he distinguishes bet ween 
positions whose members receive ties and positions whose members do 
not receive ties. Second, he distinguishes between positions in which less 
than half of their total ties to their own members, and positions whose 
members have half or more of their ties to their own members. By making 
these two distinctions one can determine whether each position receives 
ties or not, and whether each position has more ties within rather than 
outside the position. These two distinctions result in a classification into 
four types of positions. Isolate positions neither give many ties nor direct 
many ties to other positions. Sycophants have more ties to members 
of other positions than to themselves, and do not receive many tics. 
Brokers both receive ties and send ties to members of other positions. 
The Primary position receives ties both from members of other positions, 
and from its own members. 

It is useful to consider the relative size of the position when examining 
the tendency for position members to have ties within the position. If 
a position is large relative to the size of the entire group, then one 
would expect many of the ties made by position members to be to other 
members of the position, simply because of their prevalence in the group, 
even if there were no ingroup bias in ties. Similarly, a small position 
would be expected to have a low proportion of ties within the position, 
simply because there are relatively fewer actors in the position. Thus we 
must consider the proportion of the total ties that are made within the 
position, compared to the proportion of within-position ties that would 
be expected if there were no within- or ontside-position bias in tics. 

Consider the ties from members of position BBk. If there are gk actors in 
position BBk then there are gk x (gk - 1) possible ties within the position. In 
the whole group, there are g actors, so there are gk x (g - 1) possible ties 
in total from actors in position BBk (recall that self-ties are undellncd). 
If there were no bias toward (or away) from ties within the position, 
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Table lOJ. Typology of positions (adapted from Burt (1976)) 

Proportion of ties 
within position 

> gk-1 
- g-l 

< gk-1 

- g-l 

Proportion of ties 
received by position 

- 0  > 0  
Isolate Primary 

Sycophant Broker 

then we would expect the proportion of a position's total ties within the 
position to be: 

gk x (gk - l) 
gk x (g - I) 

gk - 1 
g - l  

(10.4) 

One can use this proportion as a baseline for evaluating the tendency 
for within-position ties. Since this proportion depends on the number of 
actors in the position it will probably differ across positions. 

Table 10.3 summarizes the typology of positions based on ties within 
and between positions. The columns refer to the first distinction (receiving 
ties or not), and the rows refer to the second distinction (proportion of 
ties within the position). 

The labels Isolate, Sycophant, Broker, and Primary depend on the 
content of the relation. If the relation is negatively valued (blame, 
dislike, and so on) then the primary position would be more appropriately 
interpreted as a scapegoat, or pariah. If the relation involved the flow 
of material goods (such as trade among nations, or buying and selling 
among corporations) then a position with a high ratio of ties made to 
ties received (in other words, a relatively high ratio of goods sent) would 
be interpreted as a supplier or source, and a position with a relatively 
high ratio of ties received (in other words, a relatively high ratio of goods 
bought) would be a consumer or end-user, and the brokers would be 
middlemen in the transaction (Galaskiewicz and Krohn 1984). 

These descriptions of kinds of network positions do not allow the 
researcher to test whether the tendencies are statistically large. Stochastic 
blockmodels (which we discuss in Chapter 16), related methods for 
statistical analysis of single relational networks (Chapter 15), and multiple 

relational networks (Chapter 16) provide statistical tests of dyadic choice 
probabilities, and some models provide tests of actor attribute parameters. 
We recommend that the researcher include such tests when appropriate. 
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For communication networks, where the relation is often the trans� 

mission of a message or information, Richards (1989a) has presented 
a typology that is also based on indegree and outdegree conditions, 
and makes a similar distinction among positions. Since communication 
is often symmetric, it is likely to be represented as a graph. Richards 
distinguishes first between participant and nonparticipant positions. Non
participants are either isolates (neither indegree nor outdegree) or "tree 
nodes" (have a tie to only one other node); participants are either liaisons 
(they link two or more others) or group members. This typology is a 
fundamental part of the network analysis program NEGOPY (Richards 
1989a). Since this typology is most useful for classifying individual actors, 
we discuss it in more detail in Chapter 12. 

Marsden (1989) has extended Burt's (1976) typology by distinguishing 
between the level of ties made by a position, the level of ties received by 
a position, and the position's ingroup preference. His typology combines 
features of the graph theoretic classification with the distinctions made 
in Burt's typology. Making a dichotomous (high versus low) distinction 
on each of these three dimensions gives a typology with eight different 
kinds of positions. Marsden proposes log linear models for examining 
these three properties. 

Focusing on the indegree, outdegree, and within-position ties gives an 
interesting and useful description of the positions that relies simply on 
the ties to and from each position. However, since a blockmodel is likely 
to contain several relations (with quite different substantive meanings or 
contents) arriving at a consistent description of a given position might 
be difficult. The "label" for a position might not be the same across the 
different relations. 

Now, let us look at an example to illustrate the typology of positions 
in Table 10.3. 

Example. We will use the three-position blockmodel of advice 
and friendship for Krackhardt's high-tech managers. To classify the 
positions, it is necessary to count the number of ties from members 
of each position to other actors, both within and outside the position. 
These counts can be made by examining the sociomatrix with rows and 
columns permuted so that actors in the same position are adjacent in the 
permuted sociomatrix. Figure 10.6 gives the frequency of ties within each 
block, and the total number of ties given and received by each position. 

First, notice that all positions receive at least some ties, on both 
relations. Therefore on neither relation is there an Isolate or a Sycophant 
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Advice 

1$, 1$2 1$3 Total 

8iJ, 18  40 34 92 
8iJ, 16 37 27 80 
8iJ3 0 14 4 18  

Tola! 34 91 65 190 
Friendship 

1$, 1$2 8iJ3 Total 

8iJ, 12 4 14 30 
8iJ, 4 1 1  1 1  26 
8iJ3 14 20 12 46 

Total 30 35 37 102 

Fig. 10.6. Frequency of ties within and between positions for advice 
and friendship 

Table lOA. Typology of positions for Krackhardt's high-tech managers 

Position Advice Friendship 

1$, Broker Primary 
1$, Primary Primary 
1$3 Broker Primary 

position. Now, consider position f!J2, and its ties on the advice relation. 
There are g2 = 8 actors in this position, so we would expect that the 
proportion of their ties that would be within the position would be equal 
to (8 - 1)/(21 - 1) = 0.350. In fact, members of position 8iJ2 have thirty
seven out of their total eighty advice ties to their own members, for a 
proportion of 37/80 = 00462. Since this proportion is higher than we 
would expect, this position is a Primary position on the advice relation. 
In contrast, consider the advice ties from members of position 8iJ,. We 
would expect that since there are g2 = 7 actors in this position, that they 
would have 6/20 = 0.300 of their ties to their own members. However, 
since only eighteen of their ninety-two advice ties (a proportion of 0.196) 
are to their own members, position 8iJ, is Broker on the advice relation. 
Table 10.4 gives the cla"ification of the three positions on each of the 
two relations, using the typology in Table 10.3. 

Since all three positions have a greater than expected frequency of ties 
within their position on the friendship relation, all three positions are 
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Primary positions on this relation. In addition, position [JiJ, is a Primary 
position on the advice relation. Referring to Table 10.1, we see that 
position 88, has the youngest managers, and managers with intermediate 
tenure. Also, the president and two of the vice presidents are in position 
88,. 

For the most, part descriptions of single positions do not take into 
account the properties of the positions to which a given position is related. 
A Broker position gives and receives ties rather than having ties within 
the position, but the kind of positions to which it is tied are unimportant. 
Similarly, a "transmitter" (a position with both in- and outdegree) could 
be either at the bottom of a very long chain of command or pecking 
order, or toward the top. Thus, intermediate levels in a hierarchy would 
be indistinguishable (since they would have both indegree and outdegree). 
Although labels for kinds of positions described in this section are quite 
useful as a starting point for interpreting a blockmodel, they capture 
only a limited amount of information about the structure of the network 
as a whole. 

10.3.3 Image Matrices 

The third way to study a blockmodel is to consider the entire configu
ration of ties between positions that is expressed in the image matrix or 
matrices. Many structural theories posit patterns of ties among aggre
gates of actors. For example, the properties of balance and transitivity, 
a network system with a center and a periphery (such as has been pro
posed for the world economic and political system; Snyder and Kick 
1979), systems characterized by a hierarchy, the domination of one or 
more positions over others, and cohesive subgroups can be represented 
by blockmodels. We describe and illustrate these patterns in this section. 
Theories that are expressed in tetms of such patterns may be evaluated 
by examining the blockmodel image matrices to see whether the observed 
blockmodel is consistent or inconsistent with the predicted pattern. We 
begin by describing the images for two-position blockmodels, and then 
discuss some more complicated theoretical patterns that can occur in 
blockmodels with more than two positions. 

Image Matrices for Two-position Blockmodels. Some of the sim
plest possible blockmodels can give quite powerful representations of 
theoretical statements. For example, even a two-position model, pre-
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sented in a 2 x 2 image matrix, can represent quite important theoretical 
properties. In their introduction of blockmodels, White, Boorman, and 
Breiger (1976) present the sixteen possible arrangements that can arise 
in a two-position blockmodel. Since there are two positions, the image 
matrix for this blockmodel has 2 x 2 = 4 cells, each of which may be 
either a zerohlock or a onehlock. Thus, there are 24 = 16 possible ar
rangements of O's and l's. Since the order of the positions is arbitrary, 
there are in fact only ten distinct images (the others are isomorphic to 
one of these images). 

Figure 10.7 shows the sixteen possible image matrices for a two
position model. Some of these patterns have clear interpretations in terms 
of structural theories. A theoretical prediction about the arrangement 
of ties between positions gives rise to a posited image matrix. White, 
Boorman, and Breiger (1976) provide useful descriptions for many of 
these images. Image B in Figure 10.7 has a single cohesive subgroup and 
an isolate position (assuming a positive affective relation). Image C could 
indicate deference directed from members of one position to members of 
the other. In terms of individual position labels described in the previous 
section, the position initiating the tie would be a Sycophant position. 
Image D is "pure" reflexiVity, and for a positive relation would indicate 
two cohesive subgroups. Image D could also represent an endogamous 
system in which all ties exist within subsets, or homophily where all 
friendship choices are between actors with similar characteristics. In the 
context of world trade systems, Breiger (1981) described this pattern as 
representing separate trading areas. Image E is "pure" symmetry. For 
a negative relation it would indicate opposition or hostility. Image E 
could also represent an exogamous system in which all ties are directed 
to members of another group (for example, "seeks a spouse from" in 
an exogamous system where marriages are between rather than within 
clans or villages). The combination of image D (for a positive relation) 
and E (for a negative relation) would be consistent with balance theory, 
which predicts that actors in a balanced system can be clustered so 
that all positive "choices" are within subsets and negative "choices" are 
between subsets. Image F distinguishes between an "active" position and 
a "passive" position, in terms of "choices" made. Image G combines 
aspects of a cohesive subgroup (image B) and a deference structure (C), 
and resembles a core-periphery system (with a Primary position and a 
Sycophant position). This pattern can also be interpreted as a hierarchy 
(Breiger 1981a). Image H is complete except for one reflexive tie. White, 
Boorman, and Breiger (1976) describe this as a center-periphery or 
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hanger-on pattern. Image H is somewhat similar to image E, which has 
ties only between positions. Image I is complete except for the absence 
of one tie from one position to the other. White, Boorman, and Brciger 
(1976) describe this form as a hierarchy, with deferential ties within each 
of the two levels of the hierarchy in addition to deferential tics from OIlC 
level to the other. Finally, image J is complete, and therefore shows no 

differentiation among positions. 

Image Matrices with More than Two Positions. Certainly not all 
blockmodels have only two positions. More interesting, but also mort) 
complex, systems arise when there are more positions. For a threc
position model there are 29 = 512 possible 3 x 3 arrangements 1'01' a 
single relation, and 104 distinct image matrices (isomorphism classes), 
As the number of positions increases, the number of distinct image 
matrices increases rapidly. Instead of enumerating all of the possible 
images for larger blockmodels, let us examine a few "ideal" images that 
display theoretically important structural properties. In particular we 
will illustrate images that display the properties of cohesive subgroups, 
a center-periphery structure, a centralized system, a hierarchy, and a 
transitive system. Figure 10.8 shows these ideal patterns. 

One of the most straightforward patterns is a system composed of 
cohesive subgroups. Such a system has an image matrix (for a single 
positively valued relation) that consists primarily of intraposition tics, 
The image matrix for this pattern has oneblocks on the main diagonal, 
and is reflexive at the position level (even though at the level of individual 
actor ties, self-ties may be undefined). However, the positions in tho 
blockmodel may not be graph theoretic cliques. Oneblocks may contain 
some O's (they may not be complete subgraphs), and an actor from one 
position may be connected to all of the actors in another position (the 
positions may not be maximal). 

Another important pattern is a center-periphery structure. This consists 
of a core position which is internally cohesive, and one or more other 
positions with ties to the core position, but not to each other (Mullins, 
Hargens, Hecht, and Kick 1977). The peripheral positions may or may 
not be internally cohesive. Examples of core-periphery systems include 
an e1ite position and hangers-on in a social group, or the proposed 
three "levels" in the world system consisting of the core, periphery, and 
semiperiphery. In general, a center-periphery pattern is apparent in a 
blockmodel if the blocks in the image matrix can be permuted so that 
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the one blocks are primarily in the upper left triangle of the image matrix, 
and the zero blocks are primarily in the lower right triangle, The center 
periphery pattern has been found in the trade relations in the world 
economic and political system (Snyder and Kick 1979; Breiger 1981a), 

A related pattern is a centralized system. In a centralized system all 
ties are pointed toward (or away) from a single position. In the image 
matrix, all oneblocks are in the same column (if all ties are to the same 
position), or in the same row (if all ties are from the same position). 
Reflexive ties may also be present. A centralized pattern was found 
by Doreian and Fararo (1985) in their study of citations among major 
journals in sociology. The most prestigious journals were in the central 
position, and were cited by journals in all other positions. This pattern 
has also been found by Knoke and Rogers (1979) in their study of an 
interorganizational network. 

Another possible pattern is a hierarchy. A hierarchy appears as unre
ciprocated ties directed from each position to the position immediately 
"above" it. This pattern could represent a chain of command in an 
organization. 

A system that is transitive at the level of the positions is similar to a 
hierarchy, but all interposition ties that are implied by the property of 
transitivity are also present. If there is a tie from position i?lJk to position 
i?lJ1 and there is a tie from gal to gam, then there is a tie from gak to gam. In 
a fully transitive model, the rows and columns of the image matrix can 
be permuted so that all oneblocks are in the lower left triangle (or in the 
upper right triangle) of the image matrix. Depending on the substance 
of the relation, a transitive image could indicate dominance or deference 
between positions. 

These patterns are useful for describing patterns as theoretically pure 
or ideal structures. It is likely that blockmodels for actual social network 
data will show some variation around these patterns, or might com
bine features of two or more patterns. Stochastic blockmodels (which 
we discuss in Chapter 16) are more appropriate for testing theoretical 
statements. 

We now illustrate these descriptions of image matrices using both the 
example of Krackhardt's high-tech managers and the countries trade 
network. 

Examples. Let us first examine the image matrices for the three 
relations in the countries trade example. These images are displayed 
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A. Null 

[ �  �
] 

B. One reflexive arc 
1 0 ] [ 0 0 ] l o o or O I 

C. One arc between positions 

D. Two arcs, reflexive 

E. Two arcs, symmetric 

F. Two arcs, reflexive and "out" 

G. Two arcs, reflexive and "in" 

H. Three arcs, 2 between positions 

1. Three arcs, 2 reflexive 

J. Complete 

[ i i ] 

421 

Fig. 10.7. Ten possible image matrices for a two-position blockmodcl 
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in Figure 10.5. and appear to show two different patterns. The image 
matrix for the manufactured goods relation shows that positions g/h. gil,. 
and !!iI3 are the source of manufactured goods imported by all positions, 
whereas positions !!ii" !!iI5, and !!iI6 only import, but do not export, goods. 
This is similar to a centralized system, with three positions in the center. 
The linage matrices for raw materials and diplomatic ties look similar 
to each other, and different from the image matrix for manufactured 
goods. Although neither of these two images perfectly matches one of 
the ideal types, both matrices are arranged so that the oneblocks are 
concentrated primarily in the upper left triangle of the matrix, and the 
zeroblocks are primarily in the lower right triangle. This pattern indicates 
a center-periphery system. In the countries trade example, position !!ill is 
in the center, positions !!iI5 and !!iI6 are on the periphery, and the other 
positions are intermediate. 

In the blockmodel for Krackhardt's high-tech managers, presented in 
Figures 10.2 and 10.3, the two relations, advice and friendship, have 
different patterns. The advice image is transitive at the level of the 
positions. If we think of positions seeking advice from other positions 
that are more prominent in the organization, then positions !!iI2 and !!iI3 
are at the top and !!ill is at the bottom. The pattern for friendship is not as 
clear. Although positions @II and !!iI3 have intra-position friendship ties, 
the system as a whole does not appear to be completely characterized by 
cohesive subgroups (at least for this blockmodel). 

Image Matrices for Multiple Relations. Interpreting blockmod
els with multiple relations can be tedious. The researcher could propose 
separate interpretations for each image, but in the absence of a theo
retical foundation, this seems ad hoc. One possible way to interpret 
multirelational blockmodels is to study pairs of image matrices to see 
whether they exhibit common kinds of multirelational patterns, such as 
multiplexity or exchange. Multiplexity of relations is the tendency for two 
or more relations to occur together. For example, "is a friend of" and 
"spends time with" are two relations that might tend to occur together 
if people are free to choose the people they spend time with. Multiplex
ity in a blockmodel would be apparent if two or more image matrices 
were identical (or nearly identical). Exchange occurs when one relation 
"flows" one way, and the second relation "flows" back. For example, 
"pays money to" and "delivers goods to" are two relations that form an 
exchange in an economic transaction. The property of exchange would 
be apparent in a blockmodel if one image matrix were the transpose 
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A. Cohesive subgroups 

U 0 0 n 1 0 0 1 
o 0 

B. Center-periphery 

[ I 1 1 1 ] 0 0 0  0 0 0  0 0 0  
C. Centralized 

[ � 1 � ] [ I 0 0 n o 0 0 0 
o 0 or 0 0 
o 0 0 0 

D. Hierarchy [ 0 1 0 0 ] 
o 0 1 0 
o 0 0 1 
o 0 0 0 

E. Transitivity 

Fig. 10.8. Ideal images for blockmodels with more than two positions 

of the other. Thus whenever one kind of tie is present from the row 
position to the column position, the second kind of tie is present from 
the column position to the row position. As we mentioned above, tho 
property of structural balauce can also be represented as a combination 
of two image matrices. To show structural balauce, one image matrix for 
a relation of positive affect has ties within positions and another imago 
matrix of negative affect has ties between positions. 

10.4 Summary 

When interpreting a blockmodel, the researcher should be able to IIS0 
the several approaches described in this chapter to arrive at a consistent 
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and theoretically meaningful statement about the positions in a network, 
the characteristics of actors in the positions, and how the positions are 
related to each other. That is, the interpretations from the different 
approaches should support, rather than contradict, each other. 

In this chapter we have discussed the interpretation of blockmodels by 
examining the relations separately. However, in multirelational systems 
we need to be able to describe systematically the associations among 
relations. This leads us to the next chapter, which is on relational 
algebras. 
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Relational Algebras 

In this chapter we turn from methods for analyzing properties of actors 
and social positions to methods for analyzing properties of relations 
and the associations among relations. The methods we discuss in this 
chapter are concerned with the theoretical notion of social role, where 
social role is conceptualized as regular patterns in the relations between 
social positions. Our focus is on formalization of social role in network 
terms. Following the scheme that we presented in Chapter 9 (Figure 9. 1)  
as an overview of positional and role analysis, this chapter considers 
methods for "grouping" relations. We will be traversing the horizontal 
paths, both on the top and bottom of the figure. The methods in this 
chapter depend on the notions of social position and the mathematical 
property of structural equivalence that we discussed in Chapters 9 and 
10. However, they take a different perspective by focusing on relations, 
rather than on actors Or subsets of actors. 

As we saw in the previous chapter, interpreting the results of a posi
tional analysis can be quite complicated when the analysis includes mOre 
than one relation. Distinct interpretations for separate relations become 
tedious and at times ad hoc. It is useful to have a unified and consistent 
approach for describing and modeling multiplc relations and the asso
ciations among these relations. Association among relations means that 
some relations tend to link the same actors, or that the presence of' olle 
relation implies the presence of a second relation. 

In this chapter we discuss methods for describing the role structure 
of an entire group. These methods have been referred to as global 
role analyses (Boorman and White 1976) because they describe the 
associations among relations that hold for the entire group. Since these 
methods employ algebraic approaches, they are sometimes referred to as 
role algebras or relational algebras. 

425 
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Network relational structures or relational algebras may be used to 
study structural theories that are stated in terms of relations and to 
compare network role structures across populations, or through time. 
Examples of studies that have used relational algebras include models of 
kinship systems (Boyd 1969; White 1963), studies of naturally occurring 
social groups (Boorman and White 1976; lloyd 1 990), interactions in a 
scientific community (Light and Mullins 1979), and comparisons of elites 
in two different communities (Breiger 1979; Breiger and Pattison 1978). 

The reader should be aware at the outset that this chapter contains 
some of the most sophisticated mathematics in this book. The models 
we discuss are quite abstract, in that they capture very general features 
of relational structures. They are also quite formal, and interpretation 
often requires a great leap of faith, some simplifying assumptions, and 
complicated mathematics. We have attempted to present these methods in 
as straightforward a manner as possible, without doing too much injustice 
to the underlying mathematics. The interested reader is encouraged to 
consult the references cited throughout the chapter for further elaboration 
of these ideas. The payoff of these methods is the ability to compare role 
structures across seemingly quite different populations or contexts. 

11.1 Background 

The theoretical notion of social role provides the motivation for the meth
ods in this chapter. In Chapter 9 we discussed the distinction between 
network positions (as collections of actors who are involved in relations 
in similar ways) and network roles (as the patterns or associations among 
relations that link actors or positions). Thus, in network terms, social 
role refers to the associations among relations that link social positions. 

The notion of social role has generated considerable theoretical at
tention, especially in sociology, social psychology, and anthropology 
(Linton 1936; Merton 1957; Nadel 1957). Although many theorists have 
attempted to bring some precision to the definition of social role, the 
theoretical work by Nadel and Merton has had the greatest influence on 
methods for the analysis of social network roles. Two aspects of Nadel's 
(1957) formulation of the role concept have been especially important for 
social network role methods. First, his derivation is explicitly relational, 
in that it is based on the regularities or patterns in the relationships 
among individuals. Second, Nadel attempts to formalize the notion of 
role using a set theoretic framework to describe the "internal structure of 
roles" as collections of "role attributes." Although this framework does 
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not have the analytic precision necessary for formal network analysis, it 
does point toward a focus on the "interrelatedness or interlocking of the 
relationships" (page 17), a key feature of formal network role models. 

Merton's (1957) discussion of role sets as "the complement of I'ole 
relationships which persons have by virtue of occupying a p,u'lieulal' 
social status" (1957, page 423) has also influenced the development of 
network role analysis (see also Boorman and White 1976). Howevel', 
because of the focus on roles at the individual level, Merton's ideas al'e 
more important for understanding individual roles (which we discuss in 
detail in Chapter 12). 

The generality of the role concept and the focus on associations among 
multiple relations can be seen in the earliest formal work on netwol'k 
roles. For example, White (1963) draws the analogy between a formal 
organization and certain kinship structures, and lays the groundwork for 
a program of research on formal role analysis. He notes "Primary roles 
can be cumulated into chains defining compound roles" (page 1), thus 
pointing toward a focus on associations among relations. He continues 
to outline the theoretical framework for the formal analysis, noting that 
in order for a society to operate, there must be some agreement on role 
obligations and 

. . .  there must be constraints on what set of primary roles can generate 
the structure of compound roles. (page 1) 

White also notes the complementarity of roles and the collections of 
individuals who occupy similar social positions, which he calls "offices." 

Kinship studies were the first substantive area for development of 
formal network role models (White 1963; Boyd 1969). In these studies, 
ties of marriage and descent were used to model marriage systems. 
However, as Boorman and White (1976) note, these kinship systems 
often "are less descriptions than brilliant ideologies of social structure 
evolved by aboriginal civilizations" (1976, page 388). In contrast, models 
of network role structures explicitly study concrete social structure. 

Studying associations among relations in concrete social systems is the 
clear goal of network role studies. Lorrain and White (1971) state as 
their goal: 

. . .  to understand the interrelations among relations within concreto 
SOCial groups . .  " By interrelations among relations is meant the wny 
in which relations among the members of a social system occur in 
characteristic bundles and how these bundles of relations interlock and 
determine one another. (page 49) 
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Formalizing the ideas of interrelatedness, interlocking, or bundles of 
relations is one goal of formal network role analysis. Thus, these methods 
are different from methods for network positions that focus on properties 
of subsets of actors. Network methods for social roles focus on relations 
and on the associations among these relations, rather than on network 
properties of actors or subsets of actors. These methods use algebraic 

systems for representing associations among relations in multirelational 
networks, and employ formal properties of these algebraic representations 
to quantify specific features of role structures. 

In this chapter and the next we present formal network definitions for 
the notion of social role and show how this concept applies to the different 
levels of analysis of networks. In this chapter we explore descriptions of 
network role structures; that is, models for the role structure of the entire 
group or network. In Chapter 12 we discuss how this formal algebraic 
approach can be used to describe roles of individual actors. 

We begin with a description of the algebraic concepts and operations 
that are used to build network role structures. We then discuss methods 
for simplifying network role structures to reveal simpler patterns. Fi
nally we describe methods for comparing network role structures across 
populations. 

11.2 Notation and Algebraic Operations 

Relational algebras are most appropriate and most interesting for study

ing multirelational networks. In order to present methods and models for 
multiple relations, it is useful to employ algebraic notation rather than 
the sociometric and graph theoretic notations. Algebraic notation was 
introduced in Chapter 3. 

The are two major differences between algebraic notation and socio
metric nota tioD. First we will refer to relations with distinct capital 1etters 
rather than subscripted :!F's. For example, we could use F to denote the 
relation "is a friend of" and E for the relation "is an enemy of." Second, 
we will record the presence of a tie from actor i to actor j on relation F 
as iF j. This is a simple translation of the notation we have been using 
to indicate "choices" as i --> j, except that here we are replacing the --> 

with the letter label for the relation. We can think of this as i --> j on 

the relation labeled F becoming i !:. j, and then shortening this to iF j. 
For example, if we have the relation "is a friend of" labeled F, then 
we would record the tie implied by "i chooses j as a friend" as iF j. 
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In sociometric notation, iFj means that xij = 1 on the relation F, and 
implies that there is a "1" in row i column j of the sociomatrix for this 
relation. Algebraic notation is useful for dichotomous relations since it 
codes the presence of a tie. This limitation presents no problem for the 
models we describe in this chapter, since tilese models are defined only 
for dichotomous relations. 

The advantages of this notation are that it allows us to distinguish 
several distinct relations using letter designations, and to record combi· 
nations of relations. 

11.2.1 Composition and Compound Relations 

Given the focus on multiple relations, it is important to define the 
combination of relations and the associations among them in formal 
terms. The building blocks for the combination of relations are primitive 
relations (or generator relations) and the operation of composition of' 
relations. 

A compound relation is the result of the combination of two (or more) 
relations defined by the operation of composition. Using algebraic nota· 
tion for two dichotomous relations, U and T, we denote the compound 
relation as TU. We denote the operation of composition by o. The 
compound relation TU is the result of the operation of composition of 
relations, where the tie itT 0 U)j is present if there exists some actor 
k such that iTk and kU j. We will use a shorthand notation for the 
compound relation by dropping the "0", so that the result of T o  U will 
be denoted by TU. The relation T U  is a dichotomous relation in which 
there is a tie from actor i to actor j if there is a tie from actor i to some 
actor k on relation T, and a tie from actor k to actor j on relation U. 
Equivalently, i !. k � j implies i � j, which we denote by i(TU)j. 

Compound relations may be formed either from distinct relations (for 
example T and U) or from the composition of a relation with itself (for 
example UU). The compound relation resulting from the composition of 
relations is also a relation, and may be displayed either as a graph with 
arcs indicating ties that are present on the compound relation, or as a 
sociomatrix, where the (i,j)th element is equal to 1 if i(TU)j. 

One can construct the sociomatrix for a compound relation using 
Boolean matrix multiplication, denoted by 09. This is ordinary matrix 
multiplication for binary matrices, with the condition that the (i, j)th 
element is equal to 1 if the result of ordinary matrix multiplication is 
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greater than O. To illustrate, let XT, Xu, and XTU be the sociomatrices 
for relations T, V, and the compound relation TV, respectively. We can 
express the sociomatrix for XTU as the Boolean matrix product of Xu 
and XT: 

XUT = Xu ® XT. 
In the sociomatrix XUT, the ijth entry Xij(TU) = 1 if and only if 

L XikTXkjU > O. 
k 

For given actors i and j, this sum is greater than 0 only if there is some 
actor k such that XikT = 1 and XkjU = 1 .  In brief, ordinary matrix 
multiplication records in cell (i,j) of the sociomatrix for the matrix 
product the number of intermediary actors between i and j, whereas 
Boolean matrix multiplication records in cell (i, j) whether or not there 
are any intermediaries between i and j. 

The composition of a relation with itself, for example V 0 V, results 
in the compound relation VV, in which i(VV)j means that there is a 
sequence of actors and tics, starting with actor i and ending with actor 

j, and containing two ties; i � k � j. More generally, if we denote the 
composition of a relation V with itself c times by V' (V 0 V o ·  . . 0 V for 
c V's) then i(V')j means there exists some sequence of e ties connecting 
i to j. The sequence may include the same actor more than once (for 

example i � j � k � j � i) or may include the same tie more than 
once. Thus, the sequence is a walk but not necessarily a path (see Chapter 
4). In many ways the operation of composition of relations builds on 
ideas such as connectivity, paths, walks, and reachability. However, the 
presence of a compound tie connecting two actors only indicates that 
there is a sequence of ties between them, not that the sequence has any 
special graph theoretic properties (such as being a path or a geodesic). 

Let us look at an example of compound relations in terms of their 
graphs. Figure 1 1 . 1  presents graphs for two directional dichotomous 
relations and some compound relations that can be formed from them. 
Relation T contains ties aTb, aTc, and cTb, with d an isolate. Relation 
V has ties bVe and bVd, with a an isolate. The compound relation TV, 
defined by the composition of relations T o  V, consists of ties between 
pairs of actors where the first actor in the pair has a tie on relation 
T to some intermediary, who has a tie to the second actor on relation 
V. For example, since aTb and bVd, the tie a(TV)d is present on the 
compound relation TV. Similarly, since cTb and bVd, the tie c(TV)d is 
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T 

17" c ed 

TT 

a e  e b  

ce ed 

TU 

'�." G d 

U 

'/1" c d 

UU 

ae eb 

ce ed 

UT 

ae Qb 

ce ed 

Fig. 11.1.  Example of compound relations 
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present. Also the presence of the ties cTb and bVc implies a reflexive tic 
c( T V)c. Figure 1 1.1 also shows the compound relation V T, consisting 
of a single reflexive tie, b(UT)b. Notice that the relation VT is not the 
same as TV, illustrating the fact that composition of relations is nol 
commutative. 

Let us comment on a few important properties of compound relations. 
It is important to note that reflexive ties in compound relations can be 
quite important. For example, if we were studying the two relations, 
"gives money to" denoted by B, and "gives merchandise to" denoted by 
S, then the presence of a reflexive tie i(BS)i on the compound relation 
BS would indicate that actor i gave money to some actor k who in turn 
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gave merchandise back to actor i. This reflexive tie would indicate an 
exchange relation, in which actor i completed the exchange of money for 
merchandise. 

Transitivity is an important property of some relations. A relation is 
transitive if whenever iT j and jTk, the tie iTk is present. Since we can 
express the compound relation iT j and jTk as i T Tk, tramdtivity of a 

relation implies that all ties present in TT must be present in T. We will 
denote the inclusion operation by s;. Thus if T includes all ties in T T, 
we write TT S; T. To illustrate, consider the compound relation TT in 
Figure 1 1 .1.  T T  consists of the single tie a(TT)b implied by the ties aTe 
and eTb. This tie from a to b is also present in the relation T. Also, 
there are no ties in TT that are not present in T. Thus, the relation TT 
is fully contained in the relation T (TT  S; T) indicating that the relation 
T is transitive. 

Other important structural properties, such as structural balance and 
the strength of weak ties hypothesis, can also be examined using compo
sition of relations and compound relations. 

We next describe some properties of the operation of composition of 
relations. 

11.2.2 Properties of Composition and Compound Relations 

There are several important things to note about the operation of com
position of relations. We comment on these in this section. 

First, the operation of composition of relations may be defined for 
sequences longer than two relations. These are constructed either with 
distinct relations (such as TUVW), or by "reusing" relations (for exam
ple, UUU). Examples of compound relations of long strings that might 
be socially meaningful include relations such as "a friend of a friend 
of a friend," or "a boss of a friend of a friend," or "mother's mother's 
mother." Each string of relations (letters) that forms a compound rela
tion is referred to as a word, and the length of a word is the number of 
primitive relations in it. Analytically these long compound relations are 
computed through a series of operations of composition of two relations, 
for example, (U 0 U) 0 U, or through a series of Boolean matrix products. 

Next, it may be the case that for a given network no ordered pairs 
of actors have ties on a particular compound relation. For example, 
the relation T U is empty or undefined in a given group if there are no 
actors � j, and k such that iTk and kU j. In the example in Figure 1 1 .1 
the compound relation UU is empty. Sometimes it will be useful to 
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denote an empty relation as 0. For our hypothetical example. we could 
write VV = 0. As a substantive example, in most kinship systems 
the compound relation "mother's wife" would be undefined. Empty 
compound relations may be transitory (for example, at a given point in 
time the relation " boss's friend" might be empty in a given corporation 
if the boss were a particularly foul-natured person). However, if' a )1,iVCil 
compound relation were empty over a long period of time, it could 
indicate an important undefined social relation. 

It is important to note that the operation of composition is not 
commutative. That is, it is not generally true that TV is equivalent 
(identical) to VT. If composition of relations was commutative, one 
would be able to say that a "mother's brother" is the same as a "brotl,,;r's 
mother," or that a "boss's husband" is the same as a "husband's bOoSti," 
It is probably the exceptional case in which these relations would be 
identical, and if they were identical, it would indicate a very interesting 
and important property of that relational structure. 

Finally, the composition of relations in a given sequence or word with 
fixed order does not depend on the order in which the composition 
operations are carried out: (T  0 Vj 0 T = T o  ( V  0 Tj. In other words, 
the operation of composition is associative. This is an important mathe
matical property of the operation of composition that allows us to lise 
powerful mathematical theories to model social relational structures. 

The general idea of relational algebras is that we can start with It 
few primitive relations and generate compound relations. The collection 
of relations (including both primitive and compound relatiuns) contain8 
important features of a network role structure. The analytic problem 
is to simplify the information in this collection in order to present the 
basic patterns or regularities in the associations among relations as a 
description of the role structure of the network. In the next section we 
describe how to present relational algebras. We then discuss some ways 
to simplify the information in a role structure. 

11.3 Multiplication Tables for Relations 

We start with R primitive or generator relations. From these primitive 
relations we can create compound relations consisting of longel' nnd 
longer strings of relations; that is, words with more and more letters. 
Each compound relation can also be presented as a graph or sociomlllrix. 
Since we can continue to create words that are longer and longer, the 
strings of letters and thus the words could be infinite in length. Howevel', 
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since the number of actors, g, is finite, there are only a finite number of 
distinct graphs or sociomatrices that we could construct. Some of the 
compound relations must give rise to identical graphs. We will refer to 
a distinct graph as an image (see Boorman and White 1976; Pattison 
1982). Lorrain and White (1971) refer to a distinct graph as a morphism. 

Since there are g actors, there are g2 possible ties for a directional 
dichotomous relation (if we assume that reflexive ties may be present). A 
tie may or may not be present for each of the g

2 ordered pairs of actors. 
Since there are two possible states for each tie (present or absent) there 
are 2" possible images that can be created through the composition of 
relations. This is the same as the number of distinct labeled reflexive 
directed graphs or sociomatrices of size g x g. Although this might 
certainly be a large number (for g = 3 there are 29 = 512 possible 
images, for g = 10 there are 2100 = 1.2677 x 1030) for finite g, there 
will be a finite number of images and thus a finite number of distinct 
compound relations. So, although we can construct words of infinite 
length, they will not give rise to an infinite number of images. Most 
compound relations will be identical to other compound relations or to 
the primitive relations. 

Two compound relations that have the same images are said to be 
eqUivalent. They have exactly the same graph and sociomatrix, and 
contain exactly the same ties. Following Boorman and White's (1976) 
axiom of quality, compound relations that have the same image are 
equated and treated as a single entity in a relational analysis. For 
example, if we have the two relations, "is a friend of" and "is an enemy 
of" denoted F and E respectively, then if it were always the case that 
the compound relation FE (in words "is a friend's enemy") contained 
exactly the same ties as the relation E ("is an enemy of"), then the 
relation E and the compound relation FE would be equivalent, FE = E. 
Substantively we would say that all "friend's enemies" are "enemies," 
and all "enemies" are "friend's enemies." In a relational analysis, the 
primitive relation E and the compound relation FE would be treated as 
a single image. 

Now, let us consider two possible collections of graphs (images). The 
first collection contains all words that could be constructed from a given 
set of primitive relations, regardless of whether the words give rise to 
equivalent images. We will refer to this collection as Y', and note that 
it contains an infinite number of primitive and compound relations. The 
second collection, which we will refer to as Y, contains only graphs 
that have distinct images. Y contains all distinct primitive relations, 
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plus those compound relations that can be formed from the primitive 
relations, and that produce images that are distinct from the primitive 
relations and distinct from other compound relations. To get the set 
Y from the set Y' all graphs that are identical are equated, and are 
represented by a single image. We will denote the number of primitive and 
compound relations contained in /f as Rs. Each image in the collection 
Y "stands for" a number of primitive or compound relations (words) 
with identical images. Thus, each of the elements of Y is an equivalence 
class, containing a collection of words that generate equivalent images. 
The collection Y therefore has fewer elements than the collection Y'. 
A useful way to think of the relationship between Y and Y' is that Y 
is a partition of Y' into Rs equivalence classes. Each equivalence class 
contains all words (primitive or compound relations) that have identical 
images. 

The collection of relations Y along with the operation of composition, 
0, is a semigroup (Boyd 1990; Pattison 1982, 1993). In general, a semi
group is a mathematical entity consisting of a set of objects and a binary 
operation that satisfies two important properties: it is closed under the 
operation, and the operation is associative. Thus, the set of relations, 
Y, and the operation of composition, 0, form a semigroup. The result 
of the composition of any relations in the set is also in the set, and the 
operation is associative. For any relations (say T and U) in Y, the result 
of the composition of T and U, T o  U, is also in Y. Also, for a given 
sequence of relations, the order in which the operation of composition is 
carried out does not matter : U 0 (T 0 U) = (U 0 T) 0 u. 

11.3.1 Multiplication Tables and Relational Structures 

One way to display the result of composition of relations for a given 
network is in a multiplication table. One reads this table like an ordinary 
multiplication table, though here the operation is composition (0), rather 
than the usual multiplication (x). The elements of the set Y are the 
labels for the rows and columns of the table, and each element in the 
body of this table is the result of the composition of the relation in the 
row followed by the relation in the column. 

Figures 11.2 and 1 1.3 give an example for a hypothetical network. In 
Figure 11.2 we have expressed the images as graphs so that the results are 
more visible. Figure 1 1.3 contains the same table with letter designations 
for the relations. We begin with two primitive relations, H and L. The 
relation H resembles a three-level hierarchy. One could think of this as 
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Fig. 11.2. Composition graph table for a hypothetical network 

the relation "oversees the work of" in a three-level corporate hierarchy, 
or as the relation "is the parent of" in a three-generation family tree. 
The second relation, L, is a symmetric and reflexive relation with tics 
within levels of the hierarchy, or within generations of the family tree. 
One could think of this relation as "is at the same level as" or "could 
trade jobs with" in a corporation, or as "is the same generation as" in a 
family tree. 

The first row and the first column in the table in Figure 1 1.2 list the 
Rs primitive and compound relations in .'1' as graphs. In this example 
there are Rs = 5 distinct images : the primitive relations H and L, and 
three additional distinct compound relations H L, H H, and 0. Thus, for 
this example, [I' = {H,L,HL,HH,f/J}. For simplicity, we exclude f/J from 
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the multiplication table in Figure 1 1.2. The other four distinct Illlagcs 
are represented by their graphs in the first row and column of tile table. 
For example, the graph for the relation H is listed first followed by tile 
graph for the relation L, and so on. 

The entries in the body of this table are the result of compositioll "r 
the relation in the row followed by the relation in the column. The e n t ry 
in the first row and first column in the body of the table contaills tile 
result of the composition of H and H; H 0 H = HH. The compound 
relation HH has ties from the top (grandparent) generation to the bottom 
(grandchild) generation. This compound relation could be interpreted 
as "parent of a parent" or "boss of a boss." The entry in the second 
row and second column of the body of the table shows the compound 
relation LL. Notice that this is equivalent (identical) to the relation L, 
and so adds no new image to the table, or new entry to !/'. 

The compound relation HL (in the first row, second column of the body 
of the table) might be interpreted as "is the boss of a colleague of." 'I'he 
relation H L eontains directed arrows from nodes in a given generation 
(level) to all nodes at the generation (level) immediately below. Notice 
that the relation HL is identical to the relation LH (though as we noted 
above, the operation of composition is not in general commutative). 
Relations HL and LH contain exactly the sarne ties, and thus have the 
same image. Also, notice the similarity between the relation H L (and 
LH) and the primitive relation H. All of the ties in H are also in H L. 

In other words, the relation H is a subset of the relation HL; Ii c H L.. 
The major difference between the two relations is that H contains only 
some of the "intergenerational" or "interlevel" ties, whereas Ii L. (and 
LH) contains all ties between successive generations. If H is viewed as a 
corporate hierarchy with two departments, and authority residing within 
departments, then HL (and LIi) could be seen as generalized authority 
between adjacent levels, regardless of department. In terms of kinship, 
HL would represent a generalized parentage, for example in a kinship 
system in which all father's brothers are also called father (White 1963, 
page 13). 

A relational structure is most commonly presented using the lellers 
or numbers as labels for the images, rather than presenting the graphs. 
Figure 11.3 shows the relational structure from Figure 1 1 .2 in terms of 
the letter labels for the five distinct images. 

If the multiplication table contains all possible images that can result 
from the operation of composition on the primitive relations, then it is 
closed under the operation of composition. Thus, the relational structure 
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0 H L HL HH 0 

H HH HL HH I/J 0 
L HL L HL HH 0 
HL HH HL HH I/J 0 
HH 0 HH 0 0 0 
0 0 0 0 0 0 

Fig. 1 1.3. Multiplication table for a hypothetical network 

51 (H) 
5, {L, LL, . . . } 
5, {HL,LH,LHL, HLL, . . . } 
5, {HH,HHL,LHH,HLH, HLHL, . . . } 
5, {0, HHH, HLHH,HHHL,HHHH, . . . } 

Fig. 1 1.4. Equivalence classes for a hypothetical multiplication table 

in Figure 11.3  is closed, since all of the Rs = 5 distinct images (including 
the null image) that can be constructed from the primitive relations 
H and L are contained in the table. Such a table contains all of the 
information about the compound relations, since all possible compound 
relations that can be created will have images identical to one of the 
images in the table. 

The information in the multiplication table also describes the set of 
equivalences among the relations; that is, the results of composition tell 
us which primitive or compound relations produce identical images. In 
Figure 11.3 there are Rs = 5 distinct images: H, L, HL, HH, and 0. Any 
relation constructed from the composition of the relations H and L, in 
any combination and of any length, will be equivalent to one of these five 
images. Thus, the five images represent five equivalence classes, which we 
will denote by Sk for k = 1 , 2, . . .  , Rs. Each equivalence class contains the 
collection of compound relations that generate identical images. These 
equivalences are shown in Figure 1 1 .4. Each equivalence class includes 
the shortest word that generates the image, along with some, but not all, 
of the other words that generate the same image. 

Boorman and White ( 1976) define the role structure of a network as 
the set of equations in the multiplication table. Since the equations in 
the multiplication table describe the equivalences among relations for the 
entire network, it is a description of the network level role structure. 

It is important to note that relational algebras can be used to study 
either ties among actors in a sociomatrix (Boyd 1990) or ties among 
positions in a blockmodel (Boorman and White 1976). For simplicity, 
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0 A F AF FA FF 

A A AF AF A AF 
F FA FF FF FA FF 
AF A AF AF A AF 
FA FA FF FF FA FF 
FF FA FF FF FA FF 

Fig. 1 1.5. Multiplication table for advice and friendship, expressed as 
compound relations 

we will illustrate relational algebras using image matrices for ties among 
positions. Since image matrices have fewer elements than the networks 
they represent, in general, relational algebras derived from image matrices 
are simpler than the relational algebras for entire networks. 

We will now illustrate a multiplication table using two image ma
trices (from the blockmodel of the advice and friendship relations for 
Krackhardt's high-tech managers). 

11.3.2 An Example 

Now let us look at the role structure generated by the image matrices for 
the relations of advice and friendship for Krackhardt's high-tech man
agers. We will use the image matrices from the three-position blockmodel 
of advice, denoted by A, and friendship, denoted by F. This blockmodel 
was first described in Chapter 10. The images for advice and friendship 
in the three-position blockmodel are: [ 0 1 

o 1 
o 0 

labeled A and F respectively. 
Figure 11.5 shows the multiplication table, and thus the role structure, 

generated by the images advice, A, and friendship, F. This multiplication 
table was adapted from an analysis using UCINET IV (Borgatti, Everett, 
and Freeman 1991). Composition of the relations A and F, in any 
combination, results in an additional three distinct images; so, there 
are Rs = 2 + 3  = 5 distinct images: Y' = {A,F, AF, FA, FF}. We use 
shorthand labels to denote these images. Figure 11.6 shows these images. 
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AF 
I 1 1 
I 1 1 
0 0 0  

0 
0 
0 

A 
1 
1 
0 

1 
1 
0 

FA 
o 1 1 
0 0 0  
o 1 I 

F 
1 0 
0 0 
1 1 

1 
0 
1 

FF 
I 1 1 
0 0 0  
1 1 1 

Fig. 11 .6. Image matrices for five distinct words formed from advice 
and friendship images 

s, {A, AA, AAA, AF A, AAAA, AAF A, AF AA,AF FA, . . .  } 
S, {F} 
s, (AF,AAF,AFF, AAAF,AAFF, AFAF,AFFF, . . .  ) 
S4 (FA, FFA, FAA,FAAA, FAFA,FFAA, FFFA, . . .  ) 
s, {FF,FAF,FFF, FAAF, FFAF, FAFF,FFFF, . . . } 

Fig. 1 1. 7. Equivalence classes for multiplication role table of advice and 
friendship 

The multiplication table in Figure 1 1.5 is closed under the operation 
of composition. Any relation constructed from the relations A and F, in 
any combination and of any length, will be equivalent to one of these five 
images. The five images thus represent five equivalence classes. These 
equivalence classes are given in Figure 11.7, along with some of the 
words that also generate the same image. This set of equations expresses 
the fact that the role structure describes a partition of the set of all 
possible words (compound relations) that could be constructed from the 
primitive relations. We will often refer to the class by the shortest word 
that generates its image. For example, we refer to S3 as AF since the 
compound relation AF is the shortest word that generates the image to 
which all members of this class are equivalent. 

Let us note some interesting features of this role structure. First notice 
that the equation AA = A implies that advice is transitive in this network 
since AA S; A. It is also true that A � AA. In addition, this equation 
implies that A' = A for all c. The equation FF = F does not hold. 
Also, since FF 't F friendship is not transitive. However, the equation 
FFF = FF implies that F' = F2 for c ? 2. So, composition of any 
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D 2 3 4 5 

1 1 3 3 1 3 
2 4 5 5 4 5 
3 1 3 3 1 3 
4 4 5 5 4 5 
5 4 5 5 4 5 

Fig. 11.S. Multiplication table for advice and friendship 

sequence of A's generates an image identical to A, and composition of 
any sequence of two or more F's generates an image identical to FF. The 
set of equivalence classes also reveals another interesting property of this 
role structure. If we examine the list of equivalence classes in Figure 1 1.7 
we see that within each equivalence class all words both begin with the 
same letter and end with the same letter. These properties will be helpful 
in simplifying and interpreting role structures. 

Although the multiplication table in Figure 11.5 is informative, since 
it expresses the equations among compound relations, it is often useful 
to display this information using more abstract labels (such as numbers 
rather than words) for the compound relations. 

Figure 1 1.8 shows the same role table as in Figure 1 1.5, but with 
the compound relations labeled with the numbers 1 to 5 (the subscripts 
for the equivalence classes, Sd. Thus, we have used the indices for the 
equivalence classes from Figure 1 1.7 to represent the images in the table. 
The role table is especially uscful for displaying thc gcncral fcatures of 
the role structure, for simplifying role tables, and for comparing tables 
across groups (a topic we discuss below). 

Looking at the rows of Figure 1 1.8 one can see that there are two 
sets of rows that contain identical entries: rows 1 and 3 are identical, as 
are rows 2, 4, and 5. This shows that there are two subsets of images 
that operate similarly when they are the first element in a compound 
relation. Now, looking at columns, we see that there are also two subsets 
of columns that are identical: 1 and 4 are identical, as are 2, 3, and 
5. Notice that these subsets of similar columns are not the same as the 
subsets of similar rows. When we discuss the simplification of role tables 
the fact that certain images operate in the same way will be helpful for 
constructing simplified tables. 

In practice, if we were to include all distinct primitive and compound 
relations that could be formed through the operation of composition 
most tables would be quite large and complicated. The problem then is 
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to "extract" the essence of the structure and simplify this table into some 
reduced or simpler form that preserves the main patterns in the original 
table. This is a simplification or reduction of the table. How we go about 
simplifying a role table is the topic of the next section. 

11.4 Simplification of Role Tables 

In Lorrain and White's (1971) words, one of the goals of formal role and 
positional analysis is to 

. . .  understand. the interrelations among relations within concrete social 
groups . . .  [where] by understanding is meant distilling simpler patterns 
at a higher level of abstraction - simpler nol only in having fewer 
constituents but also in exhibiting interrelations which are more regular 
or transparent. (1971, page 49) 

This approach is also found in the work of Boorman and White (1976) 
and Pattison (1981, 1982, 1993). In this section we describe strategies 
for simplifying role structures. We will first describe strategies based 
on the similarity of the individual images in the role table. We then 
describe strategies for simplifying a role table as a whole. The reader 
should consult Boorman and White (1976), Boyd (1969, 1990), Lorrain 
and White (1971), Pattison (1981, 1982, 1993), and others for further 
elaboration of the ideas discussed in this section. 

The key to simplifying a role structure is to reduce the number of 
distinct elements (words or images) that it contains while preserving 
important properties of the structure. The simplified role structure thns 
has fewer elements than the original role structure, but contains patterns 
that "tend" to hold in the original structure (Pattison 1993). Since the 
role structure of the group is expressed in the mnltiplication table, a 
simplification of a role structure will also be a simplification of the 
multiplication table. The basic strategy for simplifying a role structure is 
to propose equations among words or elements of the original structure. 
This simplification gives rise to a reduced table in which elements that 
were distinct in the original table are represented by a single new entity 
in the reduced table. The simpler role structure can be expressed in a 
new, simpler table. 

Any simplification of a role table that equates images involves the 
assignment of each of the images, .9' = {SloS2, . . .  SR,}, in the original 
table, to one of a set of classes of images !!2 = {Q" Q2, . . .  Q",,} in the 
reduced table where Rs is the number of images in the original structure 
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and RQ is the number of images in the simplified structure, and RQ < Rs. 
The simplification of the table is an onto mapping from 51' to fl.. Each 
image in 51' is assigned to a class of images in fl., and every class in fl. has 
at least one image from 51' assigned to it. We will denote this mapping by 
'P, where 'P : 51' ---> fJ., and 'P(S,) = Qk means that image S, is assigned to 
class Qk. The set of classes in the simplification fl. thus defines a partition 
of the images in y. 

The role table and its set of equivalences, 51', is a partition and 
simplification of the entire collection of words that could be constructed 
from the composition of relations, 51" .  For example the equivalence 
classes in Figure 1 1 .7 express a mapping of some of the elements of y' 
to 51' for the example of advice and friendship. Now, suppose we wish 
to reduce further the set !f' by equating more images. The reduction 
of the role table is a partition of the distinct images, 51', into a smaller 
collection of classes, fl.. Several different strategies have been proposed 
for simplifying role structures. It turns out, however, that for a given 
table there may be many different possible reductions and there may be 
no "best" reduction. In the following sections we discuss two general 
strategies for simplifying role structures. The first strategy focuses on 
the substantive or sociometric similarity of images in the role structure. 
The second strategy is based on simplifying the multiplication table that 
expresses the composition of relations. 

11.4.1 Simplification by Comparing Images 

One goal of simplification and reduction of a multiplication table is to 
add further equations among pairs or collections of images (or words) to 
reduce the totaI number of distinct elements in the table. In this section 
we discuss two strategies for deciding which words (or images) to equate 
based on the similarity of the images. The first strategy focuses on the 
meaning or substance of the relations that generate the images. The 
second strategy focuses on the similarity of images based on the ties they 
share or the ways in which the images form compound relations. Lorrain 
and White (1971) refer to these as the substantive and the sociometric 
approaches, respectively. 

The substantive strategy focuses on the content, substance, or meaning 
of the relations included in the structure. If the researcher expects that 
certain primitive and/or compound relations are the same in meaning, 
or should operate similarly in a given population, then one might equate 
these relations, even if they do not contain exactly the same ties. For 
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example, if one were studying affective relations in a small group, it 
might be reasonable to expect that the compound relation "friend of a 
friend" would be quite similar to the simple relation "friend" (friends' 
friends are also friends). In practice, however, the equation might not be 
perfect, since some friends' friends might not also be friends. 

On the other hand, the sociometric approach equates images if they 
contain similar ties even though they might be quite different in substance 
or meaning (Boorman and White 1976). Following this approach, images 
are viewed as similar if the ties contained in them connect the same 
individuals (or the same sets of individuals). There are at least two 
approaches to assessing sociometric similarity. One approach is to use 
a correlation coefficient to measure the association among the relations 
(see Boyd 1989, 1990). Images that are strongly correlated are equated. 
This is the strategy used by Boyd (1989, 1990) to simplify a role structure 
based on sociomatrices rather than on blockmodel images. 

A second way to assess similarity is to equate images if one image is 
a subset of the other. If all the ties in one relation are also present in 
the second, then the second image contains or includes the first image. A 
useful way to study inclusions is to use an inclusion ordering of relations 
(Boorman and White 1976; Light and Mullins 1979; Bonacich and 
McConaghy 1979; Pattison 1993). An inclusion ordering expresses the 
associations among relations in terms of the property of containment. 
One image, say U, is contained in a second image, say V, if all ties that 
are present in U are also present in V (though V may have ties that 
U does not have). If U is contained in V we write U ,;: V, indicating 
that the ties in U are a subset of the ties in V. The inclusions among 
the images can be expressed in a diagram in which there is a vertical 
line or sequence of lines descending from one image to another image if 
the higher image contains the lower images. The relation ,;: is reflexive, 
antisymmetric, and transitive, and thus defines a partial order on the set 
of images (see Chapter 8). 

To illustrate, consider five images for the role structure generated by 
the images advice and friendship for Krackhardt's high-tech managers. 
These images were presented in Figure 1 1.6. Figure 11.9 displays all of 
the inclusions that are present among these five images. In this figure 
there is a vertical line down from AF to A, indicating that the image 
for A is contained in the image for AF. Similarly, both FA and F are 
contained in F F. 

Inclusion orderings can be used to simplify role structures by suggesting 
which subsets of images might be treated similarly (and thus equated). 
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AF FF 

/\ 
A FA F 

Fig. 1 1 .9. Inclusion ordering for the images from role structure of advice 
and friendship 

In the example of advice and friendship for Krackhardt's high-tech 
managers, the inclusion ordering in Figure 1 1 .9 suggests that A is similar 
to AF and both FA and F are similar to F F. 

The sociometric and the substantive strategies for simplifying role 
structures are based on an image by image comparison. However, as 
Boorman and White (1976) comment, there 

. .  ' are strong grounds for rejecting a case-by-case approach to equations 

. .  ' and instead developing ways of treating entire tables as integrated 
structures. (pages 1399-1400) 

In the next section we describe a method for simplifying a role table as 
whole. 

11.4.2 ®Homomorphic Reduction 

Since a role structure might be quite complex, including many images 
that are associated in ways that are difficult to perceive and difficult to 
interpret substantively, it is important to be able to simplify the structure 
so that, in the words of Light and Mullins, " . . .  the essential structural 
properties [become] apparent" (1979, page 104). We start by defining a 
condition that should hold for any "good" simplification, and then work 
through some examples. The mathematical notion that we employ is a 
homomorphic reduction, which we define below. The simplification of a 
role table involves reducing the number images by assigning subsets of 
images to the same class in the reduced table, and then studying the table 
to see whether or not any theoretically important patterns are present in 
the reduced table. 
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0 1 3 2 4 

1 1 3 3 1 
3 1 3 3 1 

2 4 5 5 4 
4 4 5 5 4 
5 4 5 5 4 

5 

3 
3 

5 
5 
5 

Fig. 1 1.10. Pennuted and partitioned multiplication table for advice and 
friendship 

The criterion for simplification of a role table is that the simplified 
table should preserve the operation of composition of relations. More 
formally the simplification should be a homomorphic image or homomur
phic reduction of the original role table (Bonacich 1989; Boorman and 
White 1976; Lorrain and White 1971 ;  Kim and Roush 1984; Pattison 
1993). 

Definition. A homomorphic reduction of a role table is an onto 
mapping, '" : !I' --> fl, from the collection !I' = {S" S2, , , , SRsJ to classes 
fl = {Q" Q2," . Q"" J that preserves the operation of composition. We use 
the notation ",(S,) = Qq to indicate that S, is assigned to class Qq. A 
mapping, "', is a homomorphism if ",(S,) 0 ",(S,) = ",(S, 0 S,). Thus, the 
operation of composition is preserved. 

Examples. We now return to the role table of advice and friend
ship in Figure 1 1.5 and examine some homomorphic reductions of the 
table. In the previous section we examined the multiplication table for 
the relations of advice and friendship in Figure 1 1 .8 and noticed that the 
elements in some rows, and the elements in some columns, produced sim
ilar compound relations. We can now use these similarities in simplifying 
the role table. 

First let us group the rows (and simultaneously the columns) of the 
table so that rows that produce nearly identical results are adjacent 
to each other. Figure 1 1.10 contains the same multiplication table as 
Figure 11.8, but with the rows, and simultaneously the columns, permuted 
so that images that operate similarly as the first element in a compound 
relation are adjacent. This table is expressed using number labels for the 
images, as in Figure 1 1 .8, and shows one way that the five images may be 
partitioned into two classes. In terms of the original equiValence classes 
in Figure 1 1 .7 and the images they include, this reduction proposes the 
following equations: 
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o (1) (2) 

( I )  (1) (1) 
(2) (2) (2) 

Fig. 11 .11. Homomorphic reduction of the role table for advice and 
friendship 

{SJ,S3} 
{SZ, S4, SS} 

{A,AF} 
{F,FA,FF} 

We can now present a new multiplication table using these two equiv
alence classes. We use the sUbscripts for the Q's as the labels. Also, we 
put these labels in parentheses to indicate that they are not the same 
entities as in the original mUltiplication table, but rather indicate classes 
of entities. This further reduced role table for advice and friendship is 
presented in Figure 11.11. This reduction can be displayed in a multi
plication table that is identical in form to the usual multiplication table, 
but which has the equivalence classes, Q's, as elements. 

This reduction is in fact a homomorphic reduction, since it satisfies 
the conditions of the definition; 'P(S,) 0 'P(S,) = 'P(S, 0 S,). To illustrate, 
consider images S! (A) and S2 (F) in the original table. If the reduction is a 
homomorphic reduction, it must be the case that 'P(S! oSz) = 'P(S!)0'P(S2). 
To check we see that S! 0 S2 = S3 and 'P(S3) = Q!. This is the same as 
'P(S!) 0 'P(Sz), since 'P(S!) = Q!, 'P(Sz) = Qz, and Q! 0 Q2 = Q!. In order 
for the reduction to be a homomorphic reduction, this property must 
hold for all S" S,. 

Returning to the role table for the homomorphic rednction, presented 
in Figure 1 1.11, we see that the pattern in this table is quite simple. 
The composition of any two elements always results in an element that 
is in the same class as the first element of the composition. This table 
expresses the first letter law (Boorman and White 1976). 

As we mentioned above, there may be more than one homomorphic 
reduction of a given role table. For the example of advice and friendship, 
if we focus on similarities among columns in the table in Figure 11.8, we 
are led to a different simplification than if we focus on rows. This second 
set of equations, which is also a homomorphic reduction, is: 

{SJ,S4} 
{S2,S3,SS} 

{A, FA} 
{F, AF, FF} 

We present the permuted and partitioned multiplication table in Fig-
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0 1 4 2 3 

1 1 1 3 3 
4 4 4 5 5 

2 4 4 5 5 
3 1 1 3 3 
5 4 4 5 5 

5 

3 
5 

5 
3 
5 

Fig. 11.12. A second permuted and partitioned multiplication table for 
advice and friendship 

o (1) (2) 

(1) ( 1) (2) 
(2) (1) (2) 

Fig. 1 1 .13. A second homomorphic reduction of the role table for advice 
and friendship 

ure 1 1.12 and the reduced multiplication table for this simplification in 
Figure 11.13. In this reduced table the composition of any two elements 
results in an element that is in the same class as the second element in 
the composition. This table satisfies the last letter law (Boorman and 
White 1976). 

A few comments about these reductions are in order. In the first 
reduction notice that each class contains words that begin with the same 
letter: Ql contains words beginning with A, and Q2 contains words 
beginning with F. This is consistent with the observation that the role 

table for this reduction satisfies the first letter law. In contrast, in the 
second reduction, each of these equivalence classes contains words that 
have the same last letter. Ql contains words ending in A whereas Q3 
contains words ending in F. This is consistent with the last letter law. 

Interpretation. Role structures that are expressed in reduced ta
bles, such as the two class models in Figures 11 .11 and 11.13, can have 
theoretically important interpretations that can be expressed in target ta
bles. Boorman and White (1976) describe several such target tables. The 
first letter and last letter tables (that we mentioned above) are examples 
of target tables. These patterns might result from the reduction of a 
rather complex role structure, even when the relations are quite different 

in substance from the relations of advice and friendship that we have 
been studying. Boorman and White give the following interpretations for 
the first letter table: 
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By the First Letter table, any compound word of whatever length is 
equated to the generator which occurs first in the word (that is, leftmost). 
A substantive interpretation is that any type of indirect bond [tie] takes 
on the quality of the direct tie to the first intermediary . . . .  The First 
Letter table, or a refinement of it, is often found when one primitive 
is for an objective, though positive, sort of tie (e.g., similar policy), 
whereas the other denotes positive affect: thus one's tie to any kind 
of contact of one's business associate takes on the color of a business 
association, whereas one views in affective terms any kind of contact 
through a friend. (1976, pages 1413-1414) 

In the example of advice and friendship for Krackhardt's high-tech 
managers, the first letter law shows that compound relations with advice 
as the first relation operate like advice relations, and compound relations 
with friendship as the first relation operate like friendship relations. On 
the other hand, the last letter table indicates that the compound relation 
takes on the quality of the final letter in the word, or the final relation in 
the sequence. 

Other target tables can represent different structural properties, such as 
Granovetter's (1973, 1982) strength of weak ties hypothesis. In terms of 
the composition of relations, this hypothesis states that the combination 
of two substantively strong ties should be a strong tie (SoS = S), whereas 
the combination of two weak ties, or a weak and a strong tie, will be a 
weak tie (S 0 W = W 0 S = W o W  = W). Breiger and Pattison (1978) 
use this idea to evaluate the role structnres for two communities' elites. 

In the next section we discuss how relational algebras can be used to 
compare role structnres across populations. 

11.5 0Comparing Role Structures 

A role structure is a quite general description of how relations are asso
ciated in a network, independent of the particular individuals involved. 
Since the role structure is stated in terms of relations, if the same relations 
are measured on two or more different networks we can compare the role 
structures by comparing their role tables, even though the actors in the 
two groups are different. Networks in which relations are associated in 
similar ways will have similar role structures. In this section we discuss 
how to compare role structures. 

The goals in comparing role structures are : 

(i) To describe the similar features of the structures 
(ii) To measure the degree of similarity between the structures 
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It is important to note that we can only compare role structures from 
different networks if the same, or at least comparable, relations generate 
both of the role structures. That is, the substantive meaning of the 
primitive relations in both networks must be the same. As a first step 
in our comparison we must establish a correspondence between the 
relations. For example, friendship can be measured in two networks. 
However, even if the relations in the two networks are not identical, it 
may be possible to argue that they are the same in meaning or content. 
For example, one might have the relation "is a friend of" measured in 
one network, and the relation "likes" in the other. 

The first goal in comparing role structures is to describe formally the 
patterns or features that are shared by the two role structures. These 
similar features of the role structures are expressed in the multiplication 
tables and their semigroups. 

Recall that a role structure is defined as the set of equations among 
relations as expressed in a role table. The role structure .51' consists of 
a set of distinct images, and a description of which words give rise to 
the same image. Whereas the collection .51" is the set of all possible 
words that could be formed from the primitive relations, the collection 
.51' for a particular network describes all words that give rise to identical 
images in that network. If two networks have the same set of primitive 
relations, then they will have the same collection .51" (the set of all 
possible images). However, the words (compound relations) that give rise 
to identical images and the role structures (expressed in the multiplication 
tables) may be different in the two networks. 

For two distinct networks, with actor sets .H and A, let us denote the 
set of equations that hold in each network as .51' JV and .51' J/, respectively. 
To compare role structures, we will compare the equations expressed in 
.51' JV and .51' J/. For example, if the relation "is a friend of," denoted by F, 
is measured in both networks, and if the equation F = F F holds in both 
networks, then the two networks share part of their role structure. On 
the other hand, if the equation F = F F holds in one network but not in 
the other, then the two role structures differ to some extent. To compare 
role structures we must examine and compare entire sets of equations in 
a systematic way. Comparing role structures thus involves comparing the 
multiplication tables and the partitions of .51" induced by the two role 
structures, .51' .% and .51',11. 

There are two alternative notions of what is meant by "shared" struc
ture. On the one hand, some researchers argue that what is shared by 
two role structures is the set of associations among relations that hold 
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in either one group or the other; that is, patterns that tend to hold in 
general in the two role structures. The joint homomorphic reduction of 

a role table (which we define below) studies the structure that is shared 
using this idea (Boorman and White 1976; Breiger and Pattison 1978; 
Breiger 1979; and Pattison 1981, 1982; 1993). On the other hand, sOmc 
researchers argue that what is shared between two role structures is 
only those associations among relations that hold in both groups. The 
common structure sernigroup studies the structure that is shared by two 
role structures using this second idea (Bonacich and McConaghy 1979; 
McConaghy 1981a, 1981b). We will describe each of these strategies and 
then illustrate both of them with an example. 

11.5.1 Joint Homomorphic Reduction 

In their foundational paper on role algebras, Boorman and White (1976) 
proposed the joint homomorphic reduction of two role structures as a 
way to compare two role structures and to summarize the features that 
they share. More recently authors have used this approach [or comparing 
role structures from different groups (Breiger and Pattison 1978), from the 
same group at different times (Breiger 1979), or for comparing individual 
roles (Breiger and Pattison 1986) (see Chapter 12). 

As defined above, !I' % is the role structure of the group with actor set 
% and .2% is a homomorphic reduction of !I' %. We will let Rs/( and 
RQ/( be the number of images ill !I' .¥ and .2A" respectively. Similarly, 
!I'.it is the role structure of the group with actor set .Jt and .2.it is a 
homomorphic reduction of !I' .it, with Rs." and RQ-'I images, respectively. 

The joint homomorphic reduction of two role structures is the most 
refined (least coarse) role structure that is a homomorphic reduction of 
both. More formally, we define the joint homomorphic reduction of !I' % 
and !I' .it as the role structure .2:t'1 that is a simultaneously homomorphic 
reduction of both !I' % and !I'.it, and is the most refined such role 
structure. We will denote the number of classes in .2:t'1 by R;;,'J(. By 
most "refined" role structure, we mean that structure containing the 
largest number of distinct elements. In other words, since there may 
be more than one homomorphic reduction of a given role structure, 
there may also be more than one role structure that is a homomorphic 
reduction of two role structures. The joint homomorphic reduction, 
.2:V:�, is that role structure that is a homomorphic reduction of both 
fI' % and !I' .it, and contains the largest number of classes. 
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The joint homomorphic reduction specifies two mappings, 1p% : 
Y % ---. .2':):'}, and 1pdt : Y A ---. .2':t'},. Each of these mappings is a 
homomorphism as defined above, and thus preserves the operation of 
composition. The joint homomorphic reduction specifies both a partition 
of the images in each of the original role structures, and a new multi
plication table that is a reduction of each of the original multiplication 
tables. 

Since the joint homomorphic reduction is a reduction of each role 
structure, it will (probably) be a coarser partition of Y' (the collection 
of all possible compound relations) than either Y % or Y.f[ . .2':t'}, will 
(probably) have fewer classes than either Y % or Y A. However, .2':):'}, 
has more classes than any other homomorphic reduction of both role 
structures. 

As Boorman and White (1976) observe, the joint homomorphic re
duction of two role structures is "" . the result of imposing the union 
of all equations implied by each of the multiplication tables . . .  " (1976, 
page 1421). It contains all equations among words that hold in either 
one group or the other. It is therefore a simplification of both role 
structures, and it probably has fewer elements than either of the original 
role structures. Since the joint homomorphic reduction is based on the 
union of the role structures, it may contain equations among images that 
hold in only one group, or perhaps hold in neither group. 

The joint homomorphic reduction, as originally defined by Boorman 
and White (1976) and as presented here, is a reduction of the role tables 
that preserves the operation of composition. More recently, Pattison 
(1993) has developed a complementary approach to homomorphic re
duction of relational algebras that preserves the property of inclusions 
among images in the network. Both of these approaches have the goal of 
representing the essential features that are shared between role structures. 

An alternative approach to comparing role strnctures is presented by 
Bonacich and McConaghy. 

11.5.2 The Common Structure Semi group 

Bonacich and McConaghy argue that what is "shared" between two role 
structures is the set of equations among compound relations (words) that 
hold in both role structures (Bonacich 1979; Bonacich and McConaghy 
1979; McConaghy 1981a, 1981b). 

The common structure semigroup of two role structures is the least 
refined role structure of which both original role structures are homo-
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morphic reductions. The common structure semigroup of .'1'. ., and !I' Jt 
is denoted by j!�){ and has R�� classes. We have two homomorphic re
ductions (or mappings) : 1p% : j!�� -+ !I'  % from the common structure 
semigroup, .El��, to role structure [I' %) and 1PJ! : fl��t -� Y',II from 
j!�){ to !I' J{. Both of the role structures !I' % and !I' J{ are homomorphic 

reductions of the common �tructure semigroup, and the common s1ruc

ture semigroup is the least refined such structure (it has the fewesl number 

of classes) for which both !I' % and !I' % are homomorphic reduclions. 
In the common structure semigrollp, elements are in the same c1wm if 

and only if they are in the same class in both partitions. The colllmon 

structure semigroup contains only those equations which hold in hoth 
groups. so it is therefore (probably) a more refined partition of .'J" than 
either !I' % or !I' J{. 

Both the joint homomorphic reduction and the common structllfe 

semigroup are ways to compare role structures from different groups. 

Researchers have argued the merits of both approaches. The debate 
is contained in the series of papers by Boorman and White ( 1 976), 
Arabie and Boorman (1979), Breiger and Pattison (1978), Pattison ( 198 1, 
1982), on the one hand, and Bonacich (1979), Bonacich and McCotlnghy 
(1979), and McConaghy (1981a, 1981 b), on the other. The major points of 
contrast in these two sets of papers are the meaning of "shared" structure 
and the meaning of "simplified" representation of a role structufe. 

11.5.3 An Example 

Let us now look at an example to illustrate comparison of role structures 
between two groups. We will continue to consider the role structufe of ael
vice and friendship for Krackhardt's high-tech managers (see Figures 1 1 .5 
and 1 1.8). For comparison we will use a role structure for a classic so

cial network data set: Roethlisberger and Dickson's Bank Wiring mOlD 

(Roethlisberger and Dickson 1961). These data were collected th" ollgh 
an extensive observational study of an electrical bank wiring depurtment 
in the Western Electric Company, Hawthorne Works. We will rofc,' to 
these data as the Bank Wiring room network. A department of fourteen 
workers, including wiremen, solderers, and inspectors, was observcd for 

a period of one year. Researchers recorded the presence of six relutions 
among the fourteen men: participatiou in games, arguments ubout open
ing/closiug windows iu the room, trading jobs, helping IlIlothor person 
with a job, friendship, and antagonism. Each relation was recorded as 
a sociogram indicating the observers' judgments about the presence or 
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absence of ties between pairs of men on each of the six relations. In their 
paper on b10ckmode1s, White, Boorman, and Breiger ( 1976) analyzed 
five relations from these data (excluding the relation of trading jobs), 
and produced a six-position b10ckmodel. We will use image matrices 
from this blockmode1 to construct the role structure for the Bank Wiring 
room. 

To compare the role structure of the Bank Wiring room with Krack
hardt's high-tech managers, we first must select two relations that corre
spond to the advice and friendship relations for Krackhardt's high-tech 
managers. To start, we will use the friendship relation for the Bank 
Wiring room as comparable to the friendship relation for Krackhardt's 
high-tech managers. Next, we will use the helping relation in the Bank 
Wiring room as comparable to the advice relation among the high-tech 
managers. In both the helping and advice relations, work-related aid is 
being given from one worker to another. 

As images of the relations of friendship and helping for the Bank 
Wiring room, we use the blockmodel image matrices from White, Boor
man, and Breiger's (1976, page 755) blockmode1 analysis of this network. 
These images are : 

1 1 1 0 1 1 1 1 0 0 1 0 
1 0 0 0 0 0 1 0 0 0 0 0 
1 0 0 0 0 0 

and 0 0 0 0 0 0 
0 1 0 1 1 1 0 0 0 1 1 0 
1 0 0 1 1 1 1 0 0 1 0 0 
1 0 0 1 0 1 0 0 0 0 0 0 

for helping and friendship, respectively. We have transposed the image 
matrix for helping presented in White, Boorman, and Breiger, since the 
direction of the original relation went from row positions to column 
positions. For comparability with advice for Krackhardt's high-tech 
managers, we need to have job-related aid going from column positions 
to row positions. 

The multiplication table for helping and friendship is presented in 
Figure 11.14. We used UCINET IV (Borgatti, Everett, and Freeman 
1991) to generate this multiplication table. We present this table with 
number labels for the images: helping is A, labeled 1, and friendship 
is F, labeled 2. Composition of helping and friendship resulted in an 
additional eight images, for a role structure with Rs", = 10 total im
ages. We will compare this role structure with the role structure for 
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0 2 3 4 5 6 7 8 9 10 

A 1 3 4 7 8 7 8 7 8 7 8 
F 2 5 6 9 10 9 10 9 10 9 10 

AA 3 7 8 7 8 7 8 7 8 7 8 
AF 4 7 8 7 8 7 8 7 8 7 8 
FA 5 9 10 9 10 9 10 9 1 0  9 10 
FF 6 9 10 9 10 9 10 9 10 9 10 

AAA 7 7 8 7 8 7 8 7 8 7 8 
AAF 8 7 8 7 8 7 8 7 8 7 8 
FAA 9 9 10 9 10 9 10 9 10 9 10 
FAF 10 9 10 9 10 9 10 9 10 9 10 

Fig. 1 1.14. Multiplication table for helping (A) and friendship (F) for 
the Bank Wiring room network 

Krackhardt's high-tech managers, presented in the multiplication table 
in Figure 11.8. 

Now let us consider the joint homomorphic reductiop of these two 
role structures. First, the joint homomorphic reduction will impose all 
equations among images that hold in either role structure. Then, we 
must check to see that the resulting reduction is in fact a homomorphic 
reduction of each original role structure. 

Notice that the role structure for the Bank Wiring room has marc 
elements than the role structure for Krackhardt's high-tech managers. 
Some images that are distinct in the Bank Wiring room role structure 
are equated in the role structure for Krackhardt's high-tech managers. 
However, there are no equations among images in the Bank Wiring 
room role structure that are not also present in the role structure for 
Krackhardt's high-tech managers. The role structure for Krackhardt's 
high-tech managers is a reduction of the role structure for the Bank 
Wiring room. But is it a homomorphic reduction? 

Consider imposing the equations among images that hold for Krack
hardt's high-tech managers on the role table for the Bank Wiring room. 
We will denote these new classes by QF, QiNT, . . . , QjNT. This implies 
the following equations among images for the Bank Wiring room: 

Q�T = {A,AA,AAA} 
QINT = {F} 
QjNT = {AF,AAF} 
Q!rT = {FA, FAA} 
QINT = {FF,FAF} 
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0 1 3 7 2 

1 3 7 7 4 
3 7 7 7 8 
7 7 7 7 8 

2 5 9 9 6 

4 7 7 7 8 
8 7 7 7 8 

5 9 9 9 10 
9 9 9 9 10 

6 9 9 9 10 
10 9 9 9 10 

4 8 5 9 6 10 

8 8 7 7 8 8 
8 8 7 7 8 8 
8 8 7 7 8 8 

10 10 9 9 10 10 

8 8 7 7 8 8 
8 8 7 7 8 8 

10 10 9 9 10 10 
10 10 9 9 10 10 

10 10 9 9 10 10 
10 10 9 9 10 10 

Fig. 11.15. Permuted and partitioned multiplication table for helping 
and friendship for the Bank Wiring room network 

We can use these equations to permute the rows and simultaneously 
the columns of the multiplication table for the Bank Wiring room role 
structure. This will also allow us to check whether or not this reduction is 
in fact a homomorphic reduction. Figure 1 1. 15 presents the permuted and 
partitioned multiplication table for the Bank Wiring room. Examining 
this figure, we see that within each submatrix, the labels for images are 
all in the same equivalence class, and this simplification preserves the 
operation of composition. 

This reduction of the role structure for the Bank Wiring room is in 
fact a homomorphic reduction. It is also identical to the role structure 
for Krackhardt's high-tech managers. Thus, it is the joint homomor
phic reduction of the two role structures. This joint role structure has 
R:V} = 5 elements. The role structure for Krackhardt's managers is 
in fact a homomorphic reduction of the role structure for helping and 
friendship for the Bank Wiring room. The multiplication table for the 
joint homomorphic reduction is identical to the mUltiplication table for 

Krackhardt's high-tech managers, presented in Figure 1 1.8. 
Now, consider the common structure semigroup. Recall that the 

common structure semigroup imposes no equations among images that 
do not hold in both role structures. Both role structures are homomorphic 
reductions of the common structure semigroup. As we have noted above, 
the role structure for Krackhardt's high-tech managers is a homomorphic 
reduction of the role structure for the Bank Wiring room. Thus, the role 
structure for the Bank Wiring room, with R;;;, = 10 elements, is the 
common structure semigroup for the two role structures. 
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So far we have described how to compare role structures. We next 
discuss how to measure the similarity of two role structures. 

11.5.4 Measuring the Similarity of Role Structures 

In this section we describe two measures of the similarity of two role 
structures. The first measure, denoted by bg Kg.u' is based on a general 
measure of the dissimilarity of two partitions, proposed by Boorman 
and Oliver (1973) and Arabie and Boorman (1979) and adapted by 
Boorman and White (1976) for the comparison of role structures. The 
measure is based on the coarseness of the partition induced by the joint 
homomorphic reduction, ,q;t'1 with R;t'1 classes, as compared with the 
coarseness of the two role structures, Y' A' with RsK classes and Y' J{ with 
RsJj classes. The second measure, r[f'.iVY.n ' is a measure of similarity- that 
compares the two role structures to the joint homomorphic reduction 
and to the common structure semigroup (Pattison and Bartlett 1982). 

Recall that each role structure (Y' A' and Y' J{) consists of a set of 
equations that describes which compound relations produce identical 
images. Each equation, thus, defines an equivalence class of identical 
images from Y" ,  the set of all possible images. Rs" and Rs.u denote the 
number of equivalence classes in role structures Y' A' and Y' .AI respectively, 
and R� is the number of classes in the joint homomorphic reduction 
of Y' A' and Y' .AI. We will let c, be the size of class i, for i = 1, 2, . . .  , R;t'1. 
We define the coarseness of ,q;t'1, the joint homomorphic reduction, in 
relation to one role structure, say Y %, as: 

2:� ( � )  h(2iJ'�w) = ( i' )  ( 1 1.1) 

Similarly we have h(2;t'1IJ{) as the coarseness of 2� in relation to role 

structure Y' J{. The quantity h(2;t'�IA') takes on values between 0 and 1. 
Boorman and White interpret the quantity in equation (11.1) as the 

distance of a role structure from the joint homomorphic reduction, noting 
that 

. . .  it makes sense to treat the coarseness of these partitions as a measure 
of the extent of aggregation in passing from [9' "yl or [.9" .ltl to the joint 
reduction, in other words, as a measure of distance to the joint reduction. 
(1976, page 1422) 
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We can then measure the distance of two role structures from each 
other by summing the distance each is from their joint homomorphic 
reduction. Thus, the distance between [I' x and [1''''1, in relation to their 
joint homomorphic reduction, is: 

(1 1.2) 

This quantity is a dissimilarity measure that takes on values between 0 
(when [I' x and [I'.il are identical, and so £1:l":?1 is identical to both) and 
2 (when the only joint homomorphic reduction is trivial and equates all 
compound relations). 

Pattison and Bartlett (1982) have proposed an alternative measure, 
ryxtf' .It ' that can be used to quantify the similarity of role structures. 

Their measure has the advantage of taking into account the size of 
the common structure semigroup in addition to the size of the joint 
homomorphic reduction. Recall that [I' x and [I' A have Rs% and Rs-" 
elements in each, the joint homomorphic reduction £1:l":?1 has R:t'1 
classes, and the common structure semigroup E��t has RJ1� classes. 
The measure of similarity r.C/' %9',.({ is calculated as: 

r _ 
Rs.v RsJ( - R�;t 

.'l' .,;r[/'Jf - R R _ RJNT Sf SJ( % J! 
( 1 1 .3) 

(Pattison and Bartlett 1982, page 67). This measure takes on its maximum 
of 1 when role structures [I' ff and [I'.il are identical, and takes on its 
minimum of 0 when the common structure semigroup is equal to the 
direct product of [l'x and [1'.11 (Pattison and Bartlett 1982). 

An Example. We now illustrate these two measures for the two 
role structures: helping and friendship for the Bank Wiring room, and 
advice and friendship for Krackhardt's high-tech managers. Recall that 
R[I' % = 5, R[I'JI = 10, R:l"1 = 5, and R;;� = 10. 

First consider the measure ay.J('Y_« and its components h(.2�;;fl%) 
and h(£1:l":?flA)' The quantity h(£1:l".1ldl ) measures the coarseness of 
the partition in the joint homomorphic reduction compared to the role 
structure [I' .II. For our example, the joint homomorphic reduction has five 
classes whereas the role structure [I' A has ten elements. The assignment 
of elements in [l'ff to classes in £1:�:?1 was listed above. Three elements 
from 9' .Jt were assigned to the first class in ;2�.1, one was assigned to 

the second class, and two were assigned to each of the third, fourth, and 
fifth classes. Thus, c[ = 3, C2 = 1, C3 = 2, C4 = 2, and Cs = 2. Returning 
to equation ( 1 1.1) we see that: 
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3 +0 + 1 + 1 + 1  
45 

0.1333. 

459 

This is the distance of the role structure for help and friendship in the 
Bank Wiring room from the joint homomorphic reduction. The role 
structure for Krackhardt's high-tech managers is identical to the joint 
homomorphic reduction (each element in -'2%.Jt has exactly one element 
from g % assigned to it), thus: 

0 + 0 + 0 + 0 + 0  
45 

0.0000. 

Now, we calculate the dissimilarity of the two role structures as: 

O§..v§." = 0.1333 +0.0000 = 0.1333. 

Since small values of this quantity (which takes on values between 0 and 
2) indicate more similar structures, the value of 0.1333 indicates consid
erable similarity between the role structures for advice and friendship 
for Krackhardt's high-tech managers and helping and friendship in the 
Bank Wiring room. 

Now let us illustrate the measure r§..v§./I' This measure compares the 
two role structures to the size of the joint homomorphic reduction and 
to the size of the common structure semigroup. For our example, this 
quantity is equal to: 

(5)(10) - 10 40 
r.'I'..v§." = 

(5)(10) _ 5 
= 45 

= 0.889. 

Since this measure takes on values between 0 and 1, the value of 0.889 
indicates a high degree of similarity between the two role structures. 

In summary, the role structures for advice and friendship for Krack
hardfs high-tech managers and for helping and friendship for the Bank 
Wiring room are quite similar. Substantively, we see that the relations of 
providing work-related aid and being friends operate similarly in these 
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two work groups. If we consider the equations among compound rela
tions that are expressed in the set of equivalence classes of images for the 
joint homomorphic reduction of these two role structures, we see that 
there are five kinds of compound relations operating in these groups. 
The first class of images includes all images (words) that contain only 
sequences of A's (advice) ; the second class includes only the primitive 
relation F (friendship); the third class includes images that begin with A 
and end with F; the fourth class includes images that both begin with F 
and end with A;  and the fifth class includes images that both begin and 
end with F. 

11.6 Summary 

In this chapter we have focused on the analysis of multiple relations, 
specifically on ways to describe and model the associations among a 
collection of primitive and compound relations as summarized in a 
multiplication table. We have defined the role structure as the equa
tions (identities) that exist among relations in this collection, and have 
described simplifications for role structures and ways to compare role 
structures across groups. The methods in this chapter are concerned 
with describing the role structure of the entire group. These methods 
are referred to as global role analyses, relational algebras, role structures, 
or relational structures. In the next chapter we discuss methods for 
individual roles and positions. 
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Network Positions and Roles 

In this chapter we continue our discussion of methods for studying social 
network positions and roles. Referring to Figure 9.1, which presented 
an overview of positional and role analysis in terms of whether the 
major task was "grouping" relations or "grouping" actors, the methods 
in this chapter primarily have the goal of "grouping" actors. Such II 
classification gives rise to a partition of actors into positions. However, 
several of the methods that we discuss at the end of this chapter consider 
similarities among relations as a way to determine which actors should 
be grouped together. Specifically, these methods present alternative ways 
to classify actors based on their sharing of patterns or types of ties. Since 
positions of actors are defined in terms of patterns or types of ties, we 
will also consider associations among relations, and thus network roles. 

We can also use the list of four tasks in a positional analysis that 
we presented in Chapter 9 to organize the topics in this chapter. This 
chapter is primarily concerned with the first and second tasks: defining 
equivalences and measuring how closely subsets of actors adhere to these 
definitions. 

The methods we discuss in this chapter focus on roles for individ
ual actors. Individual roles are descriptions of the network, including 
similarities among actors, and associations among relations, from the 
perspectives of individual actors. In Chapter 11  we presented methods 
for describing the role structure of an entire group and for comparing the 
role structures from different groups, without reference to the individual 
actors. Methods for analyzing group level role structure are sometimes 
called global role methods. In contrast, the methods presented in this 
chapter study roles from the perspectives of individual actors, or from 
the perspectives of subsets of actors. These methods are often referred 
to as local or individual role methods. 

461 



462 Network Positions and Roles 

We begin with a review of the theoretical background for positions 
and roles in social networks, and discuss different levels of role analysis 
of social networks. Following that, we describe and illustrate different 
approaches for defining equivalence of actors, and as appropriate, for 
measuring the degree of equivalence. We conclude this chapter with a 
comparison of the different approaches. 

12.1 Background 

Several authors, including Homans, Merton, Goodenough, and Nadel 
have discussed social roles and social positions in ways that are quite 
useful for social network analysis. In this section we review thesc authors' 

ideas and discuss how these theoretical notions can be used to study roles 
and positions in social networks. 

12.1.1 Theoretical Definitions of Roles and Positions 

Theoretical definitions of social role often are stated as properties of 
individuals or sets of individuals. This usage is apparent in a statement 
such as, "a person takes on the role of leader in a group." A theoretical 
statement is provided by Homans (1967), who defines role as 

. . .  the behavior expected of a [person] occupying a particular social 
position. (page 11) 

In contrast to social position, which refers to a collection of actors, 
the concept of social role refers to the ways in which occupants of 
a position relate to occupants of other positions. In translating these 
theoretical ideas into formal network analysis methods, it is useful to 
keep in mind the distinction between a collection of actors (a social 
position), and the ways that these actors relate to each other (a social 
role). Goodenough (1969) makes the important distinctions between 
status, position, and role. He argues that the fact that many authors 
have not carefully distinguished between status and position has led to 
unfortunate confusions. 

All alike treat a social category together with its attached rights and 
duties as an indivisible unit of analysis, which they label a "status" or 
"position" in a social relationship. This lumping together of independent 
phenomena, each with organizations of their own, accounts, I think, 
for our apparent inability to exploit the statuswrole concepts to our 
satisfaction in social and cultural analysis. For example, my brother is 
my brother, whether he honors his obligations as such or not . . . .  I shall 
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consistently treat statuses as combinations of right and duty only. I 
shall emphasize their conceptual autonomy from social "positions" in a 
categorical sense by referring to the latter as social identities, (page 312) 

Goodenough then defines the role for a social identity : 

The aggregate of its composite statuses may be said to constitule the 
identity's role in a sense a little less comprehensive than but othcrwifl� 
close to Nadel's (1957) use of the term. It would be equivalent to " 
comprehensive "role set" in Merton's (1957:369) terms. (page 324) 

Merton notes that "a particular social status involves, not a single 
associated role, but an array of associated roles" (1957, page 423). 
This collection of role relationships that an individual has with others, 
by virtue of occupying a particular social status, constitutes their role set. 
For example, he observes 

the status of medical student entails not only the role student, vis-a-vis 
his teacher, but also an array of other roles relating him diversely to 
other students, physicians, nurses, social workers, medical teChnicians, 
and the like. (1957, page 423) 

The idea of a role set is quite useful for defining individual roles in social 
networks and we will return to it later in this chapter. 

To translate theoretical notions of role and position into empirical 
social network methods, one assumes that the measured relations in a set 
of social network data are indicators of the roles of actors in different 
social positions. The regularities in patterns of relations among actors 
thus indicate regularities in roles of actors in the social positions (Faust 
1988), Role analysis therefore focuses on the ties among actors, or among 
sets of actors. 

Lorrain and White (1971) provide a clear statement of the assumptions 
underlying a network analysis of individual roles: 

the total role of an individual in a social system has often been described 
as consisting of sets of relations of various types linking this person as 
ego to sets of others. (page 50) 

The goal of an individual role analysis is to describe the regularities in 
the ties that link an actor (ego) to other actors (alters). These regularities 
constitute the role of an individual actor in the network. Thus, social 
network methods for studying individual roles focus on patterns or 
"types" of ties among actors or subsets of actors as a way to formalize 
the notion of social role. We can then use these regularities in ties to 
define subsets of actors who have the same types of ties with others, 
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and thus who occupy the same social posItIOn. Actors in the same 
position are (ideally) equivalent in that they have the same types of ties 
to actors in other positions. Since there are numerous ways to formalize 
the idea of types of ties, there are numerous ways to formalize the ideas 
of network role and network position. This chapter discusses several of 
these formalizations. 

12.1.2 Levels of Role Analysis in Social Networks 

In network analysis, the notion of role has been used at three conceptual 
levels: the entire group, a subset of actors, and an individual actor. These 
three levels are referred to as: 

• Global role structures (Boorman and White) 
• Local roles (Wu) 
• Individual or ego roles (Winship and Mandel; Breiger and Pat

tison) 

These levels differ in the level of social unit to which the description 
applies: the entire group, collections of individuals, or the individual. 

Global role structures describe an entire group. For example, mul· 
tiplication tables and role structures, that we discussed in Chapter 1 1, 
are global role procedures, since they describe the entire group. Global 
roles are often defined quite abstractly in terms of algebraic properties of 
the relations within the entire group. For example, Boorman and White 
(1976) define the role structure of a group: 

A role structure is the set of all identifications among words [compound 
relations] obtained by applying the Axiom of Quality to the compound 
images formed by multiplying generators. Mathematically, a role struc
ture is therefore simply the Boolean matrix semigroup formed by taking 
Boolean matrix products of the specified generators. (page 1395) 

Whereas role structures pertain to an entire group, local roles pertain 
to subsets of actors within a group. The subsets can be positions 
of equivalent actors (for example subsets of approximately structurally 
equivalent actors). A local role for a given position consists of the ways 
in which the position is tied to other positions in the network. Wu (1983) 
makes the distinction between local and global role structures: 

Thus, the role structure describes how relations interlock from a global 
perspective of the entire network. Local blockmodel algebras equate 
relations [if and only if] the corresponding blockmodel matrices are 
locally identical, that is, identical from the perspective of one or more of 
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the blocks [positions] . They thus describe how relations interlock fWIII 
the perspective of one or more of the blocks [positions] . (page 291) 

Local roles, defined for positions of actors, are similar to the descriptions 
of positions in blockmodel analysis presented by Marsden ( 1989) and 
Burt ( 1976). For a single relation, positions can be characterized as 
sycophant, broker, primary, and so on, depending on the patterns of 
ties that members of one position have with members of other positions. 
For multiple relations, there are many more possibilities for types of 
positions. 

At the most specific level of analysis, roles can pertain to individual 
actors. These are referred to as individual or ego roles. Analyses at this 

level study the patterns and regularities in ties from the perspective of 
individual actors. Mandel (1983) makes explicit the distinction between 
individual roles and glObal role structures. 

The term individual role definition is therefore proposed for any pro
cedure which associates a role with each actor strictly on the basis of 
patterns and regularities in his or her "personal" network. A global 
role definition, on the other hand, involves the assignment of roles to all 
members of the population simultaneously. (page 376) 

According to Mandel (1983) properties such as the density, span, or 
range of an individual actor's network are individual role properties since 
they are defined for individual actors. 

Related individual and local role ideas have been developed by Mandel 
(1983), Winship and Mandel (1983), Wu (1983), Everett (1985), Breiger 
and Pattison (1986), and Winship (1974, 1988). Closely related ideas are 
presented in White and Reitz (1983, 1985). Substantive examples using 
these methods include Krackhardt and Porler's (1986) study of turnover 
in a small fast-food establishment, Breiger and Pattison's (1986) analysis 
of Padgett's data on Florentine families, White and Reitz's (1989) analysis 
of a scientific discipline, Doreian's analysis of prominent political actors 
(Doreian 1988c; Batagelj, Doreian and Ferligoj 1992), and Faust's (1988) 
reanalysis of Sampson's monastery data. 

We can use the patterns of ties between individual actors to describe 
individual roles and to identify subsets of actors who are involved in 
the same roles within a network. Subsets of actors with similar roles are 
equivalent, and occupy the same network position. 
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12.1.3 Equivalences in Networks 

Each approach to network roles or positions specifies the graph theo
retic or network properties that sets of actors must have in order to 
be considered equivalent in terms of the roles they play and thus the 
positions they occupy. Actors who are equivalent are assigned to the 
same equivalence class or position. Structural equivalence is one possible 
equivalence definition, but there are many others. 

Each equivalence definition specifies an equivalence relation, which we 
denote by ==. An equivalence relation has three important properties: it 
is symmetric (i == j if and only if j == i), reflexive (i == i), and transitive (if 
i == j and f == k then i == k). An equivalence relation defines a partition 
of a set of entities into mutually exclusive and exhaustive equivalence 
classes, such that all entities within a class are equivalent, and entities 
from different classes are not equivalent. An equivalence relation on a 
set of actors, ff, defines a partition of this set into B equivalence classes, 
i181,i182, • . .  , i18B, such that actors who are equivalent are assigned to the 
same equivalence class. 

Each of the positional approaches that we describe in this chapter 
specifies the conditions under which actors should be assigned to the 
same equivalence class. Each method is thus a mapping from the set of 
actors to a set of equivalence classes, where the rule for mapping actors 
to the same equivalence class is described by the particular equivalence 
definition. This idea of assigning actors to equivalence classes is the 
same as the idea in the first part of a blockmodel analysis, where 
actors are assigned to positions so that all actors in a position are 
(ideally) structurally equivalent. Now, we want to consider a number of 
different mapping rules, each based on a different kind of equivalence 
definition. As in a blockmodel analysis, we will denote the mapping 
of actor i to position i18k as <P(i) = i18k, but since we now have several 
dilTerent equivalence definitions, we will subscript <P and i18k to denote the 
relevant definition. In general, we will denote the mapping by equivalence 
deflnition H." as <Po(i), and we will denote an equivalence class resulting 
from definition H." by i18Co)k' For example, we will let i18CSE)k denote 
the kth class of actors who are structurally equivalent (SE). Since the 
mapping function assigns an actor to a class, the notation <PSE(i) = i18CSE)k 
denotes the assignment of actor i to c1a<;s /!J(SE)k by structural equivalence� 
all actors in class i18CSE)k are (ideally) structurally equivalent. 

If two actors are equivalent then they are assigned to the same equiva
lence class (or network position). We will denote the equivalence of actors 
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i and j according to definition ".", as i � j. Since equivalent actors art: 

assigned to the same equivalence class, i � j implies </>.(i) = </>.(j) = @(.)k' 
For example, if actors i and j are structurally equivalent (SE), then i '1,!! j, 
and </>SE(i) = </>SE(j) = @(SE)k. 

To develop methods that are good formalizations of the theoretical 
notions of social position and social role, it is necessary to conceptualize 
the structural location of an actor (and sets of actors) in a network in 
rather general and ahstract ways. We also need flexible ways to descrihe 
the patterns or types of the ties in which an actor is involved. 

Many researchers have proposed that structural equivalence is too 
restrictive for studying network roles and positions, and have proposed 
equivalences based on more abstract properties of relational patterns (see, 
for example, Borgatti and Everett 1992a; Breiger and Pattison 1986; Burt 
1990; Doreian 1987, 1988b; Everett 1985; Everett, Boyd, and Borgatti 
1990; Faust 1988; Mandel 1983; Pattison 1988, 1993; Sailer 1978; White 
and Reitz 1983, 1985, 1989; Winship 1974, 1988; Winship and Mandel 
1983; Wu 1983; Yamagishi 1987). In this chapter we discuss several of 
these more general approaches, including: 

• Automorphic and isomorphic equivalence 

• Regular equivalence 

• Local role equivalence 

• Ego algebras 

These approaches are more theoretically and formally abstract than 
the approaches based on structural equivalence, and often require more 
sophisticated mathematics. 

In the next sections we describe alternative equivalence definitions 
and discuss how to measure degrees of equivalence for each of these 
definitions. The order of presentation begins with the most specific 
approaches and then proceeds to more general and abstract approaches. 
We conclude with a comparison of these methods. 

We begin with a hypothetical example that we will use to illustrate 
several of the equivalence definitions. Consider the graph in Figure 12.1. 
This graph might represent the relation "supervises the work of" mea
sured on the managers and employees in a company. In terms of the 
network roles in this example, some people supervise the work of others, 
some people have their work supervised by others, and some people both 
supervise others and are themselves supervised. We will use this exnmple 
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Fig. 12.1. Graph to illustrate equivalences 

to illustrate structural equivalence, automorphic equivalence, and regular 
equivalence. 

12.2 Structural Equivalence, Revisited 

Recall that two actors are structurally equivalent if and only if they have 

identical ties to and from identical other actors. Formally, i � j implies 

i !:; k if and only if j !:; k and k !:; i if and only if k !:; j for all f!C, and 
k +- i,j. 

Referring to Figure 12.1, there are seven subsets of structurally equiv
alent actors : 

• i!8(SE)l : {I} 
• i!8(SE)2 : {2} 
• i!8(SE)3 ; {3} 
• i!8(SE)4 ; {4} 
• i!8(SE)5 : {5, 6} 
• i!8("')6 ; (7} 
• i!8(SE)7 : {8,9} 

Since structural equivalence requires identical ties to and from identical 
other actors, in this example people can only be structurally equivalent 
if they supervise exactly the same other people, and are supervised by 
exactly the same others. 

There are obvious limitations to structural equivalence for identifying 
network positions. The fact that structurally equivalent actors must have 
identical ties to and from identical other actors is a severe limitation. In 
our example, two actors can be assigned to the same "manager" position 
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only if they supervise exactly the same employees. Managers from two 
different companies, or even managers in charge of two different depart
ments, cannot be structurally equivalent The restriction to identical ties 
and identical actors, as required by structural equivalence, thus does not 
provide a general formalization of the theoretical notion of social posi
tion (Faust 1988; Borgatti and Everett 1992a). Furthermore, structural 
equivalence does not allow comparison of positions and roles between 
populations. 

Structural equivalence is the oldest and currently the most widely 
used definition of equivalence for positional analysis of social networks. 
Recently, however, numerous authors have argued that more general ' 
equivalence definitions might be more appropriate, especially if a re
searcher's goal is to formalize the theoretical notion of social position or 
to compare populations (Sailer 1978; Faust 1988; Borgatti and Everett 
1992a; Winship 1988). We now discuss alternative equivalences. 

As an introduction to these more general equivalences, let us consider 
what it means for two actors to have the same role in a social network. 
Since role is a general construct, independent of the identities of the 
particular individuals involved, we need to be able to describe and 
compare the general or abstract features of actors' ties, without reference 
to the identities of the particular alters to whom the actors are tied. For 
example, the supervisors from two different companies have the same 
role because they oversee the work of other people, though the particular 
individuals they supervise are different. In a set of social network data 
we would see that people who are "supervisors" have "oversees the work 
of" ties to people who are "employees." To compare roles and positions 
of actors in this more general sense, we need to be able to describe 
individual roles in terms of the patterns or types of ties that are defined 
for any actor who performs a given role, and thus occupies a particular 
position, regardless of the identity of the alters involved. 

12.3 Automorphic and Isomorphic Equivaleuce 

Several authors have proposed that the concept of automorphic equiva
lence is useful for studying positions in social networks (Borgatti and 
Everett 1992a; Everett, Boyd, and Borgatti 1990; Pattison 1982, 1988; 
Winship 1974, 1988; Winship and Mandel 1983). Automorphic equiva
lence is based on the idea that equivalent actors occupy indistinguishable 
structural locatious in a network. Structural location is defined quite 
precisely in terms of graph isomorphism. 
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12.3.1 Definition 

Recall that two graphs or directed graphs are isomorphic if there is a 
one-to-one mapping of the nodes in one graph to the nodes in the other 
graph that preserves the property of adjacency (see Chapter 4). Formally. 
graphs (or directed graphs) 0'(,AI',.P) and 0" (,AI" , .P') are isomorphic if 
there is a one-to-one mapping of the nodes in ,AI' to the nodes in ,AI" 
such that nodes that are adjacent in 0' are mapped to nodes that are 
adjacent in 0" .  If we denote the mapping of node i as T(i), then graphs 
(or directed graphs) 0' and rJ' are isomorphic if < i, j >E .P if and only 
if < t(i), t(j) >E .P'. The property of isomorphism maps one graph (or 
directed graph) to another graph (or directed graph). 

An analogous idea, called an automorphism, is defined for a single 
graph (or directed graph). If the mapping, t, is from the nodes in a graph 
(or directed graph) back to themselves (rather than from one graph to 
another), then the mapping is called an automorphism. Formally, an 
automorphism is a one-to-one mapping, t from ,AI' to ,AI' such that 
< i, j >E .P if and only if < T(i), t(j) >E .P. In terms of a single relation 
:!(, an automorphism is a one-to-one mapping from ,AI' to ,AI' such that 
i .:; j if and only if T(i) .:; t(j). 

As an illustration of an automorphism consider the example in Fig
ure 12.1. In this directed graph one possible mapping of nodes that is an 
automorphism is: t(l) = 1, t(2) = 4, t(3) = 3, t(4) = 2, T(5) = 9, T(6) = 8, 
T(7) = 7, T(8) = 5, t(9) = 6. There are also other possible automorphic 
mappings for this graph. 

We can also define an automorphism for a multi relational network 
(Pattison 1988). An automorphism on a multirelational network is a 

q: q: 
one-to-one mapping, T, such that i � j if and only if T(i) � T(j) for all i, 
j, and all :!( ,. 

Now, using the idea of an automorphism, we can define automorphic 
equivalence. Two actors are automorphicaliy equivalent if and only if 
there is some automorphism, T, that maps one of the actors to the other. 
Formally, i and j are automorphically equivalent, i � j, if and only if 
there exists some mapping, T, such that T(i) = j, and the mapping, T, 
is an automorphism. Since i � j means that 1:(i) = j (where 1: is an 
automorphism) if actors i and j are automorphically equivalent, then 
i .::; k implies j .::; t(k) and k .::; i implies t(k) .::; j, for all k and all 
:!{,. 
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12.3.2 Example 

Returning to the example in Figure 12.1, we see that there are five SUhsctH 
of automorphically equivalent (AE) actors. We denote these equivalence 
classes as iJi'(AE)k' These classes are : 

• iJi'(AE)l : { I }  
• iJi'(AE)2 : {2,4} 
• iJi'(AE)3 : {3} 
• iJi'(AE)4 : {5,6,8,9} 
• iJi'(AE)5 : {7} 

If we think of the relation in the directed graph in Figure 12.1 as "super· 
vises the work of," then we see that actors 2 and 4 are automorphically 
equivalent, even though they supervise different people. However, actor 
3 is not automorphically equivalent to actors 2 and 4. In genera\, to be 
automorphically equivalent, nodes in a graph (or directed graph) must 
have the same indegree and the same outdegree. Thus, in our example, 
to be automorphically equivalent two actors must "supervise," and be 
"supervised," by the same number of others. Notice that automorphic 
equivalence is more general than structural equivalence. Actors that are 
structurally equivalent are also automorphically equivalent, but the re
verse is not necessarily true (for example, actors 2 and 4 in Figure 121 
are automorphically equivalent but not structurally equivalent). 

The term "automorphism" refers to a mapping of a graph (or directed 
graph) onto itself, whereas the term "isomorphism" refers to the mapping 
of one graph (or directed graph) onto another. We can define isomorphic 
equivalence in terms of a one-to-one mapping of nodes in one graph (or 
directed graph) to nodes in another graph (or directed graph). Nodes 
i E % and j E %' are isomorphically equivalent if and only if there is 
some mapping, t, such that �(i) = j and 1;" is an isomorphism. 

In practice, the term "automorphic equivalence" is more widely used 
than the term "isomorphic equivalence." However, the term "isomorphic 
equivalence" would be more in keeping with the spirit of this line of 
research on social network positions, and the goal that one ought to be 
able to compare positions across populatioll& 

An important property of isomorphic equivalence is that nodes from 
different graphs can be isomorphically equivalent. Thus, isomorphic 
equivalence can be used to study equivalence of actors from ditler'Bllt 
groups. This is an important feature of any method for studying' Bocilll 



472 Network Positions and Roles 

positions and social roles since people from different populations can 
occupy the same social position. 

The graph theoretic concept of an orbit refers to a subset of nodes 
in a graph (or directed graph) that can be mapped to one another in 
some automorphism (or isomorphism) (Pattison 1982; Everett, Boyd, 
and Borgatti 1990). Nodes i and j belong to the same orbit if -c(i) = j 
for some automorphism, -c. Nodes that belong to the same orbit are 
automorphically equivalent and are assigned to the same automorphic 
equivalence class, since, by definition, there is some automorphism that 
maps one to the other. Thus, if nodes i and j belong to the same orbit, 
<p(AE)(i) = <P(AEj{j) = iJB(AE)k. Nodes in the same orbit belong to the same 
automorphic equivalence position. 

Automorphically equivalent nodes are identical with respect to all 
graph theoretic properties (Borgatti and Everett 1992a). For example, 
two nodes that are automorphically equivalent have the same indegree, 
the same outdegree, the same centrality on every possible measure (for 
example, betweenness, closeness, etc.), belong to the same number and 
size of cliques, and so on. The only thing that can differ between 
automorphically (or isomorphically) equivalent nodes is the "names" or 
"labels" attached to them (and to other nodes in the graph). Nodes that 
are automorphically equivalent are structurally indistinguishable when 
labels are removed from the graph. To illustrate, suppose that labels 
were removed from the nodes (and lines) in a graph or directed graph. 
If we now wanted to replace the node labels, there might be uncertainty 
about where some labels should be placed, because, without the labels, 
some subsets of nodes are indistinguishable. For example, consider 
removing the labels from the nodes in the graph in Figure 12.1. If labels 
were then to be replaced, the label "5" could go with any of four nodes in 
the graph (the nodes previously labeled "5", "6", "8", and "9"), because 
without the labels these four nodes are indistinguishable. These four 
nodes are automorphically equivalent; they belong to the same orbit. 

12.3.3 Measuring Automorphic Equivalence 

One of the limitations of automorphic and isomorphic equivalence as an 
approach for analyzing social networks is that there is no known fast 
algorithm that guarantees identification of automorphically equivalent 
nodes in all graphs (Everett, Boyd, and Borgatti 1990). Pattison (1988) 
presents a family of measures for equivalences, including automorphic 
equivalence, but it is quite difficult to compute. One approach to identify-
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ing subsets of potentially automorphically (or isomorphically) equivalent 
nodes in a graph is to use the insight that if two nodes are automor
phically equivalent then they are identical on all possible graph theoretic 
properties (though the reverse is not true, nodes may be identical on 
any number of graph theoretic properties, and not necessarily be auto
morphically equivalent), Subsets of autumorphically (or isomorphically) 
equivalent nodes must be contained within subsets of nodes that have 
identical values on all graph theoretic measures. For example, one can 
consider a number of different centrality measures (for example, degree 
centrality, closeness centrality, and betweenness centrality). Two nodes 
that do not have identical centrality scores on all possible measures of 
centrality cannot be automorphieally equivalent. A strategy of this kind 
is used in the program UCINET IV to identify potentially automor
phically equivalent nodes (Borgatti, Everett, and Freeman 1991). The 
problem remains, though, of how to measure the degree of automorphic 
equivalence between pairs of nodes in a way that is not arbitrary, and 
that is not difficult to compute. 

For two actors to be automorphically equivalent in a social network 
they must have identical kinds and numbers of ties to actors who are 
themselves automorphically equivalent. Thus, automorphically equivalent 
actors must have the same indegree and outdegree. This restriction might, 
in some applications, be too restrictive. For example, in a corporation 
managers of different size departments would not be automorphically 
equivalent. In Figure 12.1, actors 2 and 4 are automorphically equivalent 
(they both "supervise" two subordinates), however, actor 3 is not auto
morphically equivalent to actors 2 and 4 because actor 3 "supervises" 
only one subordinate. 

The restriction of equal number of ties is relaxed by the notion of 
regular equivalence. 

12.4 Regular Equivalence 

The notion of regular equivalence formalizes the observation that actors 
who occupy the same social position relate in the same ways with other 
actors who are themselves in the same positions (Borgatti and Everett 
1992a; Faust 1988; Sailer 1978). Regular equivalence docs not require 
actors to have identical ties to identical other actors (as required by 
structural equivalence) or to be structurally indistinguishable (as required 
by automorphic or isomorphic equivalence). 
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The idea of regular equivalence arose out of discussions among Boyd 
and Lorrain and then White and Sailer, and was first introduced by 
Sailer (1978), and then was developed by White and Reitz (1983, 1985, 
1989), Everett and Borgatti (Borgatti and Everett 1989, 1992a, 1992b; 
Everett and Borgatti 1990; Borgatti 1988), and Doreian (1987), among 
others. Applications of regular equivalence can be found in Doreian 
(1988a, 1988c), Faust (1988), Krackhardt and Porter (1986), and White 
and Reitz (1989). 

12.4.1 Definition of Regular Equivalence 

Driefly, actors who arc regularly equivalent have identical ties to and 
from equivalent actors. For example, neighborhood bullies occupy the 
same social position, though in different neighborhoods, because they 
beat up some kid(s) and are scolded by some irate parent(s), but they do 
not necessarily beat up the same kid(s) nor are they scolded by the same 
parent(s). 

More generally, if actors i and j are regularly equivalent, and actor i 
has a tie to/from some actor, k, then actor j must have the same kind of 
tie to/from some actor, I, and actors k and I must be regularly equivalent. 

RE 
Formally, if actors i and j are regularly equivalent, i == j, then for all 

relations, fI" r = 1 ,2, . . . , R, and for all actors, k = 1, 2, . . . , g, if i :::; k 
then there exists some actor I such that j :::; I and k � I, and if k :::; i 

then there exists some actor I such that I :::; j and k � I. We will denote 
subsets of regularly equivalent actors by i3§'(RE)k. 

Returning to the example in Figure 12.1 of a single directional relation, 
a partition of actors that satisfies the definition of regular equivalence is: 

• i3§'(RE)! : {I} 
• i3§'(RE)2 : {2, 3,4} 
• i3§'(RE)3 : {5, 6, 7, 8, 9} 

Notice that these equivalence classes are exactly the three "levels" in the 
hierarchy, and might correspond to the CEO, managers, and employees 
in this hypothetical company. Furthermore, managers are equivalent 
regardless of the size of the department they supervise, and employees 
are equivalent regardless of the size of the department they work in. 

An important feature of regular equivalence is that a given social 
network (or graph) may have several partitions of actors that satisfy the 
definition of regular equivalence. That is, there may be several ways 
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to assign actors to equivalence classes so that within each equivalence 
class actors have identical ties to and from actors in other equivalence 
classes. For example, the partition of actors into structural equivalence 
classes is a regular equivalence (structurally equivalent actors are also 
regularly equivalent), and the partition of actors into automorphic (or 
isomorphic) equivalence classes is also a regular equivalence. But, there 
may be other regular equivalence partitions in a given network that 
are neither structural equivalences nor automorphic equivalences (for 
instance, the partition with three equivalence classes for the example 
above). The coarsest partition (the partition with the fewest equivalence 
classes) that is consistent with the definition of regular equivalence is 
called the maximal regular equivalence. The maximal regular equivalence 
for the example in Figure 12.1 is the one with three equivalence classes, 
described above. However, the partition 

• tm(RE)! : {I} 
• tm(RE)2 : {2, 3} 
• tm(RE)3 : {4} 
• tm(RE)4 : {5, 6, 7} 
• tm(RE)5 : {8, 9} 

is also a regular equivalence, but it is not the maximal regular equivalence 
(neither is it a structural equivalence or an automorphic equivalence 
partition). 

Now let us consider some issues that arise in defining regular equiva
lence for nondirectional relations. 

12.4.2 Regular Equivalence for Nondirectional Relations 

As many authors have noted, in a graph (for an nondirectional relation) 
in which there are no isolates, the maximal regular equivalence consists 
of a single equivalence class containing all nodes (Faust 1985 ; Doreian 
1987, 1988b; Borgatti 1988). For a nondirectional relation with no 
isolates, all actors in the single maximal regular equivalence class are 
adjacent to some other actor, who is also in the equivalence class. A 
partition consisting of a single equivalence class is trivial, and probably 
uninteresting. However, a nondirectional relation may also contain other 
regular equivalence partitions. 

To illustrate, consider the graph in Figure 12.2. The maximal regular 
equivalence partition for this graph is {I, 2, 3, 4}. However, this graph 
also contains the following regular equivalence partition : @(RE)l : {I, 3, 4), 
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2 3 

T 
Fig. 12.2. Graph to demonstrate regular equivalence 

iiIJ(RE)2 : {2l· Each node in iiIJ(RE)1 is adjacent to some node in iiIJ(RE)2, and 
each node in iiIJ(RE)2 is adjacent to some node in iiIJ(RE)I. 

One useful approach for studying regular equivalence in graphs (for 
nondirectional relations) is the graph theoretic concept of neighborhood 
(Everett, Boyd, and Borgatti 1990). The neighborhood of a node i in 
a graph consists of all nodes adjacent to node i. Recall that if nodes 
i and j are regularly equivalent, then for any node k adjacent to node 
i, there must be some node I adjacent to node j, and k and I must be 
regularly equivalent. Since the neighborhood of a node consists of all 
nodes adjacent to that node, nodes that are regularly equivalent must 
have the same equivalence classes of nodes in their neighborhoods across 
all relations. Briefly, in order to be regularly equivalent, actors must be 
adjacent to the same kinds (equivalence classes) of other actors. This 
approach to defining regular equivalence is especially useful for studying 
regular equivalence in non directional relations. 

As can be seen by the definition, regular equivalence is applicable to 
both single and multirelational networks. Regular equivalence can also 
be generalized to valued relations and to two-mode networks (Borgatti 
and Everett 1992b). 

Before we discuss measures of regular equivalence, let us consider how 
to represent regular equivalence partitions using a regular equivalence 
blockmodel. 

12.4.3 Regular Equivalence Blockmodels 

Recall that a blockmodel consists of a mapping of actors into equivalence 
classes (or positions) according to the particular equivalence definition, 
and for each pair of positions, a statement of whether or not there is a 
tie present from one position to another position. 
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Blockmodels can be constructed for regular equivalence classes, just as 
they are for structural equivalence classes (Borgatti and Everett 1992b; 
Batagelj, Doreian, and Ferligoj 1992). The difference between struc
tural equivalence blockmodels and regular equivalence blockmodels is 
the rule for determining which blocks are oneblocks and which blocks 
are zeroblocks, and consequently, what oneblocks -and .zeroblocks imply 
about the corresponding entries in the submatrices of the sociomatrix. In 
our discussion, we will limit our attention to perfect regular equivalence 
blockmodels. 

First consider the oneblocks in a regular equivalence blockmodel. 
Following the definition of regular equivalence, if actors i and j are 
in the same equivalence class, rJl(RE)m, and actor i has a tie to some 
actor k in equivalence class i!II(RE)p, then actor j (who is equivalent to 
i) must also have a tie to some actor I who is in i!II(RE)p (actors k and 
I must be equivalent, though they may be different actors). Consider 
the image matrix for a regular equivalence blockmodel. In the image 
matrix, a oneblock indicating the presence of a tie from position i!II(RE)m 
to position i!II(RE)p implies that for all actors i E i!II(RE)m, there exists some 
actor k E i!II(RE)p such that i --> k, and for all actors I E i!II(RE)p there exists 
some actor j E i!II(RE)m such that j --> l. In terms of the permuted and 
blocked sociomatrix, if the regular equivalence blockmodel includes a tie 
from i!II(RE)m to i!II(RE)p, then the submatrix that contains the ties from 
actors in i!II(RE)m to actors in i!II(RE)p must have a 1 in each row and in 
each column. This pattern indicates ties from all actors in i!II(RE)m to some 
actor in i!II(RE)p, and to all actors in i!II(RE)p from some actor in i!II(RE)m' 
Perfect zeroblocks in regular equivalence blockmodels require that the 
corresponding submatrix in the sociomatrix be filled completely with O's. 

Let us now look at the regular equivalence blockmodel for the ex
ample in Figure 12.1 to illustrate these ideas. We present the regnlar 
equivalence blockmodel for the maximal regular equivalence consisting 
of three equivalence classes (described above). Figure 12.3 shows both 
the sociomatrix for this relation with rows and columns permuted and 
partitioned according to the regular equivalence classes, and the image 
matrix for this regular equivalence blockmodel. Since there are three 
equivalence classes, the image matrix is of size 3 x 3. 

Consider the submatrix of the sociomatrix corresponding to the ties 
from members of position BB(RE)2 to members of position f18(RE)3- Since 
each member of i!II(RE)2 has a tie to at least one member of i!II(RE)3 this 
submatrix has a 1 in each row. Also, since each member of i!II(RE)3 
has a tie from at least one member of i!II(RE)2, so this submatrix has 
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Blocked sociomatrix 

1 2 3 4 5 6 7 

1 - 1 1 1 0 0 0 

2 0 - 0 0 1 1 0 
3 0 0 - 0 0 0 1 
4 0 0 0 - 0 0 0 

5 0 0 0 0 - 0 0 
6 0 0 0 0 0 - 0 
7 0 0 0 0 0 0 -
8 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 

8 9 

0 0 

0 0 
0 0 
1 1 

0 0 
0 0 
0 0 
- 0 
0 -

Image matrix for regular equivalence blockmodel 

@(RE)l 
@(RE)2 
8l(RE)3 

o 
o 

1 
o 
o 

o 
1 
o 

Fig. 12.3. Blocked sociomatrix and image matrix for regular equivalence 
blockmodel 

a 1 in each colnmn. Thns, in the blockmodel there is a tie from 
i!U(RE)2 to i!U(RE)3, and in the image matrix there is a "I" indicating that 
i!U(RE)2 -+ i!U(RE)3' It is important to note that the snbmatrix of the 
sociomatrix corresponding to ties from members of i!U(RE)2 to i!U(RE)3 

is not completely filled with l's, as wonld be reqnired for a (perfect) 
strnctnral eqnivalence blockmodel. vignre 12.3 shows the image matrix 

for this regnlar eqnivalence blockmodel. 

Regnlar eqnivalence blockmodels are a relatively recent development, 
and have received considerably less attention than strnctnral equivalence 
blockmodels. As a consequence, they are less widely nsed. Batagelj, 
Doreian, and Ferligoj (1992) nse the idea of a perfect (or optimal) 
regnlar equivalence blockmodel as a standard for optimally partitioning 
actors into regnlar eqnivalence classes. Borgatti and Everett (1992b) 
discuss how to extend regular eqnivalence blockmodels to two-mode 
networks. 
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12.4.4 OA Measure of Regular Equivalence 

As with structural and automorphic equivalence. a network data set may 
not contain any pairs or subsets of actors who are perfectly regularly 
equivalent. The earliest approaches to regular equivalence (Sailer 1978; 
White and Reitz 1985) presented measures of the degree of regular 
equivalence for pairs of actors in a network. More recently, authors have 
focused on methods for assigning actors to subsets such that the partition 
of actors is optimal in the sense that actors in the same subset are nearly 
regularly equivalent (Batagelj, Doreian, and Ferligoj 1992). 

Finding subsets of regularly equivalent actors in a network data set 
requires simultaneously deciding whether or not the alters to whom 
potentially regularly equivalent actors are tied are themselves regularly 
equivalent. If the partition of actors into regular equivalence classes is 
perfect, then for any two actors, i and j, in the same equivalence class, 
the presence of a tie from actor i to any actor k in any equivalence class 
implies that actor j in the same equivalence class as i must also have a 
tie to some actor, I, in the same equivalence class as k. Thus, for all pairs 
of actors in the same regular equivalence class, their ties to and from the 
members of all equivalence classes must "match." One way to measure 
how close pairs or subsets of actors are to being regularly equivalent is 
to consider how well the ties to and from pairs of actors "match" each 
other, in the sense just described. 

One of the earliest and most widely used measures of regular equiva
lence is embodied in the algorithm Rl£Gl£ proposed by White and Reitz 
(1985). This algorithm uses an iterative procedure in which estimates of 
the degree of regular equivalence between pairs of actors are adjusted in 
light of the equivalences of the alters adjacent to and from members of 
the pair. This procedure is described in detail in White and Reitz (1985) 
and Faust (1988). 

We now describe this measure of regular equivalence. We will let 
MIt! be the estimate of the degree of regular equivalence for actors i 
and j at iteration t + 1. This quantity is a function of how well i's ties 
to and from all actors can be "matched" by j's ties to and from all 
actors, and vice versa. How well i's ties to and from a specific actor 
k, can be "matched" by j's ties to and from some actor m on relation 
g( r is quantified by iJrMkmr = min(Xtkr, x jrnr) + min(xkir, Xmjr). Since k 
and m may not be perfectly regularly equivalent, the quantity ij,Mkmr 
is then weighted by the estimated regular equivalence of k and m from 
the previous iteration (Mkm)' and summed across relations. To locate tho 
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best matching m for i's ties to k we need to find the maximum value of 
ij,Mkm, for m = 1 ,2, . . .  , g. In equation (12.1) the numerator "picks out" 
the best matching counterparts for all actors k and m adjacent to/from 
actors i and j. 

The denominator of equation (12.1) is the maximum possible value of 
the numerator, which would be realized if all of actor i's ties to and from 
its alters and all of actor j's ties to and from its alters could be "matched" 
perfectly, and all of their alters were regularly equivalent. The maximum 
possible match on a relation fJ,', is given by iJ,Maxkm, = max(xiI", Xj"..) + 
max(xki"Xmj,). Since this quantity pertains to the particular m in the 
numerator, we must use the same m in the denominator; this is specified 
by max�. This measure of regular equivalence, used in the routine REGE, 
is summarized in the following equation: 

Mt+l _ Z=f=l max!_l E�l Mkm(ijrMimr +jir Mlmr) 
ij - "g . "R ( M  + M ) '  L.....k=l ma� L...-r=l ijr aXkmr jir aXkmr 

(12.1) 

This quantity ranges from 0 to 1 (if i and j are perfectly regularly 
equivalent). In the computation of Mi}' the equivalence of each pair of 
actors is revised at each iteration, t, in light of the equivalence of other 
pairs of actors in the network. 

In practice one must decide how many iterations of the REGE proce
dure to run before accepting an estimate of pairwise regular equivalence. 
As a guideline, let us examine roughly what this measure "captures" at 
each iteration. Suppose that we have a single directional relation. In 
this case, the first iteration of the REGE algorithm distinguishes between 
four kinds of actors: actors who have both positive indegree and positive 
outdegree, actors who have zero indegree and positive outdegree, actors 
who have zero outdegree and positive indegree, and actors who are iso
lates. Actors in each of these four classes will be equivalent after the first 
iteration. In the second iteration, the procedure distinguishes (roughly) 
among actors in each of the four classes depending on whether or not 
they have ties to and from actors in the other four classes. The third 
iteration takes the chain of connections one step further. Some authors 
have suggested that three iterations of the procedure might be sufficient 
(Faust 1988). However, substantive and theoretical concerus should be 
most important in choosing the number of iterations. 

Although tbe description of this algorithm seems to follow closely 
from the definition of regular equivalence, in practice measuring regular 
equivalence using this algorithm is problematic in many situations. First, 
it is important to note that this equivalence measure counts ties matched 
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between two actors, not the number of alters matched, Also, when 
relations are nondirectional (and there are no isolates), when relations 
are reflexive (i ---+ i for all i), or when each actor is involved in at 
least one reciprocated tie (so that for each i there exists some k such 
that i <-> k), then maximizing this measure finds the maximal regular 
equivalence in which all actors are perfectly regularly equivalent. This 
happens because a reflexive or a reciprocated tie can perfectly "match" 
any other tie, In these cases the maximal regular equivalence is trivial 
and uninteresting, In addition, since the algorithm counts ties matched 
(rather than actors matched), the indegree and outdegree of each actor 
influence the measure of equivalence. Finally, since a given network may 
contain several regular equivalence partitions, other regular equivalences 
may exist in the network that are not found by the above algorithm 
(Doreian 1987; Borgatti 1988; Borgatti and Everett 1989). 

12.4.5 An Example 

Now let us illustrate regular equivalence using the two relations, ad
vice and friendship, for Krackhardt's high-tech managers. We used the 
program REGE in UCINET 3 (MacEvoy and Freeman n.d.) to do 
the calculations (identical values result from the REGE algorithm in 
UCINET IV). We used three iterations, and included both relations and 
their transposes in the calculation. The result is a 21 x 21 symmetric 
matrix of similarities (the Mij'S). This matrix is presented in Figure 12.4. 
Notice that overall these values are all fairly large (they range from 
0.654 to 0.990) but no pair of managers is perfectly regularly equivalent. 
Managers 7 (the president) and 9 are notable in that neither of these 
managers made any friendship choices. Thus, their degree of regular 
equivalence with other managers appears to be somewhat lower than 
the degree of regular equivalence among the other managers. To study 
these equivalences further, we could represent them using either mul
tidimensional scaling or hierarchical clustering. Figure 12.5 shows the 
dendrogram from a complete link hierarchical clustering of the regular 
equivalences. We used the program SYSTAT (Wilkinson 1987) to do the 
hierarchical clustering. 

We can use the dendrogram in Figure 12.5 to define positions con
taining approximately regularly equivalent managers. If we examine the 
dendrogram from top to bottom, we can use a cutoff where there nre 
three clusters. These three clusters define the following positions: 
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1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
1 1  
12 
13 
14 
15 

16 
17 
18 
19 
20 
21 

12 
13 
14 
15 

16 
17 
18 
19 
20 
21 

Network Positions and Roles 

2 3 4 5 6 7 8 9 10 11  

1.000 
0.990 1.000 
0.924 0.952 1.000 
0.986 0.978 0.915 1.000 
0.974 0.963 0.938 0.980 1.000 
0.919 0.904 0.847 0.878 0.863 1.000 

0.890 0.923 0.924 0.873 0.844 0.772 1.000 
0.986 0.978 0.968 0.988 0.977 0.901 0.952 1.000 
0.853 0.906 0.930 0.815 0.814 0.738 0.927 0.922 1.000 
0.857 0.836 0.854 0.920 0.879 0.917 0.822 0.920 0.827 1.000 
0.934 0.948 0.914 0.896 0.896 0.906 0.685 0.919 0.682 0.801 1.000 
0.983 0.982 0.949 0.916 0.963 0.928 0.885 0.980 0.860 0.891 0.957 
0.829 0.766 0.828 0.865 0.841 0.920 0.837 0.867 0.788 0.926 0.859 
0.928 0.945 0.893 0.818 0.865 0.946 0.865 0.913 0.847 0.869 0.951 
0.975 0.960 0.930 0.982 0.981 0.877 0.839 0.966 0.829 0.929 0.903 
0.987 0.979 0.959 0.984 0.980 0.921 0.928 0.991 0.885 0.915 0.934 
0.978 0.972 0.913 0.976 0.957 0.928 0.691 0.960 0.654 0.894 0.943 
0.948 0.929 0.943 0.940 0.958 0.828 0.956 0.964 0.915 0.865 0.780 
0.917 0.963 0.910 0.983 0.980 0.875 0.797 0.971 0.769 0.913 0.906 
0.907 0.921 0.932 0.902 0.897 0.922 0.901 0.941 0.940 0.942 0.851 

0.982 0.976 0.91 1  0.984 0.969 0.898 0.918 0.977 0.841 0.904 0.896 

(continued) 
12 13 14 15 16 17 18 19 20 21 

1.000 
0.903 1.000 
0.954 0.837 1.000 
0.959 0.888 0.877 1.000 

0.982 0.878 0.926 0.973 1.000 
0.974 0.902 0.935 0.956 0.965 1.000 
0.936 0.869 0.871 0.960 0.959 0.856 1.000 
0.964 0.880 0.878 0.984 0.975 0.963 0.943 1.000 
0.884 0.878 0.924 0.926 0.934 0.872 0.911 0.902 1.000 

0.975 0.864 0.904 0.971 0.979 0.970 0.929 0.967 0.904 1.000 

Fig. 12.4. Regular equivalences computed using REGE on advice and 
friendship relations for Krackhardt's high-tech managers 

• iJU(RE)1 : {3, 7, 9, 18} 
• iJU(RE)2 : {6, 10, 13, 20} 
• iJU(RE)3 : {1, 2, 4, 5, 8, 11, 12, 14, 15, 16, 17, 19,21} 

Position iJU(RE)l contains the president (7) and one of the vice presidents 

(18). The remaining vice presidents are in position iJU(RE)3. A more useful 
clustering might use a more stringent cutoff, and have five positions (di-
viding positions iJU(RE)2 and iJU(RE)3 each into two new positions). However, 
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Fig. 12.5. Hierarchical clustering of regular equivalences on advice and 
friendship for Krackhardt's high-tech managers 

the large position, @(RE)3, in the original partition appears to contain 
managers who are quite nearly regularly equivalent, and probably should 
not be split further. 

12.5 "Types" of Ties 

Now, let us consider two definitions of equivalence that focus on the 
types of ties in which each actor is involved. These two approaches, 
Winship and Mandel's local role equivalence and Breiger and Pattison's 
ego algebras, consider associations among relations from the perspectives 
of individual actors (Mandel 1983; Breiger and Pattison 1986; Winship 
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1974, 1988; Winship and Mandel 1983). Recall that the role structure for 
a network consists of the associations among primitive and compound 
relations that hold for the network as a whole. To study individual roles, 
we will consider the associations among relations from the perspectives 
of individual actors. 

To describe these approaches it will be useful to rcturn to Merton's 
(1957) ideas of role relation and role set, which we discussed at the 
beginning of this chapter. We will show how these ideas relate to social 
network properties for actors and pairs of actors, and then show how 
they can be used to define network roles and positions for individual 
actors. 

Merton observed that people occupying a social position (which he 
called a social status) are involved in a number of social roles vis-a-vis 
occupants of other social positions. For a pair of positions, the role 
relation is the collection of ways in which members of that pair of 
positions relate to each other. For a single position, the collection of 
all of the ways in which an occupant of a particular position relates 
to others in other positions is called the role set of the position. In a 
social network, the role set for a position is the collection of types of ties 
between members of a given position and members of other positions. 

To use the idea of a role set to study social networks, we need to 
formalize the idea of types of ties from the perspective of an individual 
actor, and then to evaluate whether pairs or subsets of actors have the 
same types of ties. If actors are involved in the same types of ties, 
then they perform the same network role, and are assigned to the same 
position. The idea is to describe the collection of primitive and compound 
relations in which each individual actor is involved, and to compare these 
collections of relations between actors. 

Recall that social roles involve extended chains of connection among 
people, and thus require compound relations in addition to primitive 
relations. Associations among relations can be studied by focusing on 
the composition of relations. Just as we can study the operation of 
composition of relations for a group, we can also study composition of 
relations from the perspective of individual actors and pairs of actors. 

In general we will refer to the set of relations (including primitive 
and compound relations) as [1'+, and let 14 be the number of primitive 
and compound relations in the set. The collection of relations included 
in the set, and thus the number of relations in it, are different for the 
two approaches that we will discuss below. Each relation (primitive and 
compound) can be presented in a sociomatrix. If there are 14 relations 
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in total, we summarize these relations in a g x g x 4 super-sociomatl'ix. 
Each layer of the super-sociomatrix is the sociomatrix for one of the 
relations. Winship and Mandel (1983) refer to this super-sociomatrix as 

a relation box. The number of relations included in the set, and thus the 
number of layers in the super-sociomatrix varies across methods. 

Now, let us examine a network from two different perspectives, an 
individual actor and a pair of actors, and see how these perspectives 
relate to the ideas of role set and role relation. First, consider the 
collection of ties that exist between a pair of actors, i and j; that is, focus 
on those relations Et, on which xU, = 1. We define the role relation for 
a pair of actors, i, j, as the collection of distinct relations on which i has 
a tie to j. We denote this collection as [l'ij, where [l'ij is a subset of the 
set of primitive and compound relations, [1'+; [l'u � [1'+, and Et, E [l'U 
if xij' = 1. In the super-sociomatrix, information about the role relation 
for actors i and j is contained in the vector Xij = (Xij1. Xij2, · · · ,  xij14)' 

Now consider an individual actor. Each actor has g possible role 
relations (including one with itself). The role set for an actor is the 
collection of all of its distinct role relations. Thus, the role set for actor 
i, which we will denote by [1':, is the collection of all of the distinct 
ways that actor i relates to other actors. The role set can be studied 
by focusing on all of the distinct role relations ; that is, we consider the 
distinct role relations, [l'ij for j = 1,2, . . .  , g. Since role relations are 
coded in the vectors xij in the super-sociomatrix, information about the 
role set of an actor is contained in the collection of distinct vectors xij 
for j = 1 ,2, . . .  , g. For actor i, these vectors are in the ith (horizontal) 
row of the sociomatrix, across the g columns (indexing actors) and the 
4 layers, indexing relations. Winship and Mandel (1983) use the term 
relation plane to refer to this "slice" of the super-sociomatrix containing 
information about an actor's role set. 

12.5.1 An Example 
We now illustrate both role relations and role sets using the hypothetical 
example from Chapter 11. Consider the example of two directional 
relations that we used to illustrate relational algebras in Chapter 1 1. The 
graphs for these two relations are presented in Figure 12.6. Recall that 
the example consisted of two primitive relations, labeled H and L, and 
an additional three compound relations (including the null relation). In 
Figure 12.6 we have labeled the nodes in this graph so that we can keep 
track of the individual actors in this network. 
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d 
CO, 6' 3  

q �' 9  4 5 6  

Fig. 12.6. A hypothetical graph for two relations 

For this example we will consider the set of all distinct primitive and 
compound relations. Let us focus on one actor's "view" of this network. 
Start with actor 1 .  We see that actor 1 has the following ties with the 
other actors (including itself) : 

L • 1 -+ 1: .9"1,[ = {L} 
H HL • 1 -+ 2, 1 -+ 2 :  .9"1,2 = {H,HL} 
H HL • 1 -+ 3, 1 -+ 3 :  .9\3 = {H,HL} 

HH • 1 -+ 4: .9"1,4 = {HH} 
HH • 1 -+ 5 :  .9"[,5 = {HH} 
HH • 1 -+ 6 :  .9"1,6 = {HH} 

This list describes the types of ties that are defined for actor 1. Each type 
is a role relation, and the collection of different role relations constitutes 
actor l 's role set. 

In this example actor 1 has ties to actor 2 on relations H, and H L, so 
the role relation .9"1,2 = {H, H L} characterizes how 1 is tied to 2. Actor 1 
also has ties to actor 3 on H and H L, so these two role relations are the 
same; .9"1,2 = .9"1,3 = {H,HL}. However there is a different role relation 
linking actor 1 to actors 4, 5, and 6; (.9"[,4 � .9"1.5 � .9"[,6 � {HH}) and 
to itself (.9"1,1 = {L}). Thus, actor 1 has three distinct role relations that 
constitute its role set: .9"1,2 = .9"1,3 = {H,HL}, linking 1 to 2 and 3, 
.9" 1,1 = {L) linking 1 to itself, and .9" 1,4 � .9" 1,5 = .9"[,6 = {H H} linking 1 
to 4, 5, and 6. Also, notice that from l's perspective relations H and H L 
are indistinguishable since they tie 1 to exactly the same other actors. 

Now, let us look at the role sets for all actors and the role relations 
for all pairs of actors in this example. Figure 12.7 shows the collection 
of ties for each actor (as ego) to each other actor (as alter) on the five 
distinct primitive and compound relations. For each pair of actors the 
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Role relations: 
Actor 1 :  .9'1,1 � {L}, .9'1� � .9' 1,3 � {H ,HL}, .9'1,4 � .9' 1,5 � .9' 1,6 � {HH} 
Actor 2: .9'2,1 � {HH,0}, .9'�2 � .9'23 � {L}, .9'2,4 � {H}, .9'2,5 � .9'2,6 � {HL} 
Actor 3 :  .9'3,1 � {HH,0}, .9'3,2 � .9'3,3 � {L}, .9'3,4 � {HL}, .9'3,5 � .9'3,6 � {H} 
Actor 4: .9'4,1 � .9' 4' � .9' 4,3 � {H,HL,HH ,0}, .9' 4,4 � .9' 4,5 � .9' 4,6 � {L} 
Actor 5: .9'5,1 � .9'5.2 � .9'5,3 � {H, HL,HH,0}, .9'5,4 � .9'5,5 � .9'5,6 � {L} 
kM 6 �1 � � � � � ���� � � � � � � W 
Role sets: 
.9'i � {{L}, {H,HL},{HH}, {0}} 
.9'; � .9'; � {{L}, {H}, {HL}, {HH,0}} 
.9'; � .v; � .9'; � {{L}, {H,HL,HH,0}}. 

Fig. 12.7. Local roles 

collection is the role relation, and for each actor the coIlection of distinct 
role relations is its role set. 

This example has illustrated the idea of types of ties using the operation 
of composition of relations, and the concepts of role relation for a pair 
of actors and of role set of an actor. We can now use these ideas to 
define and compare individual roles. In the next two sections we present 
two differenl definitions and measures of equivalence for individual roles. 
These two methods, local role equivalence (Winship and Mandel 1983, 
and Mandel 1983) and ego algebras (Breiger and Pattison 1986) focus 
on sets of primitive and compound relations, but they differ in terms of 
which relations are included in the set, how individual roles are defined, 
and how similarity (or dissimilarity) of individual roles is calculated. 

12.6 Local Role Equivalence 

Winship and Mandel (1983) use the role set of each actor to define local 
role equivalence, or simply role equivalence. Two actors are role equivalent 
(LRE) if they have identical role sets. That is, actors i and j are role 
equivalent if the collection of ways in which actor i relates to other actors 
is the same as the collection of ways in which actor j relates to other 
actors. Recall that we denote the role set for actor i by 51';. Actors i 
and j are role equivalent, i Liil j, if and only if 51'; = 5I'j. FormaIly, i 
and j are role equivalent if and only if, for every role relation 5I'ik E 51';, 
there exists a role relation 5I'jI E 5I'j, such that 5I'ik = 5I'jI, and for every 
role relation ffj/ E Yj, there exists a role relation f/ik E $Pi, such that 
5I'jI = 5I'ik. 

Returning to the example in Figure 12.6 and the role sets for these 
six actors, described in Figure 12.7, we see that the role set for actor 2 
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is identical to that for actor 3; 9"2 = 9"; = {{H}, {HL}, {L}, {HH,\i}}. 
Similarly, the role sets for actors 4, 5, and 6 are identical; 9". = 9"; = 
9"� = {{L}, {H,HL,HH,\i}}. No other actor has a role set that is the 
same as actor I's, thus there are three subsets of role equivalent actors. 

12.6.1 Measuring Local Role Dissimilarity 

In actual social network data, it is unlikely that two actors will be per
fectly role equivalent. Just as we have measures of structural equivalence 
and of regular equivalence, we also have a measure of role equivalence. 
The measure of role equivalence between actors focuses on how well 
the role relations in two actors' role sets "match" each other. Following 
Winship and Mandel (1983), the degree of role equivalence between i 
and j depends on the extent to which role relations can be found in j's 
role set to "match" the role relations in i's role set, and vice versa. 

Recall that the role set for an actor, 9"; is the collection of all role 
relations, !f'ij, that this actor has with others actors, including itself. If 
actors i and j are role equivalent, then all of the distinct role relations in 
i's role set must be present in the collection of role relations in j's role 
set, and vice versa The alters, k and 1, for the role relations need not 
be the same, and there need not be the same number of role relations of 
a given type. Since information about the contents of the role relation 
for a pair of actors, say i and k, is coded in the vector X&, one can 
compare role relations 9"" and 9"jl by comparing the vectors Xik and Xj/. 
In the super-sociomatrix, the vector Xik = (x,1d, Xik2, . . .  , Xik14 ) codes the 
presence and absence of ties from actor i to actor k on the lY- relations. 
This vector thus contains information about the role relation for actors 
i and k. Similarly, the vector Xj/ contains information about the role 
relation for actors j and I. To determine whether actors i and j are role 
equivalent, we compare the vectors Xik and xjl, for 1 = 1,2, . . .  , g. If i 
and j are role equivalent, then the entries in the vectors Xik and Xj/ must 
"match." 

For actors i and j to be role equivalent, every binary vector indicating 
a role relation for actor i to some actor k must be identical to some 
vector indicating a role relation for actor j with an actor 1, and vice 
versa. This strategy of matching vectors in a super-sociomatrix is used 
to decide whether identical role relations exist between a pair of actors. 

Now, let us consider one measure of local role equiValence. If we begin 
with R relations, and then include these R relations plus all compound 
relations up to word length p, then the number of relations in the set 
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is: R+ = R + R2 + R3 + . . .  + RP. For this approach, the relevant set 
of relations includes all relations and compound relations up to a given 
word length, and inclndes relations regardless of whether they are distinct 
or not. 

A measure of the dissimilarity of two role relations is the city block 
distance between the vectors that code the role relations in the super
sociomatrix (which is equal to the sum of the absolute value of the 
differences between corresponding entries). The dissimilarity between the 
role relations Y'ik for actors i and k (coded in the vector Xik) and Y'jl for 
actors j and 1 (coded in the vector x jl) is: 

4 
d(Y" b Y'JI) = L IXtk, - Xjl' I .  (12.2) 

r=1 

This sum is a count of the number of relations (out of �) on which i's 
tie to alter k is different from j's tie to alter l. If the sum is 0, then the 
role relations are identical, that is, i relates to k in exactly the same ways 
that j relates to I. If the sum is large, then the role relation between i 
and k is different from the role relation between j and I. The maximum 
possible value of d(Y',k,Y'jl) is �. 

Now, calculating the dissimilarity between two actors' role sets requires 
finding the best "match" for the role relations contained in each actor's 
role set among the role relations contained in the other actor's role set. 
Consider the similarity of the role sets for actors i and j. Since there 
are g actors, each of whom is related to i (we include i's role relation 
with itself), from i's perspective, matches must be found for each of these 
g actors among those actors who are related to j. Similarly, since j is 
related to g actors, matches must be found in i's ties for each of these 
g actors. From i's perspective, the best match for a given role relation, 
Y'ib in j's set of role relations is j's role relation with alter 1 for whom 
equation (12.2) is smallest. From i's perspective this is mini d(Y'ib Y'jl). 

From j's perspective the best match is mink d(Y'jl, Y'ik). 
The degree of role equivalence of actors i and j compares all role 

relations in the role sets of the two actors ; 51'; and Y'j. The measure, 
D(Y';, Y'j), is defined as the sum of the minimum distances from actor 
i's role relations to actor j's role relations, plus the sum of the minimum 
distances from actor j's role relations to actor i's role relations. This 
quantity (Winship and Mandel 1983) IS given by the following equation: 

g g 

DW;, Y'j) = L lljin dWik, Y'j/) + LmlndWjl,Y'ikl. 
k�l I�l 

(12.3) 
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The minimum possible value of D(B';, B'j) is 0, if actors i and j are 
perfectly role equivalent (their role sets contain identical role relations). 
Tbe maximum possible is 2gR+. 

A couple of comments are in order. First, as Winship and Mandel 
(1983) point out, role equivalence is based on the similarity of the vectors 
Xjk and Xj/ for the collection of all primitive and compound relations up 
to a given word length. This is not exactly the same as comparing the two 
actors' role sets, since the role sets contain only the distinct role relations, 
whereas the set of all primitive and compound relations to a given word 
length may contain duplicate role relations. A given actor may have 
identical role relations with more than one actor, and these are counted 
each time they occur, not as a single role relation. In addition, since the 
relevant collection of relations for this approach includes primitive and 
compound relations up to a given word length, it does not necessarily 
include all possible relations that could be formed using the operation of 
composition. Relations that result from words that are longer than the 
specified word length are not included in this calculation. 

An important feature of role equivalence is that it can be generalized 
to measure the role equivalence of actors from different networks, so 
long as the same relations are measured in both networks. For example 
if the relations "is a friend of" and "goes to for help and advice" are 
measured on the managers in two different corporations, then one can 

_ .study · the similarity of actors' roles between the two corporations. A 
slight modification in equation (12.3) to allow for different group sizes 
is all tbat is required. Letting gs be the size of tbe network containing 
actor i, and gAt be the size of the network containing actor j, we can 
revise equation (12.3) as follows: 

g% gA 

D(9';, B'j) = L mjn d(9';k, B'jll + L m!n d(9'j1, B';kl. 
k=l 1=1 

(12.4) 

The approach of Winship and Mandel compares individual roles by 
comparing the actors' role sets. Actors are role equivalent if their role 
sets contain the same collections of role relations. That is, two actors are 
role equivalent if their "repertoires" of ways of relating with alters are 
the same. However, unlike regular equivalence, role equivalence does not 
require that role equivalent actors be tied by the same role relations to 
actors who are themselves role equivalent. Thus, role equivalence is more 
general than regular equivalence (Pattison 1988; White and Reitz 1983). 
Actors may be role equivalent without being regularly equivalent. White 
and Reitz (1983) discuss the relationship between regular equivalence 
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2 3 4 5 6 

1 0 3 3 1 1  1 1  1 1  
2 3 0 0 5 5 5 
3 3 0 0 5 5 5 
4 1 1  5 5 0 0 0 
5 1 !  5 5 0 0 0 
6 1 !  5 5 0 0 0 

Fig. 12.8. Role equivalences for hypothetical example of two relations 

and local role equivalence. They note that local role equivalence is 
comparable to using the collection of relations as input to the REGE 
algorithm and calculating regular equivalence for a single iteration. 

12.6.2 Examples 

We will illustrate local role equivalence using both the example of two 
hypothetical relations in Figure 12.6 and the relations of advice and 
friendship for Krackhardt's high-tech managers. In both examples we 
used the routine WINMAN in the program ROLE (Breiger 1986). 

First consider the relations H and L for the example in Figure 12.6. For 
this analysis we used all simple and compound relations up to length two 
and excluded transposes. Thus, there 14 = 2+ 2' = 6 relations in total in 
this analysis (recall that identical relations are included so there are more 
than the five distinct relations presented in Chapter 11). The measures of 
local role equiValence for pairs of actors are given in Figure 12.8. Since 
values of 0 on this measure indicate perfect role equivalence, there are 
three subsets of role equivalent (LRE) actors: 

• r2(LRE)l : { I }  
• r2(LRE)' : {2, 3} 
• r2(LRE)3 : {4, 5, 6} 

Now, let us consider local role equivalence for the advice and friend
ship relations for Krackhardt's high-tech managers. We used the program 
ROLE (Breiger 1986) and the subroutine WINMAN to do these calcu
lations. In this example we included words up to length three but 
did not include the transposes of the two relations. Thus, there are 
14 = 2 + 2' + 23 = 14 primitive and compound relations. The distances 
measuring the local role equivalence are given in Fignre 12.9. 

We clustered the distances shown in Figure 12.9 using complete link 
hierarchical clustering (using the program SYSTAT, Wilkinson 1987). 
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2 3 4 5 6 7 8 9 10 1 1  

1 0 
2 15 0 
3 31 30 0 
4 23 14 13 0 
5 29 42 12 27 0 
G 45 37 31 23 45 0 
7 36 29 35 23 49 21 0 
8 22 12 20 5 33 19 23 0 
9 35 41 23 25 16 46 46 30 0 

10 45 49 42 43 52 27 31 39 59 0 
11 27 22 23 18  37 19 32 13 41 29 0 
12 33 24 40 25 42 42 36 24 32 61 35 
13 51 65 34 43 42 44 41  41 46 41 46 
14 32 26 19  20 33 26 31 18 36 36 1 1  
15 26 37 18  30 11 43 37 34 18 39 35 
16 17 16 28 16 31 28 23 12 30 30 19 
17 24 17  30 20 36 33 27 19 30 55 29 
18 24 14 36 22 50 38 29 20 44 50 31 
19 23 36 16  26 9 44 44 30 17 47 30 
20 42 44 18  25 37 24 26 23 41 29 23 
21 18  7 37 24 47 35 22 19 44 49 28 

(continued) 
12 13 14 15 16 17 18 19 20 21 

12 0 
13 54 0 
14 40 41 0 
15  41  35  29 0 
16 25 39 26 27 0 
17 13 46 25 34 22 0 
18  1 1  56 31 36 21 19 0 
19 36 37 25 7 27 31 36 0 
20 41 30 28 37 28 38 44 36 0 
21 32 62 28 37 19 25 16 40 43 0 

Fig. 12.9. Role equivalences for advice and friendship relations for 
Krackhardt's high-tech managers 

The dendrogram for this clustering is in Figure 12.10. If we consider 
the dendrogram for this example, and the level at which there are 
five clusters, we have the following five subsets of approximately role 
equivalent managers : 

• &8(LRE)l : { l 3} 

• iJII(LRE)2 : {6,7, IO, 20} 

• iJII(LRE)3 : {12, 17, 18} 
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Fig. 12.10. Hierarchical clustering of role equivalences on advice and 
friendship relations for Krackhardt's high-tech managers 

• iJO(LRE)4 : {1,2,4, 8, 11, 14, 16, 21} 

• iJO(LRE)5 : {3, 5, 9, 15, 19} 

iJO(LRE)4 contains all of the members of department 4 (1, 2, 4, 16) and 
three of the four vice presidents (2, 14, 21). Position iJO(LRE)5 contains 

only managers from department 2. 
A related approach for stndying individual roles is ego algebras 

(Breiger and Pattison 1986). We discuss this approach next. 



494 Network Positions and Roles 

12.7 @Ego Algebras 

Breiger and Pattison (1986) present a comprehensive scheme for modeling 
individual actors' roles and group role structure simultaneously. Their 
approach, which they refer to as ego algebras, builds on the algebra of 
relational structures. Pattison (1993) elaborates on these ideas in the 
context of algebraic models. Much of the mathematics of this approach 
is related to the mathematics used to model role structures, and was 
presented in Chapter 1 1 .  We recommend that the reader review the 
discussion in Chapter 11 before proceeding with this section. 

The scheme presented by Breiger and Pattison has two major parts: the 
first describes the perspectives of the individual actors in order to study 
which actors have similar roles or positions in a network, and the second 
summarizes the relational features that are common to all members of the 
network. Since our focus in this chapter is the equivalence of individual 
actors, we will concentrate on the first part of Breiger and Pattison's 
approach. The second part of their approach has much in common with 
relational algebras though in general the results will be different. 

The idea of ego algebras is that an individual's view of the network 
is based, in part, on which sets of relations "go together" by always 
occurring together for that actor. Now, we will use compound relations 
and the identity of relations from the perspectives of individual actors. 
We will first define composition and identity of relations for individual 
actors, and then show how to represent individual (or ego) algebras in 
a right multiplication table. Following that we describe how to compare 
ego algebras for different actors. 

Recall that a compound relation is the combination of two relations, 
for example "a friend of a friend." The operation of composition of 
relations from the perspective of an individual actor focuses on ties 
emanating from the actor. From actor i's perspective, the compound 
relation ST is defined as i(ST)j if there exists some actor k such that iSk 
and kT j. We can study composition of relations from the perspective of 
individual actors using Boolean matrix multiplication. Consider the ties 
from actor i to other actors on the compound relation ST. In matrix 
terms, these ties are the Boolean product of the 1 x g vector of ties 
emanating from actor i on relation S times the g x g sociomatrix for 
relation T. The result is a 1 x g vector of ties from actor i on the 
compound relation ST. 

Compound relations and matrix multiplication for an individual actor 
can be represented in a right multiplication table. This table differs from 
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the multiplication table for a network in that the elements in the ,·OW, 

of the table are vectors of ties from the actor on each relation, and the 
elements in the columns are the sociomatrices for the primitive relations. 
Such a multiplication table is called a right multiplication table. We 
will present examples of right multiplication tables for individual actors 
below. 

Now, consider whether two relations are identical. For a whole group, 
two relations are identical if they have ties between exactly the same 
pairs of actors. For example the relations "is a friend of" and "goes 
to for help and advice" are identical in some network if whenever a 
person nominates another as a friend, they also name the other person 
as someone they go to for help and advice, and vice versa. In that 
case, the two relations are "globally" identical; from the perspective 
of the whole group, and from the perspective of any individual in the 
group, the relations tie exactly the same other people. In contrast, from 
an actor's ego-centered view, two relations are identical if ties on one 
relation tie this actor to exactly the same other actors as do ties on a 
second relation. Formally, from the perspective of actor i, relations !Z", 

and !Z", are identical if i � j if and only if i � j and j � i if and . q; 
only if j --4 i for j = 1, 2, . . . , g. Two relations may be identical from the 
perspective of an individual actor without being identical for the entire 
group. We can use these ideas to study individual roles. 

Suppose that we have a multirelational network, and from it con
struct the semigroup, Y, containing the distinct primitive relations plus 
all possible distinct compound relations formed using the operation of 
composition. As usual, we let Rs be the total number of relations in 
Y. Since the semigroup is closed under the operation of composition, 
it contains all of the possible ways that actors in the network can be 
tied by the primitive relations and the compound relations that can be 
constructed from them. 

Although we could form an infinite number of compound relations 
from the set of primitive relations, in fact the number of distinct relations 
that can be formed is finite. Some relations tie exactly the same pairs 
of actors, and are thus (globally) identical. The semigroup thus defines 
a partition of the set of all possible relations into a collection of subsets 
of identical relations. Now, let us take this idea of partitioning a set by 
identifying identical elements, and use it to analyze individual roles. 

Consider an individual actor, say i, and its perspective on the relations 
in the semigroup Y. From i's perspective some relations tie i to exactly 
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the same other actors. To actor � these relations are identical. Thus, 
from actor i's perspective the elements of !I' can be partitioned into 
classes such that all relations that are identical from its perspective are 
assigned to the same class. Let us denote the partition of !I', based on 
the identity of relations from the perspective of actor i, by !I',. We let Rs, 
be the number of elements in 9'j (the number of distinct relations from 
i's perspective), where Rs, ,.; Rs. 

12.7.1 Definition of Ego Algebras 

The ego algebra for actor i consists of a partitIOn of relations in !I' 
into a set of equivalence classes, !l'i, such that relations that are iden
tical from i's perspective are assigned to the same equivalence class, 
and the right multiplication table describing composition of relations 
from i's perspective (Breiger and Pattison 1986). An ego algebra pre
serves the operation of composition for right multiplication. Composi
tion of relations is defined for ties emanating from an actor (Pattison 
1993). 

To illustrate, consider the two hypothetical relations H and L in 
Figure 12.6. As we saw in Chapter 11, the semigroup constructed from 
these relations contains Rs = 5 distinct images, including the null image. 
Thus, !I' = {H,L, HL,HH,f/J}, and is also represented by a multiplication 
table, showing the composition of relations (see Figure 11 .3). From the 
perspective of the whole group there are five distinct ways that actors 
can be related to each other. 

Now, consider the perspectives of individual actors in this example. 
For each actor we present both the equations among relations (the 
subsets of relations that are equivalent for that actor) and the right 
multiplication table expressing the composition of relations from that 
actor's perspective. Figure 12.11 presents both the equations among 
relations and the right multiplication tables for the six actors. 

For each actor, relations within the same subset are indistinguishable. 
For the entire group there are five elements in the semigroup, Rs = 

5, however, in this example, individual actors "see" fewer distinctions 
among primitive and compound relations: Rs, = 4, Rs, = R", = 4, and 
Rs, = Rs, = Rs, = 2. Notice that actors 2 and 3 have identical equations 
among relations and identical right multiplication tables, as do actors 4, 
5, and 6. 
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actor 1 :  (H, HL}{L}{HH}{0) 

l = H  2 = L  

1 H 3 1 
2 L 1 2 
3 HH 4 3 
4 0 4 4 

actors 2 and 3: {H}{L}{HL){HH,0) 

l = H  2 = L  

1 H 4 3 
2 L 3 2 
3 HL 4 3 
4 HH 4 4 

actors 4, 5, and 6: {L}{H,HL,HH,0} 

2 = L  

1 
2 

Fig. 12.11. Ego algebras for the example of two relations 

12.7.2 Equivalence of Ego Algebras 

We can now define ego algebra equivalence. Two actors have identical 
ego algebras, and are thus ego-algebraically equivalent (EA), if the equiv
alences among relations and the composition of relations are the same 
from each actor's perspective. Formally, actors i and j are equivalent, 

i � j, if 5"" the partition of 5" for actor i, is identical to 5"j, the partition 
of 5" for actor j, and their right multiplication tables are identical. 

We turn now to measuring the similarity of ego algebras. 

11.7.3 Measuring Ego Algebra Similarity 

To measure the similarity of ego algebras we use the same approach that 
we used to compare the role algebras for two groups. Since each ego 
algebra imposes a partition on the set of relations, 5", the measure of ego 
algebra similarity for actors i and j compares the partitions 5", and 5"j 
defined by the two ego algebras. We can adapt equations 1 1.1 and 11.2 
from Chapter 1 1  to measure the similarity of two ego algebras (Breiger 
and Pattison 1986, Boorman and White 1976). For a more detailed 
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discussion of local role algebras and comparison of role algebras see 
Pattison (1993). 

Recall that the joint homomorphic reduction of two role structures 
is the most refined role structure that is a homomorphic reduction of 
both. Breiger and Pattison (1986) compare ego algebras by the joint right 
homomorphism of two ego algebras (see also, Pallison 1993). We use the 
right homomorphic reduction since ego algebras are defined for right 
multiplication. As with the joint homomorphic reduction of two role 
structures, the joint right homomorphic reduction of two ego algebras is 
a simplification in which equations in either ego algebra are included in 
the joint homomorphic reduction of the two (Breiger and Pattison 1986). 

We will denote the joint right homomorphic reduction of the ego alge
bras for actors i and j by $lifT. The joint right homomorphic reduction 
of two ego algebras is that algebra which is a right homomorphic image 
of both ego algebras (Pattison, personal communication). The joint right 
homomorphic reduction, 2lffT, specifies two mappings: 1j)i : !/i ----r i2[fT 
for actor i, and 'Pj : Sl'j --> $lifT for actor j. Each of these mappings is a 
right homomorphism and preserves the operation of right multiplication. 
Each mapping defines a partition of the relations in the ego algebra 
into classes so that within a class relations are equivalent for either one 
actor or the other. The joint right homomorphic reduction is (usually) a 
coarser partition of the set SI', since it equates relations that are identical 
from the perspective of either individual actor. A measure of the degree 
of equivalence of two ego algebras is a measure of how much "coarser" 
the partition described by their joint right homomorphic reduction is, 
compared to the partitions of the two ego algebras. 

Let Ry, and RYj be the number of equivalence classes in SI', and Sl'j, 
respectively, and let RIJ'T be the number of classes in $lIJ'T, the joint 
right homomorphic reduction of SI', and Sl'j. If RIJ'T < Ry" then some 
elements in SI', will be in the same class in $l!tT We will let c� be the 
number of elements from SI', that are in the kth class of $lIJ'T, where 
k = 1 ,2, . . . , RIJ'T. The coarseness of $lIJ'T compared to ego algebra SI', 
is calculated as: 

(12.5) 

We also have h($lIJI?) the coarseness of $lIJ'T compared to ego algebra Sl'j. 
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2 3 4 5 6 

1 0.00 0.33 0.33 0.50 0.50 0.50 
2 0.33 0.00 0.00 0.50 0.50 0.50 
3 0.33 0.00 0.00 0.50 0.50 0.50 
4 0.50 0.50 0.50 0.00 0.00 0.00 
5 0.50 0.50 0.50 0.00 0.00 0.00 
6 0.50 0.50 0.50 0.00 0.00 0.00 

Fig. 12.12. Distances between ego algebras for a hypothotical cXtllllplc 
of two relations 

We can then measure the distance between two ego algebras by summing 
the distance each is from their joint right homomorphic reduction. 'fhe 
distance between the ego algebras for actors i and j, using the meaSUl'e 
0, is : 

( 1 2.<i) 
This distance ranges from 0 (when Y', and Y'j are identical), to 2 (whcli 
the only joint homomorphic reduction is trivial and equates all compound 
relations). 

12.7.4 Examples 

We will illustrate ego algebras using both the example of two hypothetical 
relations in Figure 12.6 and the relations of advice and friendship fbI' 
Krackhardt's high-tech managers. In both examples we used the routine 
JNTHOM in the program ROLE (Breiger 1986). 

First consider the example ego algebras for the two relations fl and 
L in Figure 12.6. The distances between the ego algebras for the six 
actors (presented in Figure 12.11)  are given in Figure 12.12. As We 
noted above, for this example there are three subsets of actors who al'c 
ego-algebraically equivalent (EA). These subsets are : 

• @J(EA)! : {I} 

• @J(EA)2 : {2, 3} 
• @J(EA)3 : {4, 5, 6} 

Now, consider the relations of advice and friendship for Krackhal'dt's 
high-tech managers. The distances between the ego algebras for the 
twenty-one managers in this network are presented in Figure 12.13. We 
can represent these distances between ego algebras using complete link 
hierarchical clustering (we used the program SYSTAT; Wilkinson 1987). 
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2 3 4 5 6 7 8 9 10 11 

1 0.000 
2 0.162 0.000 
3 0.486 0.571 0.000 
4 OAOO 0.876 0.209 0.000 
5 0.200 0_643 0.286 0.200 0.000 
6 0.617 0.421 0.702 0.617 0.417 0.000 
7 1.000 1.048 1.048 1.000 0.833 1.111 0.000 
8 0.557 0.643 0.357 0.557 0.357 0.774 1.083 0.000 
9 1.000 1.048 1.048 1.000 0.833 1.111 0.000 1.083 0.000 

10 0.300 0.386 0.143 0.300 0.100 0.517 0.933 0.214 0.933 0.000 
11 0.876 0.286 0.952 0.876 0.643 0.421 1.048 1.012 1.048 0.776 0.000 
12 0.617 0.421 0.702 0.617 0.417 0.056 1.111 0.774 1.111 0.517 0.421 
13 0.133 0.209 0.209 0.400 0.200 0.344 1.000 0.281 1.000 0.067 0.486 
14 0.071 0.119 0.155 0.557 0.357 0.492 1.083 0.429 1.083 0.214 0.357 
1 5  0.567 0.286 0.286 0.567 0.333 0.750 0.833 0.357 0.833 0.100 0.643 
16 0.146 0.127 0.182 0.449 0.509 0.439 1.151 0.596 1.151 0.382 0.320 
17 0.391 0.095 0.571 0.876 0.643 0.421 1.048 0.643 1.048 0.386 0.095 
18 0.311 0.476 0.133 0.400 0.467 0.611 1.133 0.548 1.133 0.333 0.752 
19 0.300 0.143 0.386 0.700 0.467 0.517 0.933 0.457 0.933 0.200 0.386 
20 0.486 0.571 0.000 0.209 0.286 0.702 1.048 0.357 1.048 0.143 0.952 
21 0.133 0.391 0.209 0.133 0.200 0.617 1.000 0.557 1.000 0.300 0.876 

(continued) 
12 13 14 15 16 17 18 19 20 21 

12 0.000 
13 0.344 0.000 
14 0.238 0.107 0.000 
15 0.750 0.200 0.357 0.000 
16 0.211 0.273 0.109 0.509 0.000 
17 0.214 0.209 0.155 0.286 0.182 0.000 
18  0.611 0.222 0.169 0.467 0.077 0.476 0.000 
19 0.517 0.067 0.214 0.100 0.382 0.143 0.333 0.000 
20 0.702 0.209 0.155 0.286 0.182 0.571 0.133 0.386 0.000 
21 0.617 0.133 0.209 0.567 0.200 0.391 0.156 0.300 0.209 0.000 

Fig. 12.13. Distances between ego algebras computed on advice and 
friendship relations for Krackhardt's high-tech managers 

Figure 12.14 presents the dendrogram for the hierarchical clustering. 
Considering this figure, we could partition the twenty-one managers into 
four positions of approximately ego-algebraically equivalent positions: 

• al'(EA)l : {5,8, 10, 13, 15, 19} 
• al'(EA)2 : {1, 3,4, 14, 16, 18, 20, 21} 
• al'(EA)3 : {2,6, 1 1, 12, 17} 
• al'(EA)4 : {7, 9} 

Position al'EA(l) contains four of the eight members of department 2 (5, 
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Fig. 12.14. Hierarchical clustering of distances between ego algebras on 
the two relations for Krackhardt's high-tech managers 

13, 15, and 19). Position PJlEA(3) contains three of the five members of 
department 1 (6, 12, and 17). Position PJlEA(2) contains three of the four 
members of department 4 (1, 4, and 16), along with three of the four vice 
presidents (14, 18, and 21). Notice that there are two pairs of managers 
(managers 3 and 20, and managers 7 and 9) who are perfectly equivalent 
using the ego algebra definition. 

Ego algebras can be used for single or multirelational networks, and 
for relations that are directional or nondirectional. One of the strengths 
of this approach is that ego algebras can be compared across networks, if 
the same relations are measured on both groups. Ego algebras have been 
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used by Breiger and Pattison (1986) to study the marriage and business 
relations for Padgett's Florentine families, and by Faust (1988) to study 
Sampson's (1968) monastery network 

12.8 Discussion 

In this section we discuss the relationships among the approaches de
scribed in this chapter. Pattison (1988) has an excellent summary of some 
of the approaches, and the relationships among them, 

All of the methods that we have described in this chapter propose 
definitions under which actors in a network are to be considered equiv
alent. All approaches, except structural equivalence, are motivated, in 
part, by the idea of social position as a collection of actors all of whom 
are similarly involved in ties with other actors or sets of actors, The 
methods differ in terms of which specific properties are relevant to the 
equivalence. One of the most important differences is the generality or 
abstractness of the concepts. 

Perhaps the most important distinction among the equivalence defi
nitions presented here is their relative restrictiveness. By restrictive we 
mean that if one equivalence definition is more restrictive than another, 
then any actors who are equivalent by the first definition are also equiv
alent by the second definition, though actors who are equivalent by the 
second may not be equivalent by the first. Usually the more restrictive 
equivalence definition contains conditions that are not required by the 
less restrictive definition. For example, two actors who are structurally 
equivalent (have identical ties to and from all other actors) are also 
regularly equivalent (have identical ties to/from equivalent actors). 

The five definitions can be ordered from most restrictive to least 
restrictive as follows : 

• Structural equivalence 
• Automorphic or isomorphic equivalence 

• Regular equivalence 

• Local role equivalence 

• Ego algebra equivalence 

Because the more abstract approaches are newer, computer programs 
for them are less widely available (though, there are individually available 
computer routines, and UCINET IV includes many of these methods). 
As a consequence, there are also fewer examples of applications of these 
methods to substantive problems. 
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Dyads 

We now begin the second portion of the book, which, as mentioned in 
Chapter 1, focuses on the statistical analysis of social network data. Most 
of the methods discussed in Chapters 13 through 16 (Parts V and VI) 
are based on stochastic assumptions about the relational data contained 
in a social network data set. There are a variety of such stochastic 
assumptions, and we will introduce and describe each in depth as they 
arise in the next four chapters. 

The statistical methods that we will present in the next six chapters 
are organized into two parts (Parts V and VI) to separate earlier models 
for subgraphs from more recent models for entire graphs and digraphs. 
The statistical ideas, methods, and concepts presented in these chapters 
are quite diverse, and were developed over a period of forty years. We 
will begin with Part V - Dyadic and Triadic Methods for the analysis 
of social network data. Statistical analyses of network data can be 
quite important, and can nicely complement analyses based on methods 
described in the first portion of the book. 

These methods are different from the structural analyses discussed 
earlier in the book, where a theory was translated into a set of graph 
theoretic statements about a network. These statements were studied 
in a descriptive or deterministic manner. Since the methods described 
in' Chapters 5-12 were predominantly descriptive or even exploratory, 
we did not need distributional assumptions about particular structural 
properties. 

To test statistically propositions about a theory, one needs a proba
bilistic viewpoint ; that is, one should use models based on probability 
distributions. Such models allow the data to show some error, or lack 
of fit to structural theories, but still support the theories under stUdy. 
Adoption of this probabilistic approach implies that we can allow 1\ 
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given social network to exhibit, say, a "little bit" of intransitivity, and 
still be able to conclude that, overall, the network adheres to a theory 
of transitive triads. We can ask how much intransitivity a network can 
have before concluding that it is not really a transitive network. 

Deterministic models can be contrasted with the statistical models dis
cussed in Parts V and VI. Statistical models, based on some probabilistic 
assumptions, can cope easily with some lack-of-fit of a model to data; 
deterministic models cannot be relaxed in this way. Deterministic models 
usually force the aspect of social structure of interest (such as reciprocity, 
or complete transitivity or structural equivalence) to be present in the 
model, while statistical models assume these aspects to be absent. 

13.1 An Overview 

The statistical approach to network analysis has been in use since the 
beginnings of social network analysis. However, it was not widely used 
until the research of Holland and Leinhardt (1970, 1971). This research 
relies on empirical verification of probabilistic versions of deterministic 
network structural theories, which use graph theory to make predictions 
about network structure (for example, see Cartwright and Harary 1956; 
Davis 1967; and Chapter 6). We will demonstrate several of these in 
Chapters 13-15. This probabilistic approach to theory testing should 
be a useful data analytic strategy; indeed, some existing models can be 
interpreted with a probabilistic view. For example, as blockmodelers 
have noted (and as we discuss in Chapters 9 and to), perfect or fat fits of 
blockmodels are indeed quite rare ; consequently, a-density fits are usually 
used, with the understanding that some "1"'s are allowed in zeroblocks, 
and some "O"'s in oneblocks, up to some predetermined threshold. The 
use of this threshold is analogous to the use of a probability governing 
whether or not a given theory is supported by a significance test (as we 
discuss in Chapter 16). 

Historically, the methods designed for subgraph analyses have been 
referred to as "local" methods. Local methods look at subgraphs em
bedded within the graph for the entire network. These methods look 
at subsets of the actors in A-r separately, rather than the properties of 
the entire collection of g actors simultaneously. Global analyses, by 
comparison, focus on properties of complete sets or graphs. 

In brief, local structure is usually defined to be the regularities in a 
social system of actors and relations that can be studied at the level of 
subgraphs, rather than the entire graph or directed graph itself. The basic 
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unit in these local analyses remains the subgraph, a smaller (usually, quite 
a bit smaller) unit than the entire directed graph or network. Another 
definition of "local" focuses on the level of the network for which 
substantive theories are proposed. A property, such as reciprocity as 
discussed here, may be a function of just a pair of actors ; however, 
examining these two actors within the contcxt of the entire network is 
required for the full study of the property. Such properties are local in 
scope since their level is the subgraph. 

In Part Y, the level of analysis is local; dyads (subgraphs of size 
2 consisting of a pair of actors and all ties between them) and triads 
(subgraphs of size 3 consisting of a triple of actors and all ties among 
them). These local structures give a local view of the entire network. The 
next two chapters describe dyadic and triadic analyses. Dyadic methods 
operate at the analytic level of the dyad, and triadic methods, at the 
analytic level of the triad. 

A very important theoretical idea, reciprocity, was studied and evalu
ated from the beginnings of social network analysis in the 1930's. The 
question, first asked about relations such as affect, is, How strong is the 
tendency for one actor to "choose" another, if the second actor chooses 
the first? Reciprocity, and the many indices of mutuality that it gave 
rise to, are important topics in Chapter 13. A second important theoret
ical concept, structural balance, was postulated at the beginning of the 
forty-year period of research on subgraph methods. We have described 
this concept, tracing its history and the mathematical notions (primarily 
centered around triads) that it spawned, in Chapter 6. Balance the
ory, and its successors (particularly transitivity)/are important theoretical 
motivators for the methods for triadic analysis, described in Chapter 14. 

We begin our study of statistical methods for social network data 
at the simplest level of analysis unique to such data - the dyad. We 
will start this chapter with a quick review of graph theoretic notation 
(from Chapter 3) and the most relevant concepts from graph theory 
(from Chapter 4). We will then introduce the most widely used subgraph 
analytic level - the dyad. We give one classic and one recent measure 
for the degree of reciprocity in a network, and illustrate with several 
examples. 

We will then tum our attention to the collection of dyads that exist 
among a set of actors and the relations defined on the pairs of actors. 
An important part of this chapter is a discussion of the dyad census, the 
counts of the different types of dyads that can occur, the expected value 
of the numbers of these different types of dyads (assuming that specific 
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distributions are appropriate), and tests for hypotheses about the number 
of choices and the number of mutual choices on a specific relation. 

Much of this chapter is devoted to a discussion of random directed 
graph probability distributions. These distributions give us the stochastic 
mechanism that allows us to study subgraphs statistically. Statistical 
methods usually begin with an assumption that the data under investiga
tion are realizations or observations on a collection of random variables. 
The first question that an analyst must answer is: "What is the stochastic 
nature of the random variables?" In other words: "What distribution 
do my random variables follow?" These distributions allow a researcher 
to test hypotheses about various properties of a directed graph under 
study, such as the number of mutual dyads (pairs of actors in which ni 
"chooses" nj and nj "chooses" n;). These properties will be described at 
length in this chapter. 

Graph theorists and network probabilists have written much about 
random graphs. We will review some of this literature and present a set 
of distributions that have proven to be most useful to social network 
researchers. We simultaneously show how these rather mathematical 
devices can be used to aid network analysts. 

13.2 An Example and Some Definitions 

The primary question that we will address in this chapter is, How as
sociated are the two choices that can be present in a typical dyad? 
Specifically, how true is it that actor i's "choice" of actor j is always 
reciprocated by actor j's "choice" of actor i? That is, how frequently do 
mutual relationships arise in a social network? Further, if the ith actor 
does not "choose" the jth actor, then is this non-choice reciprocated? 
That is, how frequently do null relationships arise? The answers to these 
(and related) questions depend on the states of the dyads, or pairs of 
actors and the relational ties that exist between the two actors in the 
pair. 

Consider Krackhardt's high-tech managers. The twenty-one managers 
were asked who, among the other manager� are your "friends." The 
managers were also asked who they went to for advice on the job. We 
will contrast these two relations in this chapter. The sociomatrices under 
study are binary and of size 21 x 21. Referring to our example, if the ith 
manager is a friend of the jth manager, then how likely is it that the jth 
manager is a friend of the ith manager? 
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We assume that there is one set of actors or nodes, .iV, and one set 
of arcs, Sf, connecting these actors to each other. We will not consider 
valued relations, or even signed relations in this chapter, primllfily be
cause all of the previous research in social network analysis on dyads has 
focused only on dichotomous relations. We can utilize our sociometric 
notation and define a sociomatrix X to represent the data. 

We will use the symbols "i -> j" as shorthand for i "chooses" or 
"relates to" j on the relation in question - that is, the arc from i to 
j is contained in the set Sf. We should note that we will always use 
capital letters to represent graph properties when these properties are not 
assumed to be random variables. If we do introduce a stochastic mecha
nism, then lowercase letters will refer to realizations of the properties, or 
possible states or values that can arise, and uppercase will refer to the 
random variables themselves. For example, we will use the symbol x to 
denote a possible value of the random variable X - either 0 or 1. Thus, 
the random sociomatrix X contains g(g - 1) entries, all O's and l's. 

From the sociomatrix X, one can consider many interesting properties. 
All of these properties were introduced in Chapter 4; here, we will 
very quickly review them so that they can be used in the probability 
distributions to be described in this chapter. 

First, consider the number of arcs in a directed graph. We define L to 
be the number of arcs (the number of I's in the sociomatrix associated 
with the directed graph). L can take on any integer value from 0 
(implying a digraph completely devoid of arcs, termed an empty digraph) 
to g(g - 1) (implying that everyone relates to everyone else, or that the 
digraph is complete). The larger that L is, for a given g, the denser 
the network is. In Chapter 4, we defined the density of a relation as 
L! g(g - 1), the fraction of the number of possible arcs that are present 
in the directed graph. 

One can take this total, L, and ask how many of these ares originate or 
end with each of the individual actors. The row totals of the sociomatrix 
are the Dutdegrees of the nodes. The outdegrees take on integer values 
between 0 and g - 1 and sum to L. The column totals of the sociomatrix 
give the indegrees. The indegreee can be any integer between 0 and g - 1, 
and sum to L. 

Krackhardt's high-tech managers have g = 21 actors in the set .iV, and 
(',') = 210 dyads. An introductory analysis of the sociomatrix shows that 
there are 102 arcs in the digraph (simply counting the number of l's in 
the sociomatrix). This implies that there are 21(20) - 102 = 3 1 8  O's, since 
there can be as many as 21(20)=420 arcs in a digraph with 21 nodes. 
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The density of this relation for this set of actors is 102/420 = 0.243, 
implying that the digraph is slightly less than a quarter-full with arcs. 
The outdegrees and indegrees of the nodes were discussed in Chapter 
4 - these quantities, along with some other digraph information, are 
shown in Table 4. 1. 

13.3 Dyads 

In a study of dyadic relationships, the most important aspect of a social 
network is the collection of dyads. A dyad is an unordered pair of actors 
and the arcs that exist between the two actors in the pair. The dyad 
consisting of actors i and j will be denoted by Dij = (Xij, Xji), for i oF j. 
Dyads are defined for unordered pairs, where the first actor index is 
less than the second, so that i < j. Every pair of actors is then just 
considered once. There are exactly (n= g(g - 1)/2 dyads. However, 
there are g(g - 1) ordered pairs of actors. 

Let us now consider the possible states or isomorphism classes (see 
Chapter 4) for dyads. There are three states. A mutual relationship 
between node i and node j exists when i -; j and j -; i in the dyad. We 
will denote this mutual state by i ..... j. A mutual relationship is apparent 
in a sociomatrix when both the (i,j) and (j,i) cells (located symmetrically 
about the diagonal of X) are unity; that is, Xii = 1 and Xii = 1, so that 
the dyad Dij = (1, 1). Directional relations yield mutual dyads only if 
both actors in a pair of actors "choose" the other on the relation. 

The second state is the asymmetric dyad, which can occur in two ways. 
Either i -; j or j -; i, but not both. Specifically, Di,i = (1,0) or (0, 1). 
If one looks at two cells in a sociomatrix X, Xij and Xii, symmetrically 
located off the diagonal, then one and only one of these cells will contain 
a 1 .  Note that there are two kinds of asymmetric dyads - (1) i -; j;  and 
(2) i <- j. But since the labeling in the sociomatrix is arbitrary, we really 
cannot distinguish the first kind from the second. All we can see is that 
the relationship is not reciprocated. That is the important thing to note 
about asymmetric dyads - the single choice is not reciprocated. 

Some theorists (primarily early social psychologists such as Heider 
1946, 1958, but also Price, Harburg, and Newcomb 1966; Rodrigues 
1967; Gerard and Fleischer 1967; Whitney 1971; Miller and Geller 1972) 
view such asymmetric dyads as intermediate states of relationships that 
are striving for a more stable equilibrium of reciprocity or mutuality, or 
complete nullity (devoid of either arc). This interpretation is of course 
conditional on the relations under study, and is most appropriate when 
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• • D'j = (0.0) Null Dyad 
n, nj 

• • •  Dij = (1.0) Asymmetric Dyad 
", nj 

. !  • Dij = (0,1) Asymmetric Dyad n, nj 

.' • •  Dij = (1 , 1)  Mutllal Dyad 
", nj 

Fig. 13.1. The three dyadic isomorphism classes or states 

the actors are individuals and the relations are positive affect. Other, 
more recent research views asymmetric dyads not as intermediate states, 
but of direct interest, since such asymmetries indicate unequal resources 
exist within the dyad (see Wellman 1988a). 

This brings us to the third type of dyad, the null dyad, in which neither 
actor has a tie to the other. By default, a dyad that is not asymmetric or 
mutual must be null. The (i, j) and (j, i) symmetrically placed off-diagonal 
cells of X are both 0;  that is, Xu = Xj, = 0, implying that DU = (0,0). 
These types of dyads are pictured in Figure 13.1. 

We should note that in the latter sections of this chapter, the entries 
in the sociomatrix X will be viewed as random variables. This will imply 
that our (D dyads are also random variables. If the entries in X are 
binary (that is, if the relation under study is dichotomous), the dyads have 
associated with them the bivariate random quantity (XU, Xj,) specifying 
the value of the relational variahles linking i to j and vice versa. This pair 
of binary random variables has four states or realizations, depending on 
the arcs that are present or absent in the dyad, Dij• Even though there 
are four states, there are just three isomorphism classes for a dyad. 

Lastly, we should also note that the assumption that the relation 
under study is dichotomous will be relaxed in Chapter 15 to allow us 
to model discrete, valued relations. In this case, there is still a bivariate 
random variable representing the state of each dyad, but this variable has 
considerably more states than four. Thus the terms "null," "asymmetric," 
and "mutual," are relevant only for dichotomous relations. 
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13.3.1 The Dyad Census 

A dyad is an example of a subgraph - a subset of nodes taken from %, 
and all the arcs between them. Dyads are 2-subgraphs. There are (D = 
g(g - 1)/2 of these 2-subgraphs in a directed graph with g nodes. As we 
have noted above. each of these dyads must be mutual, asymmetric, or 
null. Mathematically, one says that each of these g(g-l )/2 pairs of nodes, 
and the lines existing between the nodes in the pair, is isomorphic to one 
of the three possibilities. By definition, two subgraphs are isomorphic 
if they are identical, except for possibly different labelings of the nodes 
(see Chapter 4 for a discussion of isomorphic subgraphs and graphs). 
That is, two isomorphic subgraphs look exactly like each other, except 
for a rearrangement of the labels. The three states for dyads (mutuals, 
asymmetrics, and nulls) are called the dyadic isomorphism classes. 

We define M, A, and N as the numbers of mutuaL asymmetric, and 
null dyads in a collection of m dyads. These three counts sum to m, 
since these three classes provide a complete partition of the collection of 
dyads. The triple < M,A, N > is called the dyad census. This triple is 
called a census because it is derived from an examination of all dyads in 
the network. Note that we look at all dyads in the digraph, and categorize 
each into its appropriate "state." The census gives an aggregate/overall 
view of all the dyads in the network. 

One can calculate the frequencies M, A, and N directly from the 
elements of the sociomatrix X representing the digraph in question: 

M 2.:XijXji (13.1) 
i<j 

A X++ - 2M (13.2) 

N (;) - A - M, (13.3) 

where, X++ = L, the number of arcs in the digraph. One can also 
calculate M, A, and N using matrix operations on X :  

M = (1/2)trace(XX) 

A = trace(XX') - trace(XX) 

N (n - trace(XX') + (lj2)trace(XX). 

(13.4) 

(13.5) 

(13.6) 

In these equations, X' is the transpose of the matrix X. The transpose of 
the (i,j)th element of X is Xji. The trace of a matrix is the sum of its 
diagonal entries. Since we regard g as fixed, one can determine N from 
g, M, and A. 
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13.3.2 The Example and Its Dyad Census 

Consider the three isomorphism classes for dyads (mutuals, asymmetrics, 
and nulls), and the frequencies with which the dyads fall into these classes 
(M, A, and N), in our example. These classes are pictured in Figure 13.1 .  
The first step in a dyadic analysis is to consider every one of the dyads 
(there are 210 in Krackhardt's high-tech managers). For example, take 
the dyad consisting of actors 1 and 2, D12. For Krackhardt's high-tech 
managers, this dyad is a mutual dyad, since actor 1 stated that he was a 
friend of actor 2, and vice versa. Consequently, D12 = (1 , 1). The dyad 
consisting of actors 1 and 8 is an asymmetric dyad, since actor 1 chose 
actor 8 as a friend, but actor 8 did not reciprocate the choice. That is, 
DIs = (1 ,0). Lastly, consider actors 1 and 21. Both of these entries are 
zero, indicating that this dyad is null (so DI.21 = (0,0)). 

The next step in a dyadic subgraph analysis is to study the frequencies 
of the dyads given by the dyad census. For our example, going over all 
210 dyads, we find that M = 23, A = 56, and N = 131.  We should note 
how we arrived at the three values of the dyad census. We first counted 
the number of mutual dyads, as shown in equation (13.4), and arrived at 
a count of 23. Next, we counted the number of arcs in the digraph, which 
we already know is 102 arcs. Since each mutual dyad involves two arcs, 
there are 2M = 2(23) = 46 arcs in these mutuals. Following equation 
(13.5), subtracting this number from 102 gives 102 - 46 = 56 arcs not 
involved in mutuals dyads; that is, there must be 56 asymmetric dyads 
in the network. This count is substantiated simply by going though the 
remaining 210 - 23 = 187 dyads in the network, and verifying that 56 
of these dyads involve one and only one arc. Since there are 210 dyads 
present with g = 21 actors, the remaining 210 - 23 - 56 = 131 dyads 
must be null dyads (as stated by equation (13.6)). 

A dyadic analysis seeks to answer several questions about these three 
values. The dyad census can be studied to see how much reciprocity of 
choice occurs. For example, one can ask if the observed level of mutuality 
(such as the 23 mutual dyads in our example) is a lot or a little. A small 
fraction of the dyads (23/210 = 0.1095) are mutuals, but how does this 
compare to theoretical predictions, or to comparable groups of high-tech 
managers ? Are mutual dyads statistically more prevalent than other 
kinds of dyads in this organization? Are dyadic relationships more 
mutual (and less asymmetric) than in other, comparable groups? How 
does the number of null dyads (for our example, 131 nulls, or as a 
fraction, 131/210 = 0.624, rather large) compare to the numbers of 
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such dyads in other, comparable groups? What we need is an index of 
mutuality designed to answer these questions ; two possible indices are 
discussed in the next section. 

A statistical dyadic analysis is only possIble if we allow the counts 
of the dyad census to be random variables; that is, if we consider the 
sociomatrix under study to represent a random directed graph. To do this, 
we will soon introduce a special class of probability models for directed 
graphs that will give us probability distributions for the frequencies in 
a k-subgraph census. These probability distributions yield (at the very 
least) the expected value (or average) of the frequencies in the census, 
and the covariance matrix of the frequencies, which will allow us to test 
various hypotheses about the network under study. We will show how 
such distributions arise in the next section. 

13.3.3 An Index for Mutuality 

Katz and Powell (1955) proposed an index, which we will label PKP, to 
measure the tendency for actors in a group to reciprocate choices more 
frequently than would occur simply by chance. Such an index refines the 
examination of the counts in the dyad census, since the index can be used 
to compare groups and relations with unequal numbers of actors. The 
index, like many widely used indices in statistics, is dimensionless, and 
easy to interpret since it uses the values of 0 and 1 as benchmarks - if 
the reciprocity index equals 0, then there is no tendency to reciprocate ; if 
it equals 1, the tendency is maximal (that is, aU choices are reciprocated). 
If it is less than zero (which is possible), there is a less than chance 
tendency for choices to be reciprocated; that is, one observes too few 
mutual dyads. Thus, PKP can be used to index the strength of the tendency 
toward reciprocation of choice. In brief, -00 < PKP S 1, where 0 indicates 
no tendency for reciprocation, 1, maximal tendency, and negative values, 
tendencies away from mutual dyads, toward asymmetries and nulls. 

We note that the index is more than just a descriptive measure. It is 
based on the expectation of the number of mutual dyads, assuming that 
choices are made by actors in some random manner. 

We present the index for two particular network data collection designs. 
Social network data may be collected under either afixed choice or afree 
choice procedure (see Chapter 2). In a fixed choice design, the investigator 
gathers data or instructs each respondent to name a fixed number of 
others that the actor relates to on the relation under study. In a free 
choice design, no restrictions are placed on the number of actors each 
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actor can relate to. Persons may be told simply to "List all your best 
friends."' 

First consider tbe case of fixed choice data, where actors in fact make 
a fixed number of choices. We assume that each actor makes d choices 
from the g - 1 actors available to be chosen. Following this, we will show 
how to calculate PKP in the free choice situation. 

Fixed Choice. One of the first calculations of the probability of a 
mutual choice was made by Paul Lazarsfeld, and reported by Moreno and 
Jennings (1938). If d is the fixed number of choices made by each of the 
g actors, then the probability of a mutual choice between any arbitrary 
pair of actors is d2/(g - 1]2, assuming that choices are made completely 
at random and the actors in the pair are responding independently. 

This calculation uses the fact that if each actor makes d choices at 
random from the other g - 1  actors, then the probability that a particular 
actor is chosen is (d/(g - 1)). Since actors are operating independently, 
the probability that a given dyad (which involves choices made by two 
actors independently) is mutual is (d/(g - 1))2 

Since there are g(g - 1)/2 dyads, the average number of mutual dyads 
must be the number of dyads times the probability that any one of them 
is a mutual. Thus, the expected number of mutual dyads is 

E(M) = 
g(g - 1) d2 

2 (g - lJ2 
gd2 

2(g - 1) ' (13.7) 

assuming that each actor chooses d other actors, completely at random. 
Here, the notation E(M) implies that we are calculating the expected 
value of M, assuming that choices are made at random. 

Consider the probability that a generic dyad, involving actors i and j, 
is a mutual dyad. One can calculate this probability as a product of two 
other probabilities 

P(i .... j and j .... i) = P(i .... j)P(j .... iii .... j) (13.8) 

using the standard definition of a conditional probability. The last 
term above is the conditional probability of a reciprocated choice, and 
is of primary importance here. Katz and Powell take this conditional 
probability, and introduce an unknown quantity, PKP> as follows : 

P(j .... iii .... j) = P(j .... i) + PKP P(j f> i). (13.9) 

If PKP is 0, then the conditional probability equals the unconditional 
probability, and choices are independent; that is, there is no tendency 
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toward reciprocity. If p" = 1, then the right-hand side of the above 
equation is also 1. This arises when the choice i --+ j forces the choice j --+ 

i ;  that is, these two "reciprocating" choices are completely dependent. 
If we substitute equation (13.9) into equation (13.8), and substitute the 
probabilities for choices (assuming d choices made at random), we obtain 

P(i --+ j and j --+ i) P(i --+ j)P(j --+ i ii  --+ j) 

= P(i --+ j)[P(j --+ i) + p"P(j -1-+ ill 
d [ d g - l - d j 

-- -- + PKP . 
g - 1  g - 1  g - 1  

Using this probability, the expected value of the number of mutual dyads, 
conditional on the unknown value of PK" is m times this probability ; 
that is, rearranging terms slightly, we have 

gd2 gd 
E(Mlp) = 

2(g - 1) (
1 - PKP ) + TPn. (1 3 .10) 

To estimate PKP, Katz and Powell used a method-of-moments estimator. 
Specifically, we estimate the expected value of the number of mutuals, 
given in equation (13.10) using the number of mutuals, M, actually 
observed in a network. If we equate the right-hand side of (13.10) to M, 
we can then solve the resulting equation to obtain an estimate of PKP : 

, 2(g - I)M - gd2 
PKP = 

gd(g - 1 - d) 
(13.11) 

Katz and Powell report that this estimate is consistent (that is, it has a 
variance that goes to zero as g increases) and is unbiased (that is, it has 
an expected value equal to PKP)' One nice feature of the estimate is that it 
is a linear function of M. As the number of mutual dyads increases from 
o (its minimum) to m (its maximum), the estimate increases linearly. 

Note that when M = 0, the estimate is negative, a possibly undesirable 
characteristic of the index. One should never see so few mutuals if 
choices are made at random. Katz and Powell refer to this as "anti
reciprocation," and state that this may be due to values of d taken to 
be too small. In fact, if d > (g - 1)/2, then the minimum value of PKP 
cannot be negative since there must be a non-zero number of mutual 
dyads - as we will see below. The estimated index reaches its maximum 
value of 1 when M = gd/2 (which can arise trivially when d = (g - 1)). 
Katz and Powell give no distributional properties of PKP, and as far as 
we can determine, this is still an open area for research. 
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To demonstrate use of this index, consider again KrackhardC, dala. 
and suppose (hypothetically) that each actor chooses exactly five olher 
managers as friends. (The actual average outdegree is 4.9 so, just liH 
demonstration purposes, we suppose a fixed outdegree of 5. However, this 
clearly ignores the variability of actor choices. We make this simplifying 
assumption to show how to calculate Katz' and Powell's mutuality index 
in the fixed choice situation.) We have g = 21, m = 23, and d = 5, so 
from equation (13.11) 

PKP = 2(20)(23) - (21)(5)2 = 395 = 0 2508 
21(5)(15) 1575 " 

a small value, indicating that such a network shows some indication of 
independence of choices made and received in a dyad (given the constant 
value of an outdegree of 5). Conditioning on d shows that there is just a 
small tendency for choices to be reciprocated. 

Free Choice. We now suppose that the ith actor chooses do(n,) = 
Xi+ other actors, and that these outdegrees are not necessarily equal. We 
let L = L; Xi+ be the total number of choices, and L2 = I>r+ be the 
sum of squares of the choices made by each actor. As in the fixed choice 
situation, the probability that actors i and j have a mutual relationship 
is Xi+Xj+/(g - 1)2, if choices are made completely at random. Since this 
probability depends on the pair of actors considered, the expected value 
of the number of mutuals is more complicated than above. Katz and 
Powell calculate 

L2 _ L2 E(M) = 
2(g - 1)2' 

(13.12) 

The derivation of this expected value is rather complicated; hence we 
refer the reader to Katz and Powell (1955) for details. Using (13.12) and 
(13.10), we introduce P�P as the analog of PKP in the free choice case, and 
obtain 

( 
'
) 

L2 - L2 (1 
'

) 
L ,  

E Mlp = 
2(g _ 1 ) - PKP + "iPKP' (13.13) 

As before, we estimate p�p with a method-of-moments estimator P�" by 
solving equation (13.13) set equal to M: 

A' 2(g _ 1)2M - L2 + L2 PKP = 
L(g - 1)2 - £2 + L2 . 

(13.14) 

To illustrate, examine the outdegrees of Krackhardt's friendship rela
tion, and calculate L = 102, the number of arcs, and L2 = 880, the sum 
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of squares of the outdegrees. From these values, and remembering that 
there are g = 21 actors and M = 23 dyads, we have 

M 2(20)'(23) - 102' + 880 8876 
p" = 102(20)' - 102' + 880 = 31276 

= 0.2838, 

a fairly low mutuality index. This value is surprisingly large, however, 
given that only slightly more than 10 percent of the dyads are mutuals. 
There are few mutual dyads, but the tendency toward reciprocation is 
not negligible. 

13.3.4 @A Second Index for Mutuality 

Achuthan, Rao, and Rao (1982) consider the range of the number of 
mutual dyads that can arise in a directed graph with specified outdegrees 
(either free choice or fixed choice designs). The value of M depends on 
the numbers of choices made, and its range of possible values is restricted 
by the outdegrees, which we assume are known. Using an unpublished 
1982 suggestion of Bandyopadhyay (see Rao and Bandyopadhyay 1987), 
these authors proposed an index for mutuality based on the maximum 
and minimum values of the number of mutual dyads, M, that could 
occur for a given set of outdegrees. We will define Mm," and Mmox as 
the maximum and minimum numbers of mutuals, respectively, so that 
Mm" � M :0; Mmax. These values depend on the outdegrees of the digraph 
under consideration. Achutan, Rao, and Rao propose the index 

M - Mmin 
PB = 

Mmax - Mmil1 
(13.15) 

as a standardized measure of the level of mutuality in a social network. 
The maximum and minimum numbers of mutuals are defined as 

follows. First, consider the two functions, defined for t = 1, 2, . . , g, 

and 

Then, 

Itt) = t x,+ - t(g - 1) _ (t) 
i=l 

2 

t g 

g(t) = I>,+ - t(t - 1) - L min(t, x,+). 
i=1 

Mm" = max itt), 
o=:;r.:-::;g 

i=t+ l 

(13.16) 
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as given in Theorem 2.2 of Achuthan, Rao, and Rao (1982), and 

Mmax = ll/2 {t X;+ - max g(t)}J 
Ost::;g i=l 

519 

(13. 17) 

as given in the authors' Theorem 3.1, where l. J denotes the largest 
integer not exceeding '. These theorems, and the theorem that proves 
the existence of a directed graph with M mutuals, where M lies between 
Mmin and Mmax, have long and somewhat tedious proofs ; nevertheless, 
the application of the authors' results is not difficult. Neither (13.16) 
nor (13.17) requires complicated or extensive calculations (as we will 
demonstrate below). 

An interesting sidelight of this research is a condition under which the 
minimum number of mutuals can be equal to 0 ;  that is, when is it the 
case that for a specified set of outdegrees, it is possible to have no mutual 
dyads? The authors show that, if we let Xm;n = min;do(n;) be the smallest 
outdegree in the digraph, then Mm;n = 0 if Xm;n ::; leg - 1)/2j. So, unless 
every actor chooses at least half of the other actors, it is possible to have 
no mutual dyads in the digraph. The authors also give conditions under 
which the maximum number of mutual dyads is equal to L/2, one-half 
the number of arcs present in the digraph. Note that Mmax cannot exceed 
L/2, since a digraph with L choices can have no more than L/2 mutuals. 

Let us illustrate these calculations. Consider again our example from 
Krackhardt. We calculate Mm;n = 0 and Mmax = 51 (using the program 
DYADS of Walker and Wasserman 1987). Since, M = 23, we find 
P8 = (23 - 0)/(51 - 0) = 0.451, a fairly large value, even larger in fact 
than PKP' In general, we have found that the P8 indices tend to he larger 
than the corresponding PKP values. 

Krackhardt's data set also contains a second relation, advice, measured 
for the twenty-one managers. The density of choices for !his second 
relation is 190/420 = 0.452, and there are 45 mutual dyads. Both of 
these values are larger than for the friendship relation. Clearly, it is 
more common for the managers to seek advice from, than be friends 
with, each other. This may be due to the fact that the work setting, 
rather than a social environment, has brought them together. For this 
relation, P8 = (45 - 0)/(95 - 0) = 0.474, only a little larger than the 
same reciprocity index for the friendship relation. So, even though there 
are twice as many mutual dyads for the advice relation, the tendencies 
toward reciprocation are about the same since there are simply more 
advice relational ties. 
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13.3.5 QSuhgraph Analysis, in General 

We have discussed the initial steps in a dyadic analysis, focusing on the 
collection of 2-subgraphs in a digraph. We will return to this discus
sion after the introduction of several classes of distributions for random 
directed graphs which will make the statistical analysis of digraphs pos
sible. But first, let us note that in general, one can consider subgraphs of 
order k, or k-subgraphs, for k = 0, I, . . .  , g. 

For a given value of k, we can calculate the number of k-subgraphs as 
the number of ways one can choose k objects from a pool of g objects. 
There are 

[g(g - I)(g - 2) . . .  (g - k  + 1)] 
[k(k - I)(k - 2) ' " (I)] 

k-subgraphs in a directed graph with g nodes. Thus, for a network with 
g = 10 actors, there are 10 actors, 45 dyads, 120 triads, 210 tetrads, 
etc. Clearly, enumerating all k-subgraphs even for small k can be a 
time-consuming process, even for a computer. 

The number of isomorphism classes for k-subgraphs grows quickly 
for a directional relation as k increases : there are 3 classes for k = 2 
(dyads), 16 classes for k = 3 (triads), 218 classes for k = 4 (tetrads), 9608 
for k = 5 (pentads), and up to several million for k = 10 (decads ;  see 
Harary 1955a). Davis (1953, 1954) considers how many classes exist for 
k-subgraphs, and gives bounds for this number, as well as for numbers 
of particular kinds of subgraphs (reflexive, symmetric, and so forth). 

Studying subgraphs can therefore be difficult if one focuses on k
subgraphs with k > 3. In fact, analyses with large k may not even 
be parsimonious, in the sense that there may be no great reduction in 
complexity of a network data set if one simply translates a socioma
trix to a set of frequencies of k-subgraphs in isomorphism classes. It 
might be better just to use graph theoretic methods to study a network 
with, say, g = 10 actors, than to look at g.subgraphs or 9-subgraphs. 
Further, the statistical properties of k-subgraphs with large k are not 
well-understood. But, perhaps the most important reason for keeping 
k small is that there are clear, theoretical motivations for the study of 
dyads (tendencies toward and away from reciprocity) and triads (struc
tural balance, transitivity, and so forth). Such subgraphs allow us to 
study important structural properties. Very few (if any) formal structural 
properties have been proposed for k > 3. For these reasons, we will 
restrict our attention to just dyads and triads (k ;<; 3). 
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The principles behind an analysis of k-subgraphs are the samc ('cgmel. 
less of the magnitude of k. One must: 

(i) Determine the number of isomorphism classes (that is, the num
ber of different states that the k-subgraphs can take on) and 
label them appropriately. 

(ii) Consider every possible snbset of k actors (the k-subgraphs) in 
the directed graph with g nodes. 

(iii) Place each k-subgraph into the correct isomorphism class, and 
count how many k-subgraphs fall into each class. These counts 
give the k-subgraph census. 

(iv) Study, with either statistical or descriptive methods, the fre
quencies of the k-subgraphs in the isomorphism classes. These 
frequencies may be compared with frequencies predicted by some 
formal substantive or statistical model. 

We will return to dyadic analyses shortly. What follows is the beginning 
of a discussion of several classes of probability distributions for random 
digraphs. 

You, the reader, might be wondering why we are spending so many 
pages discussing such an esoteric topic. The answer is that this topic will 
allow us to conduct and understand statistical tests for the components 
of the dyad census. As an analogy, one cannot test that a population 
mean is equal to zero without first adopting, and understanding, some 
probabilistic mechanism which generates the data under study. Such is 
the case here. In order to test hypotheses about the level of mutuality 
present in a network, we first must make some statistical assumptions 
about the underlying network process. 

As mentioned in the introduction to this chapter, we would like to 
consider how much reciprocity or mutuality is present in the network 
under study, and to determine whether the observed level of this im
portant structural property differs from an a priori, supposed level. The 
distributions discussed in the next section of this chapter will allow us to 
conduct such statistical analyses. These analyses are sprinkled through
out the next section; after presenting each set of these distributions, we 
will illustrate their use by presenting methods for statistical analysis of 
dyads using the distributions. 
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13.4 Simple Distributions 

The basic family of probability distributions for directed graphs is the 
class of uniform distributions. These distributions range from the simplest 
possible distribution for a directed graph with g nodes to conditional dis
tributions which fix, or condition on, a number of graph characteristics. 
We will first review uniform distributions in general, and then will show 
how these and other distributions can be applied to the problem con
sidered here. We will introduce the distributions in several parts: simple 
distributions, conditional uniform distributions, and then other uniform 
distributions. After each part, we will describe the statistical methods 
for the dyad census that can be used, once the distributions, described 
in the preceding part, are assumed. These statistical methods locus on 
the number of arcs present in a digraph (inferences using the simple 
distributions), and the number of mutual dyads present in a digraph 
(which require conditional uniform distributions). 

An important concept that we will use repeatedly throughout this 
section is statistical conditioning - that is, taking a random variable, 
and then deriving the distribution of that random variable conditional 
on specific (graph) properties. This conditioning implies that we restrict 
attention to only those random graphs that have the specific properties 
that are conditioned upon. For example, we will discuss a directed graph 
distribution that is conditional on the graph having equal outdegrees. 

The distributions described here will be used extensively throughout 
the remainder of this book. As we discuss in Chapter 15, Plo Holland 
and Leinhardt's (1981) statistical model, which forms the basis of much 
of the methodology of Part VI, is equivalent to one of the more complex 
conditional random digraph distributions presented later in this chapter. 

Armed with the random directed graph distributions discussed here, 
we will be able to study the dyad census statistically. The first statistical 
analysis of social network data came from Moreno and Jennings (1938), 
who simulated a random network process by randomly assigning choices 
to individual actors. This process was the first simulation of the random 
digraph distribution that conditions or fixes the actor outdegrees. The 
simulated sociomatrices were then compared to the actual, observed ma
trix. Johnson (1939) employed a similar procedure to study change in 
social relationships. Bronfenbrenner (1943, 1944) further developed the 
notion of a chance model in sociometry, focusing on the binomial distri
bution. He estimated the probability that an individual actor, constrained 
to make a fixed number of choices, chooses any other actor. With this 
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estimated probability, he simulated the Bernoulli random digraph dist"'" 
bution, which we discuss in this section. Actors who received significantly 
more or less choices than expected (based on the model) were easily iden· 
tified by his approach. Bronfenbrenner also studied the distribution of 
the number of mutuals, although his application of statistical models 
here was faulty (as we discuss later in this section). Criswell (1939, 
1943, 1947) also proposed a method to study the statistical significance 
between observed and theoretical distributions. Loomis and Pepinsky 
(1948) give a thorough, critical review of the first decade (1937-1947) of 
social network analysis, including comments on the early methodology, 
as does Criswell (1946a), in a review of Moreno and Jennings (1945) and 
Bronfenbrenner (1945). 

The early sociometricians were keen to develop a reference frame, 
or a constant benchmark, for their analyses which could be used to 
determine how "structured" a particular network was, or how far the 
network departed from the benchmark. Moreno and Jennings (1938), 
Brofenbrenner (1945), Criswell (1946a), Edwards (1948), and Criswell 
(1950) (see also the recent comments by Glazer 1981) all had this in 
mind when proposing innovative statistical methods for network data. 
Some of these researchers actually simulated networks based on the 
distributions we have described here; others used probability models 
to determine distributions of graph properties of interest (such as the 
number of mutual dyads). This constant frame of reference problem, or the 
development of a benchmark to which observed data could be referred, 
and the many proposed solutions showed that even early network analysts 
desired good and proper statistical methods for their analyses. 

Tagiuri (1952) and Tagiuri, Bruner, and Kogan (1955) also studied 
dyads, but from a multirelational viewpoint. They assumed that the 
researchers recorded not only positive and negative choices (which was 
common in early sociometry), but also data on perceptions of choices 
made by others. The theory of actual versus perceived choices is described 
in Tagiuri, Blake, and Bruner (1953), and the mathematical models for 
their analyses can be found in Luce, Macy, and Tagiuri (1955). 

A number of researchers have reviewed the early developments of 
statistical methodology for social network data. Good surveys include 
Proctor and Loomis (1951), Lindzey and Borgatta (1954), Nehnevajsa 
(1955b), and Glanzer and Glaser (1959). 

The tests discussed in this section should provide the reader with a 
good introduction to the types of significance tests that are common in 
sub graph analyses of social networks, while showing how to determine 
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whether specific hypotheses about a digraph are statistically sound. For 
example, one can test whether actors make choices independently and 
with specified probabilities. Such hypotheses and associated tests can 
be viewed as statistical benchmarks, designed to learn more about the 
underlying network process generating the data. 

We first focus on tests aboul lbe number of arcs in a digraph. After 
describing analyses for L, we will turn to the dyad census itself, and focus 
on one of its components, M, the number of mutual dyads. We describe 
a number of approaches to the statistical analysis of M (again assuming 
that various digraph distributions are appropriate) that have appeared 
in the literature over the past thirty years. 

13.4.1 The Uniform Distribution - A Review 

The uniform distribution arises frequently as a probability model for ran
dom variables. Consider the simple random variable giving the outcome 
of a single toss of a fair coin. There are two outcomes here, a head (H), 
and a tail (T), which we will put into a set, labeled (as it usually is in 
statistics) the sample space - S = {H, T}. Since the coin is fair, these 
two outcomes have equal probabilities of occurring, so that 

P(H) = P(T) = �, (13.18) 

where P(.) refers to the probability that the event "." occurs. Note that 
there are two things of importance here: (1) there are a finite number of 
outcomes in this "statistical experiment" (two, to be exact) ; and (2) each 
outcome is equally likely. 

When the realizations of a random variable can only assume a count· 
able number of values, then the random variable is called a discrete 
random variable. We will work solely with discrete random variables 
for directed graphs, since the graph properties that we will measure will 
always have a finite number of possible values. In other words, the 
types of variables that are usually measured in social network studies 
are discrete-valued, as opposed to continuous. We are not assuming 
that most social network concepts are discrete-valued. However, the 
measurement of these concepts is usually done with discrete scales. 

Each random variable that we will study has a probability distribution, 
which specifies the probabilities that the variable equals each of the 
possible realizations. The probabilities must be between 0 and 1, and 
must sum to unity (when summed over all realizations). The realizations 
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will be placed into a set, which we will call the sample space and denote 
by S. 

Another very simple example will help us illustrate. Consider just a 
single pair of actors, i and j, and the relational variable that indicates 
whether i chooses j, or whether there is a tie from i to j. If the relation 
is dichotomous, then this variable has only lwo possibilities: 0 and 1 .  
Thus, the sample space for this simple variable is S = {D, I } .  To these 
two outcomes or realizations, we must assign probabilities. 

If the realizations are equally likely to occur then the probability 
distribution of the random variable is uniform - that is, the distribution 
distributes the total probability mass (equal to 1) uniformly or equally 
over all possible outcomes (which we have listed in S). For our example, 
if P(i ---> j) = P(i +- j) = 1/2, then the two events are equally likely, 
so that the random variable representing this single choice is a uniform 
random variable. 

The distribution of the coin tossing variable, discussed above, is some
times called the Bernoulli distribution with probability of "success" = 
1/2. The Bernoulli distribution is characterized by independent trials 
(the coin tosses) and only two outcomes on each trial (head and tail), 
with the probability of a given outcome constant from trial to trial. The 
distribution of a single toss is also uniform, with two outcomes. 

To quantify this in more general terms, take a discrete random vari
able, which we will call U and which has n realizations, and place the 
realizations in a sample space : S = {Uj, U2, . . .  , Un}. The statistical exper
iment generating the random variable has n possible outcomes so that 
the sample space set has n elements, which we are denoting by u's. Since 
U is discrete, n is finite. The random variable U is a uniform random 
variable if 

1 P(ull = P(U2) = . . . = P(un) = -. n 
(13.19) 

Note that all of these probabilities are equal, between D and 1, and the 
sum of the probabilites (or total mass) is unity. 

The uniform distribution is sometimes called the discrete uniform 
distribution. The uniform distribution arises frequently in statistical 
experiments. It applies whenever the outcome of an experiment is "chosen 
at random" from all possible outcomes. 

Our focus here is on the collection of directed graphs that exist for a 
set of g nodes. For a specific distribution, we will consider which directed 
graphs can occur, which ones cannot, and what are the probabilities 
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of the possible outcomes that we might see in actual network data. 
The distributions that we will use to model such realizations are either 
uniform distributions or related to uniform distributions. 

13.4.2 Simple Distributions on Digraphs 

We begin by defining '§d as a particular directed graph (or digraph) with 
g nodes. The set of all possible labeled and irreflexive (or loopless -
since i 1-+ i) directed graphs with g nodes will be denoted by Gd(%). The 
labeling is important, since we want to consider all possible digraphs 
that have various characteristics, such as all digraphs with five nodes and 
nine arcs. Without labels assigned to the nodes, we can only consider the 
number of isomorphism classes. That is, we cannot distinguish between 
two digraphs that are isomorphic, but have different labels attached to 
the nodes. 

An adjacency matrix or sociomatrix X, with elements Xij, can be used 
to record the arcs between the nodes in '§ d. Most of the distributions 
discussed here will be described in terms of the sociomatrices, but as 
we know, there is a one-to-one correspondence between digraphs and 
sociomatrices, so that this discussion will not result in any loss or gain in 
generality. We will sometimes talk about the elements in X interchange
ably with the arcs present in the digraph. The digraphs that we consider 
here are random, so that X itself is a random sociomatrix. A single 
realization, or one of the possible values of this random sociomatrix, will 
be denoted by x, with elements xij. 

The simple distributions for random directed graphs that we will 
discuss in this section are the Uniform and Bernoulli. Following this 
discussion, we show how these distributions can be used to study the 
number of arcs present in a digraph. We note that readers interested in 
learning more about random directed graph distributions should consult 
Katz and Powell (1957), Holland and Leinhardt (1975), Wasserman 
(1977), Fershtman (1985), Snijders and Stokman (1987), and Snijders 
(1989, 1991a, 1991b). 

Uniform Distribntion. Consider first how many digraphs are 
contained in Gd(%), the set of all possible directed graphs with g nodes. 
Since we have restricted our attention to a single, dichotomous relation, 
each possible arc in the digraph is either present or absent, or each 
element in the sociomatrix is either a 0 or a 1 - two possibilities. Since 
there are g actors, each of whom may have ties to the g - 1 other actors, 
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there are g(g - 1) possible arcs in a digraph. Consequently, there mlls( be 
2g(g-l) different labeled sociograms or sociomatrices. For example, with 
g = 3, there are 26 = 64 different labeled sociograms. The number 01' 
elements in Gd(%) grows exponentially with g; even with only g = 10 
actors, there are 290 = 1.2379 X 1027 possibilities. Clearly, the number of 
pos!)ible realizations of a random directed graph is very, very large, even 
for small g. 

The simplest distribution on Gd(%) is the uniform distribution. We 
will denote this distribution by U, and use the symbol � simply as 
statistical shorthand for "is distributed as." Thus, we could say X� U to 
imply that a sociomatrix representing a particular digraph is distributed 
as a uniform random variable. Every realization is equally likely (as 
is always the case with uniform distributions). The sample space is 
exactly Gd(%), which contains 2g(g-l) labeled digraphs, so the uniform 
probability function is 

1 
P(X = x) = 

2g(g-I) . 
(13.20) 

In other words, the probability that a (labeled) directed graph with g 

actors equals a specific "configuration" of choices is 1/ [2g(g-I)] . Thus, 

each of the elements of the sample space has an equal probability of 

1/ [2g(g-I)] of occurring. It is perhaps simpler to describe the arcs of 

the digraph under this distribution as statistically independent, Bernoulli 
random variables with probabilities of choices (or probabilities of arcs 
being present) all equal to 1/2: 

P(X = 1) = 
{ 1/2, i +- j 

IJ 0, i = j. 
(13.21 ) 

Sometimes we will let Pij be shorthand notation for P(Xij = l), the 
probability that a specific arc is present in the digraph. 

This distribution has the least "structure" of all digraph distributions. 
All elements of the sociomatrix are independent of all other elements, 
and the probability distribution of any one of the elements is the simplest 
possible distribution - the Bernoulli distribution with equal probabilities, 
which is the same as the uniform distribution on a sample space with 
two elements, governed by probabilities (13.18). This distribution assumes 
that all actors "choose" about one-half of the other actors, so thut the 
expected degree is (g - 1)/2 for all actors and the expected density is 0;5, 
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Bernoulli Distribution. The uniform distribution can be general
ized to a family of Bernoulli distributions by altering the probability that 
any element of the random sociomatrix equals unity. These distributions 
have been used extensively in the important work of Frank (see Capo
bianco 1970; Frank 1977c, 1980, 1981, 1989; and Bollobas 1985, and 
Karonski 1982, for reviews). These models, as we discuss in Chapter 15, 
can also generate parametric classes of distributions. 

The general Bernoulli distribution begins with equation (13.21) and 
allows the {Pij} to differ and not necessarily equal 1/2. The Bernoulli 
distribution, which we will denote by B, assumes that the elements of X 
are statistically independent. Thus, one can view the Uniform distribution 
discussed above as a special case of the Bernoulli distribution, in which 
the {Pij} all equal 1/2. The arcs of the digraph are assumed to be 
Bernoulli random variables with probabilities 

P(X- = I) =  
{ Pij, i i= j  

IJ 0, i = j 
(13.22) 

where 0 " P'j " 1. The {Pij} may differ from element to element to allow 
some actors to choose other actors with different probabilistic tendencies. 
Thus, this distribution permits some of the arcs in a random digraph to 
have greater probabilities of being present than other arcs. If a random 
digraph follows the B distribution and P'j = 1/2 for all i i= j, then the 
random digraph is uniformly distributed. If the {Pij} are all equal, but 
not equal to 1/2, the distribution is not uniform. 

The Bernoulli family of distributions will be used in Chapter 15, 
where we introduce a related family of distributions for digraphs. This 
family uses a variety of additive parameters for the logarithms of the 
probabilities {Pij}, which reflect important, substantive tendencies. 

13.5 Statistical Analysis of the Number of Arcs 

This section begins with a description of statistical methods for the study 
of a graph property even simpler (or at a lower level) than the dyad 
census - L, the number of lines or arcs present in a directed graph. We 
start with statistical analyses of L for both historical and pedagogical 
reasons. Statistical studies of counts of the number of arcs preceded 
studies of the dyad census; in addition, it is easier to understand these 
earlier methods. If we assume that the random variables representing the 
g(g-l) possible arcs in the digraph follow either the uniform or Bernoulli 
distribution, we can test particular hypotheses about L. Readers who 
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are statistical novices might find this section slightly rough going. Most 
of the statistical theory here uses the binomial distribution and normal 
approximations to it, as discussed in many statistical textbooks, slIch as 
Mosteller, Fienberg, and Rourke (1983), and Weinberg and Goldberg 
(1990). 

If the digraph is assumed to be a random digraph, governed by some 
probability distribution which does not condition on L, then L is a 
random variable. It counts how many entries in the random sociomatrix 
X are unity or how many arcs are present in the random digraph. The 
quantity L can take on any value from ° to g(g � 1). We want to 
use statistical assumptions to do a significance test; specifically, is the 
uniform distribution a realistic assumption for X? 

13.5.1 Testing 

Let us first assume that the digraph is distributed as a uniform random 
digraph; that is X � U. This assumption implies that the elements of X 
are independent, and have a constant probability of 1/2 of being unity; 
that is, each element is a Bernoulli random variable, with P = 1/2 of 
being unity. L is just equal to the count of how many of these Bernoulli 
random variables are unity. The sum of independent Bernoulli random 
variables, with constant probability P of being unity, is a Binomial 
random variable, with parameters equal to the number of Bernoulli 
random variables being summed (g(g � 1)) and the probability that 
any one of the variables is unity (P). We will denote this binomial 
distribution and its two parameters as Bin(g(g � 1),P), where the two 
distribution parameters are the two arguments. Thus, assuming that the 
uniform distribution is appropriate, L is a binomial random variable 
with parameters g(g � 1 )  and P = 1/2; that is, L � Bin(g(g � 1), 1/2). 
Its probability distribution function is 

(13.23) 

where I = O, I, . . .  , g(g � 1). The expected value of L (or the number of 
l's that should be present in X, on average), E(L), is (1/2)g(g � 1), and 
the variance of L is Var(L) = ( 1/4)g(g � 1). These results follow directly 
from the mean and variance of a binomial random variable. 

So, the observed value of L for a particular digraph can be viewed as 
a binomial random variable, with a mean of (1/2)g(g � 1 )  and a variance 
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of (1/4)g(g - 1), if we assume that the digraph is uniform. Consider the 
null hypothesis 

Ho : L � Bin(g(g - 1), 1/2), (13.24) 

which follows from the distributional assumption for X. Clearly, if one 
rejects this hypothesis, then the uniform distribution is not appropriate. 
So, the significance test that we now outline can be used as an indicator 
of the validity of an assumption of the simple U distribution. If this 
hypothesis is rejected, one cannot, unfortunately, determine the reason. 
It might be because the entries in X, the arcs themselves, are not inde
pendent, or that the probabilities of arcs being present are not equal to 
1/2, or that lhese probabilities are not even constant. 

To test hypothesis (13.24), we use a large sample approximation to 
the distribution of L. Statistical theory shows that for large values of 
g (about ten actors), L should be approximately Gaussian (or normally 
distributed). Thus, if our null hypothesis is correct, the statistic 

z, 
= 

, - E (L) 
= 

_, -
--i'7

g(�g=
-

7
1
�
) /
",
2 

"lVar(L) y'g(g 1)/4 
(13.25) 

is approximately standard normal with a mean of 0 and a variance and 
standard deviation of 1. Here, , = L;�l L;�l X'j, the number of arcs 
actually observed in the digraph under study. 

Example. For Krackhardt's network of high-tech managers and 
the relation based on friendship, we have , = 102 arcs. If the choices 
made by the actors followed a binomial distribution, so that any one of 
the choices was a Bernoulli random variable with a probability of 1/2 of 
being present, we should see 21(20)/2 = 210 arcs in our random digraph, 
more than twice as many as actually observed. 

Our null hypothesis for this digraph is 

Ho : L � Bin(420, 1/2) 

since there can be as many as 420 arcs in the digraph. The test statistic 
for this hypothesis, equation (13.25), is z, = (102 - 210)/10.25 = -10.54. 
Refer this statistic to its (approximate) standard normal distribution and 
one finds that the probability that a standard normal variable is less than 
-10.54 is exceedingly small. Thus, the p-value for our test is nearly O. 
Such a value certainly does lead to rejection of a null hypothesis, so it 
is quite unlikely that these data could have been generated by such a 
Bernoulli process. 
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The advice relation from Krackhardt's network is more interesting. 

For the same null hypothesis, noting that 1 = 190, the test statistic is 
ZI = (190- 210)/10.25 = -1.952. The probability that a standard normal 
variable is less than -1.952 is roughly 0.0255. Thus, the p-value for this 
test (which has a two-sided alternative hypothesis) is 2(0.0255) = 0.0510. 
One would conclude that the Advice choices could have been generated 
by a Bernoulli process with P = 1/2. 

So, given a social network data set and a desire to test the assumption 
that the uniform random digraph distribution is a valid model for the 
data, one can calculate a p-value for the null hypothesis given in equation 
(13.24) by referring the value of ZI calculated in equation (13.25) to the 
standard normal distribution. Specifically, one can calculate the proh

ability that a standard normal random variable exceeds the calculated 
value of ZI. Since this is a two-tailed significance test, the p-value for the 
hypothesis is twice this probability. If this p-value is sufficiently small 
(sometimes less than 0.05, or occasionally, 0.01), one can conclude that 
the hypothesis is not tenable ; that is, the network and the choices present 
do not allow a validation of this special hypothesis. The data do not 
appear to have been generated by a simple set of independent, Bernoulli 
random variables, with probabilities of 1/2, that yield the entries in X. 

Inference for Unknown P. There is a second hypothesis that 
can be tested using the number of arcs in a digraph. Suppose that a 
researcher believes that the digraph is distributed as a Bernoulli digraph, 
as described in the previous section, with a constant, either known or 
unknown, probability governing the presence of arcs. If the probability 
is known or can be postulated, one can modify the above test statistic 
to test the validity of this distribution assumption. First, assnme that 
the elements of X are independent, and have a constant probability of 
P of being unity. These assumptions yield exactly the Bernoulli random 
digraph distribution discussed in the previous section, with a set of {p;j} 

equal to a constant value. The researcher may or may not wish to specify 
this constant valne beforehand. If specified, the mean and variance 
of L are known exactly, and one can test whether the distributional 
assumption is reasonable ; if not, one must estimate P, and hence the 
mean and variance of L from the data. 

Assume that P is equal to Po. As we have mentioned, if Po is equal 
to 1/2, then this special case of the Bernoulli distribution is identical to 
the uniform distribution, and the test of the hypothesis can be conducted 
as outlined above. The distribution discussed below assnmes that all 
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the {Pij}, the probabilities that i ---> j, are equal to Po, an unknown 
parameter. This one-parameter Bernoulli digraph distribution generalizes 
the uniform distribution by allowing Po to not equal 1/2. 

Specifically, we assume that X � B with a constant probability Po. 
Once again, L, the number of arcs, is a random variable, with a binomial 
distribution wilh parameters g(g-l) and Po ; lhal is, L � Bin(g(g-I), Po). 
Its probability distribution function is more general than (13.23): 

P(L = /) = (g(g � 1)) Pol(1 _ PO)'lg-l)-l. ( 13.26) 

The number of arcs observed takes on values / = 0, 1, . . .  ,g(g - 1). It 
follows that E(I.) = POg(g - 1) and the Var(L) is Po(1 - Po)g(g - 1 ). 

We wish to test the hypothesis 

Ho : L � Bin(g(g - 1), Po) (13.27) 

where the value for Po is known and specified. As mentioned, if we 
fail to reject this hypothesis, we can statistically conclude that there is 
not sufficient evidence to reject the conjecture that the digraph under 
study could be distributed as a Bernoulli random digraph, with known, 
constant probability of Po governing the presence/absence of the arcs. 
The test statistic for this hypothesis is quite similar to the statistic for 
(13.24). Again, we assume that g is large enough to support the large 
sample theory for the binomial distribution; thus, 

/ - Pog(g - 1) 
ZI = -

.Jffipo'7(Tl �P�o)�g(T'g
::!'
-
=I"') 

( 13.28) 

is approximately standard normal with a mean of 0 and a variance 
and standard deviation of 1 . The p-value for the significance test of 
hypothesis (13.27) can be found by determining the probability that a 
standard normal random variable exceeds the value of ZI calculated in 
(13.28). Since this is a two-tailed significance test, the p-value for the 
hypothesis is twice this probability. If this p-value is sufficiently small, 
one can conclude that the hypothesis (13.27) is not tenable; that is, the 
network and the choices present do not support this special hypothesis. 

To demonstrate how to calculate test statistics (13.28) for general 
hypotheses (13.28) concerning the Bernoulli distribution, we return to the 
Krackhardt data, and the friendship relation. Suppose that a researcher 
had an a priori reason to suppose that a Bernoulli process was operating 
with the probability of an arc equal to 1/4. So, we desire to test the 
hypothesis 
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Ho : L � Bin(g(g - 1), (1/4)). 

For these data, we calculate I = 102 for this network with g = 21 actors, 
and note that the expected number of arcs, with Po = 1/4, is 21(20)/4 = 

105, only slightly more than actually observed. To demonstrate how to 
conduct this test, we calculate 

(102 - 105) z, = 
J(1/4)(3/4)21(20) ' 

which equals -3/8.874 = 0.338, a small value which yields a large p
value, if the null hypothesis were actually true. We would not reject the 
null hypothesis here, and conclude that there is evidence that a Bernoulli 
process with an arc probability of 1/4 could have generated the friendship 
choices made by this collection of managers. 

13.5.2 Estimation 

If P is unknown, one can estimate this parameter from the available 
data and then construct a confidence interval for the unknown P. We 
assume that X � B with an unknown probability P. Once again, L, the 
number of arcs, is a random variable, with a binomial distribution and 
parameters g(g - I)  and P ;  that is, L � Bin(g(g - 1),P). Its probability 
distribution function is identical to that given in (13.26), except that we 
use the unknown probability P in place of the known value Po. 

The expected number of arcs is E(L) = Pg(g - I) and Var(L) = 

P(I-P)g(g-I), both of which depend on the unknown P, and hence, are 
unknown. The maximum likelihood estimate of this unknown probability 
of arcs being present is simply the empirical fraction of arcs that are 
present in the data set: I/(g(g-I). We will denote this (and all) maximum 
likelihood estimates with the symbol ,,,

,, 
affixed to the parameter being 

estimated. Thus, 

P = 
I:f�l I:5�1 xij 

= 

I 
g(g - I) g(g - l) 

is the maximum likelihood estimate of P. With this estimate, we can also 
estimate the mean and variance of L. The maximum likelihood estimate 
of E(L) is Pg(g - 1) = I and the maximum likelihood estimate of the 
Var(L) is P(1 - P)g(g - 1). 

One can also calculate a confidence interval for the unknown value of 
P. We use the large sample distribution of P. Again, we assume that g is 
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large enough to support the large sample theory for the maximum likeli
hood estimate of the probability parameter of the binomial distribution; 
thus, 

(P - P) 
ZI = -...;r.;p",,( l�-

=
P�)

�
/ g
�
(g
=

_==;'C1) 
(13.29) 

is approximately standard normal with a mean of 0, and a variance and 
standard deviation of 1 .  The denominator of (13.29) is unknown, since it 
depends on P, but it can be estimated using P.  Rearranging (13.29) and 
using this estimated standard deviation yields a confidence interval of P : 

where 

and 

PUPP" = P + ZO/2) P(1 - P)/g(g - 1). 

Here, z, is the upper (J. x 100 percentage point of the standard normal 
distribution. 

Again consider the friendship relation measured on Krackhardt's high
tech managers. We obtain the estimated probability of an are, 

A 102 
P = 

21(20)' 

which is equal to 0.243, and of course, is exactly the density of choices 
made in the network. The endpoints for a 95 percent confidence interval 
(using ZO.025 = 1.96) for the unknown P for this network are 

P'ow" = 0.243 - 1.96v'0.243(1 - 0.243)/21(20) 

and 

PUPP" = 0.243 + 1.96v'0.243(1 - 0.243)/21(20), 

giving us the interval 0.243 ± 1.96(0.0209), or (0.202, 0.284). This 
confidence interval certainly contains 1/4, and is rather tight around 
ils midpoint (since the standard error of P is just 0.0209). Clearly, the 
interval does not contain 1/2. For the Advice relation, we calculate 
P = 0.452, and a 95 percent confidence interval (0.405, 0.500), which just 
barely contains P = 1/2. 
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We should note that we are not able to study the variability of' L 

assuming the more complicated conditional uniform distributions, such 
as those discussed in the next section. This restriction of the statistical 
analysis of L to simple distributions is because the more complicated 
distributions condition on L; consequently, L does not vary. To study L 
we must work with distributions that do not fix this graph property by 
statistical conditioning. 

13.6 0Conditional Uniform Distributions 

Several families of uniform distributions on digraphs can be formed by 
considering conditional uniform distributions. Earlier in this section, we 
defined statistical conditioning as a restriction of the possible random 
digraphs that can arise to only those random digraphs that have the 
specific properties that are conditioned upon, or fixed. Another way 
to view this is to first take all the possible digraphs with g nodes (the 
elements of Gd(S)). To obtain the sample space of a conditional uniform 
distribution, one then restricts attention to just some of these digraphs. 
those with certain characteristics. One removes from Gd(S) all those 
digraphs that do not have the specific characteristics to obtain the sample 
space for the conditional distribution under study. 

We might focus on just those digraphs with a fixed number of arcs, 
or outdegrees equal to some constant, or a certain number of mutual 
dyads. For example, if we have fixed choice data, outdegrees are usually 
all equal to a constant, say d. Other digraphs with varying outdegrees 
are simply not possible from this network data design if actors do indeed 
make exactly d choices. Thus, all digraphs with all outdegrees equal to d 
are included in the sample space, S. 

In general, one determines which characteristic(s) to fix and then 
removes from Gd(S) all those digraphs that do not have the specific 
characteristic. The remaining digraphs constitute the revised sample 
space, and, under a conditional uniform distribution, are equally likely 
to occur. 

After describing the two conditional distributions 

(i) Uniform distribution, conditional on the number of arcs 
(ii) Uniform distribution, conditional on the outdegrees 

we will show how they can be used to study statistically the number of 
mutual dyads present in a digraph. 
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13.6.1 Uniform Distribution, Conditional on the Number of Arcs 

The simplest conditional uniform distribution that we consider here fixes 
the digraph characteristic of the number of arcs in the digraph, or unity 
elements in x (see Katz and Powell 1957). Thus, the simplest conditional 
uniform random digraph distribution conditions on the graph property 
L. Such a distribution is useful when studying the randomness of choices 
made by each individual actor. 

We term this conditional distribution UIL = x++. It is the conditional 
uniform distribution which gives equal probability to all digraphs with L 
arcs, and zero probability to all elements of Gd(.A') that do not have x++ 
arcs. The sample space for this distribution includes only those digraphs 
with L arcs. Each of the digraphs in the sample space is equally likely to 
arise. An important question is how many random digraphs satisfy the 
constraints placed on Gd(.A') by the conditioning. 

For UIL = x++, note that the random digraphs in the sample space 
S can have their x++ arcs in any of g(g - 1) "locations." In fact, one 
way to characterize this distribution is to note that we first place one of 
the x++ arcs at random into one of the g(g - 1) locations. After this 
randomization, we then have x++ - 1 arcs which can fall into any of the 
remaining g(g - 1 )-1 locations. One of these locations is then chosen at 
random. Thus, there are g(g - 1) locations for the first are, g(g - 1 )-1 
for the second, and so forth until there are g(g - 1 )-1 + 1 locations for 
the Ith arc. This "sampling from x without replacement" continues until 
all I = x++ arcs are placed at random in the digraph. 

There are (g(g;-,») ways to distribute I arcs to the g(g - 1) possible arc 
"locations." These assignments are made completely at random, so that 
we have 

( [g(g - l)] [g(g - 1) - 1] · · ·  [g(g - 1) - I  + 1]) 
= 
(g(g - 1)) 

[1(1 - 1) ' "  (1)] I 
different elements of S. Since this conditional distribution is a uniform 
distribution over this sample space, it follows that the UIL = x++ 
conditional uniform distribution has probability mass function 

P(X = x) =  , 
{ ("," ') '  if  x++ = I 

0, otherwise. 
(13.30) 

The number of random digraphs that have exactly I arcs is usually 
quite a bit smaller than the total number of possible digraphs - the 
elements of Gd(.A'). There are 2g(g-1) digraphs in Gd(.A') and (g(g;-,») 

digraphs in the S for UIL. For example, we have already stated that 
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there are more than 1027 digraphs that exist for an actor set with only 
g = 10 actors. Such a digraph can have as many as 10(9) = 90 arcs. I f  
we consider only random digraphs on ten nodes that have, say, thirty 
arcs, we find that there are "just" (i�) = 6.7313 x 1023 possible digraphs, 
considerably fewer than the total number of digraphs (roughly, 50�O th of 
the total), but still quite a few. (In general, if one sums the numbers of 

random digraphs on g nodes with 0, 1, 2, up to g(g � 1) arcs, then the 
total number of digraphs with g nodes, exactly the number of elements 
in Gd(ff), 2g(g-1), is obtained.) 

It is certainly hard to think about 1027 or even 1023 directed graphs, 
so consider random digraphs with just g = 4 nodes. The set of all 
possible digraphs with 4 nodes, Gd(ff), with ff = {n" n2, n3,n,), has 
2'2 = 4096 elements. There are 4 x 3 = 12 ordered pairs of nodes. Each 
of these twelve pairs is such that the first actor can relate to or choose 
the second actor. Thus, there can be as many as 12 arcs present in the 
digraph. Suppose that we consider the UIL = 6 distribution; that is, let 
us statistically condition on the presence of exactly 6 arcs. The number 
of digraphs with 4 nodes and 6 arcs is C.;') = 924, so the sample space 
for the UIC = L digraph distribution contains just 924 digraphs. This set 
is roughly one-fourth the size of Gd({n" n" n3, n4}), but is still too large 
to enumerate easily all possibilities even though there are only 4 nodes! 

13.6.2 Uniform Distribution, Conditional on the Outdegrees 

Another very useful conditional uniform distribution, described by Katz 
and Powell (1957), is the uniform distribution which conditions on the 
outdegrees of the nodes in the digraph. The outdegrees for a random 
digraph are {X1+,X2+, . . .  ,Xg+}, and we will let lowercase letters refer 
to the realizations for these g random variables; specifically, x,+ is one 
possible value for X,+. Each x,+ can take on all integer values between 0 
and g� I. One could also condition on the indegrees, or both the indegrees 
and outdegrees. We discuss these conditional uniform distributions later 
in this chapter. 

UI{X,+) is a conditional uniform distribution for random directed 
graphs that conditions on a fixed set of outdegrees. Every directed graph 
with the specified outdegrees, X1+ = X1+, X2+ = X,+, . . .  , Xg+ = xg+, has 
equal probability of occurring. The sample space contains all digraphs 
with exactly the specified outdegrees. Digraphs with outdegrees not 
equal to the collection of specified outdegrees have zero probabilities of 
occurring, since such digraphs are not in the sample space. Since this 



538 Dyads 

distribution conditions on g quantities, there may be few digraphs with 
the specified outdegrees; thus, the size of this sample space S could be 
quite small. 

This is a very useful conditional distribution since it allows a researcher 
to "control for" the outdegree of each node. These outdegrees are 
occasionally fixed by the experimental design that generated the data, 
such as with fixed choice designs. Good statistical practice dictates that 
such aspects of the design should be taken into account in any statistical 
analyses of the data. A good way of "controlling for" possibly fixed 
outdegrees is to use the uniform distribution that conditions on the 
outdegrees of each actor - UI {X,+}. This conditioning on outdegrees 
does not completely remove the effects of the procedures used to gather 
the data. That is, if a bad data collection design was used (such as fixed 
choice data with a very small or very large number of nominations), 
nothing can improve the quality of the data. However, the use of this 
conditional distribution will allow the researcher to conduct a credible 
statistical analysis, since the search for departures from structural patterns 
in the data focuses only on similar networks - those networks with the 
same outdegrees. 

Before we give the probability function for UI {X,+}, let us consider 
how many digraphs exist with a specified set of outdegrees. It is easiest 
to work directly with the sociomatrix here. We need to think about how 
we can allocate a fixed number of l's for the ith row of the sociomatrix. 
We plaoe this fixed number of l's in certain positions at random, while 
the remaining entries in the row remain O's. We then do this allocation 
for all rows, allowing for different row sums in the sociomatrix. 

With the row sums of a sociomatrix fixed, the rows themselves are 
independent. Thus, we treat each row separately, and consider how many 
ways there are to distribute a fixed number of l's to the g - 1 positions 
in each row. This allocation is just a combinatorial problem, similar to 
that for the UIL distribution. If there are g - 1 positions that can be 
filled with x,+ ones, then there are (g - 1)(g - 2) ' . . (g - x,+ + 1) ways to 
distribute the l's. Since there are x,+(x,+ - 1) · "  (2)(1) ways to order the 
ones themselves, then we have 

(g - I)(g - 2) · · · (g - x,+ + I) 
= 
(g - l) 

x,+(x,+ - 1) · · ·  (2)(1) x,+ 

ways to place the correct number of l's in the ith row of the sociomatrix. 
Since all the rows are independent, the allocation of ones to "locations" 

is done separately for each row. We can multiply the number of ways to 
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allocate the l's to each row across all rows to obtain 11f�1 (gx�, I) as the 
total number of digraphs that have the specified set of outdegrees. Thus, 
the number of elements in the sample space is I1f�1 (�-:.1), a number that 
depends not only on the number of actors, g, but also on the outdegrees 
that we restrict the random digraphs to have. Each of these random 
digraphs is equally likely under the uniform distribution, conditional on 
a fixed set of outdegrees. Consequently, the UI {Xi+ = Xi+} probability 
distribution function is 

P(X = 
x) 

= 
{ n(;,�)' if Xi+ = Xi+ for all i, 

0, otherwise. 

(13.31) 

If the experimental design that generated the social network data is fixed 
choice, then all of the {Xi+} are equal to a constant, say d. Then, (13.31) 
simplifies somewhat to 

P(X = x) = { (gdlrg, if Xi+ = d for all i, 
0, otherwise. 

13,7 Statistical Analysis of the Number of Mutuals 

(13.32) 

We now return to the dyad census, and particularly, one of its three 
components: M, the frequency of mutual dyads. We can now statistically 
study the dyad census and M at length. 

We first introduced the dyad census in earlier sections of this chapter, 
and described two useful measures for the level of mutuality in a net
work. Random digraph distributions allow us to test hypotheses about 
particular graph properties. For example, as we illustrate in this section, 
we will assume that an observed digraph is random, distributed following 
the UI {Xi+} ctistribution. From this assumption, we will be able to test 
hypotheses about the number of mutual dyads in a digraph. 

Recall that even though the dyad census contains three counts (M, 
A, N), one of the three is determined by the other two and g. Thus, 
from a mathematical viewpoint, we need only consider two of the three 
components. We view the dyad census statistically as consisting of just 
two random graph properties, M and A. The dyad census is therefore a 
bivariate random variable, and will have a mean with two components, 
and a 2 x 2 covariance matrix. This covariance matrix has two rows and 
two columns, is symmetric, and contains the two variances (of M and A 
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on the diagonal) and the covariance of the random counts M and A off 
the diagonal. 

Unfortunately, this bivariate focus on the dyad census is missing from 
the literature. Theorists and methodologists have stressed just the first 
of the two components, M, and have ignored the number of asymmetric 
dyads. One approach to a bivariate analysis of the dyad census is through 
the use of triads. We will return to this approach in Chapter 14. The 
emphasis in early sociometric studies was on the relative frequency of 
the number of mutual choices, and hence, excluded A. It is this literature 
on the statistical analysis of M that we now review. 

13.7.1 Estimation 

For a social network data set containing a single, dichotomous relation, 
we have used M to denote the number of mutual dyads in the network, 
so that 0 oS: M oS: m. Bronfenbrenner (1943) and Moreno and Jennings 
(1945) were the first to study this directed graph property. 

Criswell (1946b) and Edwards (1948) (see the critique by Loomis and 
Pepinsky 1948) calculated the correct expected value of M, assuming that 
each actor has a fixed outdegree equal to d. Specifically, if one assumes 
that X � UI{X,+ = d} (so that we only focus on digraphs with the correct 
outdegrees), then, as we gave earlier in equation (13.7), 

gd2 
E(MI{X,+ = d}) = 

2(g _ 1) 

Here, the notation E(Mlo) implies that we are calculating the expected 
value of M, assuming that the distribution UI- is operating. This 
calculation uses the fact that if each actor makes d choices at random from 
the other g - 1 actors, then the probability that a given dyad is mutual 
is (d/(g - 1))2 Since there are g(g - 1)/2 dyads, the average number 
of mutual dyads must be the number of dyads times the probability 
that any one of them is a mutual. But no one seemed to know how to 
calculate the variance of M, Var(M). 

As reviewed by Katz, Tagiuri, and Wilson (1958), Bronfenbrenner 
(1943), and Proctor and Loomis (1951) proposed one variance, and 
Criswell (1946b), another. This discrepancy arose because of the incorrect 
presumption that, if the random digraph has a UI {X,+ = d} distribution, 
then M is a binomial random variable. Katz and Wilson (1956) carefully 
showed that the correct variance is 
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Var(MI{X,+ = d})  = E(MI{X,+ = d})  (1 -
g � 1) ' 

541 

( 1 3.33) 

rather than the variance that arises from the binomial distribution (sec 
Katz and Wilson 1956, equation 3). The correct variance, equation 
(13.33), differs from the binomial variance because the former includes 
the possible covariance that exists between dyads with one actor in 
common. 

If one allows for differing numbers of choices among the actors, so 

that the more general conditional distribution UI {X,+ = x,+} is operating, 
then the mean and variance of M are considerably more complicated. 
Katz and Wilson (1956), and Katz and Powell (1955), show that 

g ' g  

E(MI {X,+ = x,+}) = 1
, [(:L: x,+) - :L:x;+] , 

2(g - 1) 
'�1 '�1 

a formula we gave earlier in equation (13.12). If all the {Xi+} are equal 
to d, (13.12) simplifies to E(MI{X,+ = d}) given in (13.7). 

The expression for Var(MI{X,+ = x,+}) involves the power sums Sm = 
2: x;'t, for m = 1, 2, 3,4. Define 

and 

1 2 ' VI = 
2(g _ 1)4 (-2S1 s, + s, + 4S1S3 - 3S4) 

V3 =  1 (s' - s ) 
2(g _ I)' 

1 , . 

Katz and Wilson obtained 

(13.34) 

And, as expected, equation (13.34) simplifies to equation (13.33) if aU the 
outdegrees are equa\. 

Some examples should be illustrative. Let g = 10, and suppose that 
each actor in the network is instructed to choose four other actors. With 
d = 4, we calculate from (13.7) that the expected number of mutua Is is 
10(4')/(2)(9) = 160/18 = 8.89 out of a possible forty-five dyads. Thus, 
we expect that (8.89/45) = 0.1976 of the dyads will be mutuals. If we 
see many more than this number, we can conclude that on this relation, 
the actors reciprocate more than we would expect. The variance of M, 
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from equation (13.33), is 8.89(1 - 4/9)2 = 8.89(0.3086) = 2.743. The 
standard deviation of M, expressed as a fraction of the number of dyads, 
is U2.743/45) =0.0368. 

Now suppose that the actors have unequal outdegrees. The mean and 
variance of M can be calculated, if we assume that X � UI {Xi+ = Xi+}. 
Suppose that the distribution of outdcgrees is as follows : two actors 
have outdegrees of 2, five actors have outdegrees of 3, and three have 
outdegrees of 4. With these values, Katz and Wilson (1956) calculate the 
power sums SI = 31, S2 = 101, S3 = 343, and S4 = 1205. Equation (13.12) 
gives E(MI {Xi+ = Xi+}) = 5.34 and equation (13.34) gives Var(MI {Xi+ = 
Xi+}) = 2.29. If the outdegrees are more variable, such as five actors 
with outclegrees of 1 and five actors with outdegrees of 7, one ohtains 

E(MI {Xi+ = Xi+}) = 8.33 and Var(MI {Xi+ = Xi+}) = 2.33. 
We should note that as the outdegrees become more equal, that is, 

as the {Xi+} become more constant, one can approximate the mean and 
variance of M by finding the average outdegree and using it in place 
of d in equations (13.7) and (13.33). For the first example given in 
the previous paragraph, the average outdegree is 3.1, which yields an 
approximate expected M of 5.34 and variance of 2.30. These values 
are remarkably close to the exact values given above. However, if the 
outdegrees are quite different, this approximation is not very good (note 
that the average outdegree is 4, so that the calculations given for the 
fixed outdegree example can be used). 

13.7.2 Testing 

Lastly, consider the distribution of M, and tests of hypotheses about the 
number of mutual dyads. The exact distribution of M is known only 
for the very special case of d = 1. Katz, Tagiuri, and Wilson (1958) 
give cumulative probabilities of this distribution for g = 4, 5, 6, . . .  , 1 1. 
Katz and Wilson (1956) conjecture that the distribution is asymptotically 
Poisson since E(MI {Xi+ = d}) and Var(MI{Xi+ = dll are asymptotically 
equal. Katz, Tagiuri, and Wilson (1958) state that when g > 20d, the 
Poisson distribution with parameter equal to E(M) gives a sufficiently 
accurate approximation to the exact distribution. These authors indicate 
that research by Katz (which, to our knowledge, was unfortunately never 
published) indicates that the Poisson approximation is accurate when 
g > 10d, but when g < 10 and d 2': 2, a normal approximation is better. 
Even though earlier authors suggested that significance tests could be 
carried out for M, these findings and conjectures indicate otherwise. 
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However, recent research by Achuthan, Rao, and Rao (1982) gives a 
range of possible values for M assuming that the outdegrees are known; 
that is, we can determine Mmin and Mmax such that Mmin � M .:s; M"wx, 
assuming the UI{X,+} distribution is operating. If one considers every 
possible integer value in the interval (Mm'n, Mmnx), then one can be assured 
that there is at least one digraph, with the assumed outdegrees, that has 
exactly that number of mutuals. As we mentioned earlier in this chapter, 
one can define an index for mutuality, similar to the index proposed by 
Katz and Powell (1955), by using the maximum and minimum numbers 
of possible mutuals, for a specific set of outdegrees. Unfortunately, the 
distribution of this index based on Mm'n and Mmox is not known. 

One can use the standard large sample testing approximations to 
test hypotheses about M. If g is sufficiently large (probably around 
20, although the size needed depends on the true number of mutual 
dyads), then one can test a hypothesis about M by first dividing the 
difference between the observed M and the hypothesized M by the 
standard deviation (square root of the variance of M), and then assuming 
that this standardized statistic has an approximate normal distribution. A 
good, early application of this approach can be found in Maucorps' ( 1949) 
study of friendship, work preference, and praise among an elite group of 
thirty-five French army officers. The recent research of Snijders (1991a) 
demonstrates that nonparametric tests can be used to test hypotheses 
about M. Computer software for such tests (which is needed to enumerate 
all possible values for M) is also available (see Snijders 1991a). 

We note in passing that there has been some research on the expected 
frequencies of different kinds of choice patterns, and the number of 
mutual choices, when actors fall into two (or more) subgroups. Criswell 
(1943) first worked on this problem, as did Seeman (1946) and Edwards 
(1948). Nehnevajsa (1955a) reviews this research, and discusses more 
probability calculations that involve actors in different groups. Glazer 
(1981) also proposes a solution to this problem. 

13.7.3 Examples 

Krackhardt's friendship relation has M = 23 mutual dyads. From the 
digraph distribution that statistically conditions on the outdegree., we 
find that the expected number of mutuals is E(MI{X,+}) = 1 1 .90, and 
the variance is Var(MI{X,+}) = 3.7842• 

Suppose we wish to test the alternative hypothesis that we have ob
served too many mutuals to support this null distribution assumption. 
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Then, a test statistic to test this hypothesis about M is (23-11.90)/3.784 = 

2.933, which has a p-value for a one-tailed test of 0.0017. Such a value in
dicates that the null hypothesis may indeed be false, and that the number 
of mutual dyads observed may be too large, given the null distribution. 
We conclude that friendship has more reciprocity than one would expect 
by chance, given the numbers of choices made by the actors. 

The advice relation has an M closer to the average. We observe 45 
mutuals, and the expected number is 42.38. Since the standard deviation 
of the number of mutua Is is 9.23, this difference (45-42.38) is quite small, 
and there is no significant difference for the advice relation between the 
numbers of mutual dyads expected and observed. The tendency for 
advice to be reciprocated does not appear as strong a� for friendship. 

Thus, one can see how inference about M can lead to statements 
about the level of reciprocity for a relation. Unlike the indices for 
mutuality discussed earlier in this chapter, we can now make definitive, 
statistical conclusions about reciprocity, thanks to the adoption of a 
proper probability distribution. 

13.8 I8iOther Conditional Uniform Distributions 

There are several very important conditional uniform distributions that 
are straightforward generalizations of the distributions that we have just 
discussed. Some of them are so complex that (until very recently) no 
simple ways existed to simulate random digraphs with these distributions. 
The first two are relatively easy to understand, and will be used in Chap
ters 14-16. The last three are more complicated. The five distributions 
are: 

(i) Uniform distribution conditional on indegrees 
(ii) Uniform distribution conditional on the numbers of mutual, 

asymmetric, and null dyad' 
(iii) Uniform distribution conditional on outdegrees and indegrees 

simultaneously 
(iv) Uniform distribution conditional on outdegrees and number of 

mutuals 
(v) Uniform distribution conditional on outdegrees, indegrees, and 

number of mutuals 

The first two distributions will be described in some detail. The first 
is quite similar to the conditional uniform distribution that conditions 
on the outdegrees, discussed earlier in the chapter. The second is quite 
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important, fixing the three counts of the dyad census, and will be used 
to study the triad census in Chapter 14. 

The latter three distributions are combinations of the simpler condi
tional distributions discussed earlier in this chapter. Of these three, the 
first is a combination of the conditional distribution that conditions on 
the outdcgrees (UI {X,+}) and the conditional distribution that condi
tions on the indegrees (UI{X+}}). It will be of interest substantively to 
condition simultaneously on both of these sets of graph properties. The 
second distribution combines conditioning on the outdegrees (UI {Xi+}) 
and conditioning on specific values of the dyad census (UlMAN). Such 
a distribution is important because it controls for the out degrees of a 
digraph, which are frequently fixed by experimental design, and the dyad 
census, which is the simplest, yet important, collection of subgraphs. As 
we will show, even though it appears that we only condition on M, 
this distribution indirectly fixes A and N. The third distribution is a 
combination of the first two. 

A simple situation will help illustrate why these distributions are 
important. Suppose that a relation is measured on actors using a fixed 
choice design, so that all outdegrees are fixed, say, at Xi+ = 5. If an 
examination of the dyad census reveals that mutual dyads are quite rare, 
so that most relationships are asymmetric, then statistical investigations 
concerning this network should be made by conditioning not only on 
the fixed outdegrees, but also on the number of mutual dyads actually 
observed among the data. One could assume that the sociomatrix was 
distributed as a uniform random matrix, conditional on the outdegrees 
and number of mutuals. This allows all statistical inferences to be made 
only among those sociomatrices with the same outdegrees and M value 
as observed in the data set. In this way, we fix two important aspects of 
this relation - the fixed outdegrees and the low level of reciprocity -
in order to study if any additional structure exists in the network. 

13.8.1 Uniform Distribution, Conditional on the Indegrees 

We now examine a distribution very similar to UI{Xi+}. Rather than 
conditioning on the row totals of a sociomatrix or the outdegrees of a 
sociogram, this distribution conditions on the column totals or indegrees. 
We will let {X+"X+2, . . .  ,X+g} refer to the set of in degrees of a random 
digraph. Lowercase letters will refer to the realizations for these g random 
variables; specifically, x+} is one possible value for X+}. Each x+I can 
take on all integer values between 0 and g - 1. 



546 Dyads 

Since the column totals of a socioml;ltrix (the indegrees) are usually 
not fixed by experimental design, the UI{X+J} distribution is not used for 
inferential purposes as frequently as UI{Xi+}. However, from a structural 
viewpoint, it is indeed interesting to study aspects of the digraph by 
fixing the indegrees at the observed values. For example, is the level of 
reciprocity (as reflected by the magnitude of M) more than what one 
would expect by chance, given, say, that all indegrees are constant (that 
is, all actors are, roughly, equally prestigious)? 

The UI{X+J} random digraph distribution is a conditional uniform 
distribution that conditions on a fixed set of indegrees. Every directed 
graph with the specified indegrees, X+1 = X+I, X+2 = X+2, . . .  , X+g = x+g, 

has equal probability of occurring. The sample space contains all digraphs 
with exactly the specified indegrees. Digraphs with indegrees not equal to 
the collection of specified indegrees have zero probabilities of occurring, 
since such digraphs are not in the sample space. As pointed out by Katz 
and Powell ( 1957), if one fixes the row totals· of a sociomatrix, and then 
transposes the matrix (so that the U, i)th element of the transposed matrix 
is the (i, j)th element of the original matrix), one obtains the UI{X+J} 
distribution, where the conditioning indegrees are the original, fixed row 
totals. So, fixing row sums to be equal to the specified indegrees, and then 
transposing, gives a random digraph distributed as a UI {X+J} random 
digraph. 

It follows from the relationship between UI{Xi+} and UI{X+J} that 
there are (g-I) ways to place the correct number of l's in the jth column X+j 
of the sociomatrix. As with the rows in a UI{Xi+}-distributed digraph, the 
columns in a UI{X+J}-distributed digraph are statistically independent. 
We multiply the number of ways to allocate the I's in each column 
across all columns to obtain IU�

I 
(�:�) as the total number of digraphs 

that have the specified indegrees. Each of these random digraphs is 
equally likely under the uniform distribution, conditional on a fixed set 
of indegrees. This number is the size of the sample space of digraphs 
under this distribution. 

The UI{X+J = x+J} random directed graph distribution has probability 
mass function { .fI(,�.) , if X+J = x+J for all j, 

P(X = x) = j�1 '+i 
0, otherwise. 

( 13.35) 

A random digraph distributed according to this distribution can be 
simulated just as a random UI{Xi+} digraph is simulated. One uses the 
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fixed set of indegrees as row totals for the sociomatrix associated with 
the digraph, allocates x+i 1's at random to the jth row. for each of the 
g rows, and then transposes the sociomatrix. 

13.8.2 The UlMAN Distribution 

We now turn to a more iuteresting conditional uniform distribution. 
Consider tbe numbers of the different types of dyads. The distribution 
discussed in these next paragraphs is one of the most frequently used 
random directed graph distributions in social network analysis. It is 
a uniform distribution which conditions on the numbers of mutual. 
asymmetric, and null dyads in the digraph - that is, the dyad census 
itself. Using our symbols for the numbers of these dyads (M, A, and N, 
respectively), we can refer to this distribution as UIM = m,A = a, N = n, 
where m, a, and n are the actual frequencies of the three types of dyads 
observed for a particular digraph. This conditional distribution was 
used quite extensively by Holland and Leinhardt (1975, and references 
therein). Snijders and Stokman (1987) extend UlMAN to networks with 
actors partitioned into distinct subsets (such as school-children into a 
subset of boys and a subset of girls). 

The UlMAN distribution is the conditional uniform distribution which 
puts equal probability on all digraphs in Gd(vV) which have M = m,A = 

a, and N = n dyads. We should note that the sum m + a + n is exactly 
(n, since every dyad must be one of the three types; consequently, a 
given M, A, and N must satisfy this equality for the observed value of g. 
This implies that one only need condition on two of these three counts, 
since the third will automatically be fixed. 

Note that if one just pulls values for m, a, and n "out of the air," then 
the constraint that these three counts sum to m may not be satisfied. 
In that case, the subset of Gd(vV) with the given values of M, A, and 
N may be empty. Holland and Leinhardt's preference for UlMAN is 
due primarily to the fact that it provides a lot of conditioning while still 
allowing easy calculations. In fact, it is quite useful in social network 
analysis, when working with a specific set of graph properties (such as 
the triad census) to fix or condition on all "lower-level" graph properties 
(such as the dyad census). This is exactly the approach that we take 
in Chapter 14, where the UlMAN distribution will be used extensively 
when studying triads - that is, we fix the dyad census to study triadic 
frequencies. In this chapter, we have also showed how one can use the 
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UIL distribution to study dyad counts - that is, fixing the number of 
arcs, L, to study the numbers of the different dyad types. 

We first consider how many random digraphs have exactly the specified 
numbers of m, a, and n dyads. That is, we want to construct a sample 
space consisting of only the digraphs with g nodes which have m mutual 
dyads, a asymmetric dyads, and n null dyads. In total, there are (D = 

g(g - 1  )/2 dyads in the digraph. To consider the size of the sample space, 
we must answer the question: "How many ways can we take the dyads 
and divide them so that the first group has m dyads, the second a, and 
the third, the remainder of the dyads, will be null?" 

This is a combinatorial problem, not unlike the one we considered for 
the UIL distribution. There are m !  ways to order all the dyads. The 
first m then become mutuals, the next a, asymmetrics, and the remainder 
« (�)- m - a = n) become nulls. There are also m!, a!, and n !  ways, 
respectively, to order the dyads within the three sets. Lastly, each of 
the asymmetric dyads can go in one of two directions, and the direction 
for a specific asymmetric can be determined by a toss of a fair coin. 
Thus, there are 2" ways of ordering the a asymmetrics. Putting this all 

together gives us (2a) [m !] / [m! a! nil different digraphs with m mutual, 

a asymmetric, and n null dyads (where m + a + n = m). 
Thus, this statistical conditioning on the numbers of the three different 

kinds of dyads reduces the number of possible random digraphs from 

2g(g-l) to (2")[m !] / [m! a! nil. This conditioning can reduce the size 

of the sample space, S, to a number quite a bit smaller than the total 
number of digraphs in Gd(JV). 

For example, if g = 10, we have (�) = 45 dyads. Assume that we are 
interested just in digraphs with a dyad census of m = 10 mutual dyads, 
a = 10 asymmetric dyads, and n = 25 null dyads. From the counting 
described in the above paragraph, we find that there are 

(210) [45 !] 
[10!10!25!] 

[(1024)(1.1962 x 1056)] 
[(3.6288 x 106)(3.6288 x 106)(1.5511 x 1025)]

, 

which equals 5.9971 x 1020 possible random digraphs. Notice that this 
is much smaller than the entire collection of digraphs in 0'a(IO), of size 
approximately 1027. Note also that with ten asymmetries and ten mutuals, 
there are thirty arcs in the digraph. If we only condition on digraphs 
that have c = 30 arcs, we have roughly 7 x 1023 possible digraphs; 
consequently, specifying that these arcs are placed in a configuration that 
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has ten asymmetrics and ten mutuals reduces the number of possible 
digraphs substantially. 

As earlier, these numbers are much too large to comprehend. So, let 
us return to our little digraph, with just four nodes, and thus, six dyads. 
Assume that we still have six ares, which are arranged in the digraph 
to yield m = 2 mutuals, u = 2 asymmetries, and n = 2 nulls. One can 
calculate that there are 

(22)6 ! 
= 

2880 
= 45 

2 12 ! 2 !  64 

digraphs with the specified values for M, A, and N. We have reduced 
the total possible number of digraphs with 4 nodes from 4096 to 924 
by conditioning on the presence of 6 arcs, and then to 45 by requiring 
that these arcs exist in 2 mutuals, 2 asymmetrics, and 2 nulls. So, one 
can see that even though the dyad census is a simple digraph property, 
conditioning on it greatly reduces the size of the sample space. 

In general, the more complicated the conditional distribution (that is, 
the more graph properties that we condition on), the fewer elements will 
be present in the conditional sample space. We can restrict the types of 
directed graphs that are of interest to us by insisting that the graphs have 
specific properties, namely that M = m, A = a, and N = n, for whatever 
m, a, and n we are interested in. The UIM, A, N distribution conditions 
on two digraph properties (M and A, since N is determined by g, M, 
and A). Compare this to the uniform distribution conditional on the 
number of arcs - a distribution conditional on just one quantity. The 
extra conditioning provided by the second quantity greatly reduces the 
size of the sample space. But, at the same time, the number of possible 
values to condition on increases, so that there are many more UlMAN 
distributions than UIL distributions. 

To find the probability mass function of a uniform or conditional 
uniform distribution, we need to count the number of elements in the 
sample space. Each of these elements is equally likely to occur, so that 
the probability of any one of them is simply the reciprocal of the number 
of elements in S. Therefore, the UlMAN conditional uniform distribution 
has probability mass function 

P(X = x) = { 
where m + a + n =  m. 

[m! at n!] 
(2"lm! 

0, 

if M = m,A = a, N = n  
otherwise, 

(13,36) 
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13.8.3 More Complex Distributions 

The UI{X,+} , {X+j} Distribution. The distribution that combines 
the conditioning of UI{X,+} and UI{X+j} is the UI{Xi+}, {X+j} distribu
tion. This conditional uniform distribution simultaneously conditions on 
both the indegrees and the outdegrees of the digraph. All digraphs with 
the specified values of the {X,+} and the {X+j} are equally likely. That 
is, the sample space includes all digraphs with X,+ = x,+, i = 1 , 2, . . .  , g, 
and X+j = x+j, j = 1 ,2, . . . , g. Digraphs that do not satisfy these con
straints are absent from the sample space, and thus, cannot occur. This 
distribution is extremely important in social network analysis, since it 
can be used to control statistically for both choices made by each actor 
(frequently fixed by the experimental design) and choices received. Its 
relation to the simpler conditional uniform distributions is discussed by 
Katz and Powell (1957). 

Suppose that one has a set of both indegrees and outdegrees. An 
interesting question is whether a sociomatrix could have arisen from a 
random digraph distribution with iudegrees and outdegrees correspond
ing to the two sets. Fulkerson (1960) and Ford and Fulkerson (1962) 
give necessary and sufficient conditions for the existence of at least one 
element in the sample space. Their resuits, which consist of a series of in
equality constraints on the {x,+} and the {x+j}, can be used to determine 
if a set of outdegrees and a set of indegrees could have arisen from a 
single sociomatrix. Clearly, one necessary condition is that the row totals 
and column totals must sum to the same quantity: L, the total number 
of I's in the sociomatrix. 

Unfortunately, little is known about the UI {X,+}, {X+j} distribution. 
For example, one cannot write down its probability mass function. 

Snijders (1991a) has developed a method, however, for enumerating all 
digraphs that have fixed indegrees and outdegrees. Once all the digraphs 
with given margins or degrees have been enumerated, this method can 
then be used to conduct permutation tests of simpler graph properties, 
such as the number of mutual dyads. Graph theorists have developed 
complicated, recursive formulas which give the number of digraphs that 
exist with specified outdegrees and indegrees. Katz and Powell (1954 and 
1957) give such formulas (see also Sukhatme 1938; Gale 1957; Ryser 
1957; Rarary and Palmer 1966; Bekessy, Bekessy, and Komlos 1972; 
and Majcher 1985, who considered digraphs that can have self-choices). 
For example, let g = 4, and specify a set of outdegrees of {3, 2, 1, I}, 
and indegrees of {2, 2, 1, 2}. One can calculate that there are exactly 
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Fig. 13.2. The digraphs with the specified sets of outdegrees and inde
grees 

3 digraphs with these outdegrees and indegrees; they are shown, along 
with their sociomatrices, in Figure 13.2. Obviously, in this example, it 
is not difficult to write down these three digraphs directly, obviating the 
need for complicated formulas. But, now consider a second example, with 
g = 8 nodes, and outdegrees of {l, 1, 1, 1, 1, 1, 1, I} - that is, all ones -
and indegrees of {3, 2, 1, 1, 1, 0, 0, o}. Calculations are certainly needed 
here, and Katz and Powell's formulas give us 1143 possible digraphs with 
this set of indegrees, and outdegrees fixed at unity. Clearly, enumerating 
them all would be an enormous task. 

We used Snijders' (1991a) method to calculate the expected number 
of mutual dyads assuming that all digraphs with specified indegrees and 
outdegrees are equally likely. Working once again with Krackhardt's 
network of high-tech managers, we assumed that the UI{X,+}, {X+j} 
distribution was operating. Recall that for the friendship relation, there 
are twenty-three mutual dyads, while for the advice relation, there are 
forty-five. 

First, for the friendship relation, Snijders' algorithm calculates only 
13.90 expected mutual dyads, compared to the 23 ohserved. Since the 
standard deviation of M is 2.21, the difference between observed and 
expected here is quite large, implying that even when controlling for 
choices made and choices received, the level of reciprocity for this relation 
is quite apparent. For the advice relation, the expected number of mutual 
dyads is 37.05, so that we observe only about 8 more mutuals than 
expected. But even this small relative difference is statistically large, 
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since the standard deviation of M is 2.00. (It is interesting to compare 
these expectations to those discussed earlier in the chapter, calculated by 
conditioning on just the outdegrees.) 

The UIM, {Xi+l Distribution. Another complex conditional uni
fonn distribution worth mentioning is the uniform distribution which 
conditions on both the number of mutual dyads and the outdegrees. 
We note that such conditioning also fixes the numbers of asymmetric 
and null dyads. The counts A and N are fixed because the sum of the 
outdegrees equals L, the total number of arcs, and A (the number of 
asymmetric dyads) = L-2M. Since the number of null dyads (N) is fixed 
once we condition on the number of actors (g) and M and A (because N 
= m -M - A), the UIM, {Xi+l distribution actually is a combination of 
UlMAN, and UI {Xi+}. Little is known about this distribution, but be
cause of the importance of the two distributions that form it, UIM, {Xi+} 
could be quite useful in practice. 

The UIM, {Xi+}, {Xi+} Distribution. A very important distribu
tion in social network analysis is the uniform distribution that conditions 
on the dyad census, the outdegrees, and the indegrees. This distribu
tion, referred to as UIM, {Xi+}' {Xi+}' controls for choices made, choices 
received, and the types of dyads. This distribution combines the three 
conditional distributions that we have emphasized in this section. It is 
so complex, that it is not clear that a specified value for M is at all 
consistent with the specified indegrees and outdegrees. Snijders (1991b) 
has begun to work with this very important distribution. 

13.9 Other Research 

A good review of measures of reciprocity in social network data, assum
ing a dichotomous relation, is given by Rao and Bandyopadhyay (1987). 
These authors recommend use of several measures based on standardiza
tions of PH' Included in their review are a number of probabilistic-based 
measures of reciprocity, including a model-based parameter of tendencies 
toward reciprocity, which we describe in detail in Chapter 15. We should 
note that this reciprocity measure, which we will simply call P, is easily 
generalizable to valued relations. 

There are other measures of reciprocity available, to be used in dyadic 
analyses. Rao and Rao (1988) extend PH to valued relational variables by 
considering the smaller of Xij and Xji (which will be integer-valued) as 
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a measure of the mutuality between actors i and j. Unfortunately, there 
is no easy or straightforward way to standardize such a measure. 

We have presented a number of distributions that can be placed 011 
the set of all digraphs on g nodes, Gd(%). Several of them do not 
have simple probability mass functions, so that we have no idea how 
large their sample spaces are. Fortunately, there are many that are well 
understood and are easy to work with. As we have mentioned, one has 
to be careful when choosing values for the conditioning graph properties, 
since these values must be consistent. Otherwise, the sample space could 
very well be empty, implying no digraphs exist with the specified values 
for the conditioning graph properties. Usually, however, we condition 
using values actually observed for a digraph so that we know that the 
sample space has at least one element ! 

We should note that conditional uniform distributions for random 
digraphs can play an important theoretical role in social network analyses. 
One first must assume that the network under study is random, and that 
the actual data in hand is but one of many possible realizations of the 
random digraph. Assuming one of these random digraph distributions 
described here as a reference distribution allows the researcher to focus 
attention only on those possible digraph realizations that have certain 
characteristics which match those in the empirical data. With this strategy, 
a search for structnral patterns in the data can be conducted with the 
knowledge that these patterns are not artifacts; that is, any interesting 
data features will not be due to the graph properties that have been fixed 
or conditioned upon. 

Holland and Leinhardt (1970) chose to work with the UlMAN con
ditional uniform distribution, stating that it approximates the more im
portant, but too complicated UIM, {Xi+}, {Xi+} conditional uniform dis
tribution. However, this is only a weak approximation; clearly, the 
distribution does not control for either the set of indegrees or the set 
of outdegrees (which actually may be fixed by design). Katz and Pow
ell (1957) and Wasserman (1977) proposed the use of the UI{Xi+} and 
UI{X+j} distributions, since the former does control for the outdegrees 
and the latter, for a very important structural property (tendencies to
ward differential popularity). Our philosophy is that the more digraph 
distributions that are understood and can be worked with, the better that 
social network analysis will be. 

Frequently in subgraph analyses it is useful to ask if a particular struc
tural property (such as a tendency toward particular triads or threesomes) 
is due to simpler structural properties, such as dyad counts or indcgl'ccs. 



554 Dyads 

One way of answering this question is to calculate the expected value 
of a quantity, measuring the property, using a digraph distribution that 
statistically conditions on the simpler properties. Since the indegrees are 
crude measures of popularity, and since popularity is such an impor
tant, yet simple, structural property, the UI{X+j} distribution is a useful 
conditional distribution for us. 

For example, suppose we are interested in the number of isolated 
actors in a network, and choose to define an isolated actor as an actor 
with an indegree equal to 0 - x+j = 0 if actor j is an isolate. But, the 
data that we have gathered are fixed choice, with outdegrees fixed at 3 
- X;+ = 3 by design. To study the indegrees observed, and particularly 
the number of actors with indegrees equal to 0, it is essential that we 
statistically control for the fixed outdegrees. So, we could determine the 
expected number of actors with indegrees of 0 by using the UI {X;+} 
distribution. We refer the reader to Katz (1952) for this methodology. 

We note that the distributions described here are primarily used by 
researchers to study the statistical properties of various digraph proper
ties. One frequently tries to determine how a random graph property, 
such as the number of mutual dyads, varies under specific probability 
distributions, such as the conditional uniform distribution that controls 
for the outdegrees. Some researchers (such as Holland and Leinhardt, 
1975) have pioneered methods to approximate these calculations under 
distributions that are too hard to work with directly. Such approxima
tions are quite valuable (for example, they allow us to work with the 
UIM, {X;+}, {X;+} distribution). 

Let us close this section by briefly discussing how random digraphs 
can be simulated, assuming that one of the distributions discussed in this 
chapter is appropriate. First, a digraph distributed as a uniform random 
variable is easily simulated using (13.21). Note that the arcs of the 
sociogram or the elements of the sociomatrix are all independent of one 
another; thus, one can simulate each arc/elelnent one at a time, without 
worrying about the values assigned to the other arcs/elements. The 
probability that any one of the elements is unity is exactly 1/2. So, given 
a fair coin, one can "toss" it g(g - 1)  times to determine which elements 
of X are l's or which lines between ordered pairs of actors are present. 
This coin, of course, can be simulated with a uniform pseudo-random 
number generator. 

The Bernoulli distribution is simulated by taking a set of "hypothetical 
coins" with probabilities of heads matching the {P;j}. The entries of X 
are still independent, so the coin tosses are all independent of each other. 
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One must toss the correct coin for each entry ; that is, for the (i,./)tll 
entry, the probability of a head must equal the probability that this entl'Y 
is unity. If all these probabilities differ (and there are g(g - 1) of them), 
then we will need g(g - 1) coins. In practice, this distribution is usually 
simulated by taking a set of g(g - 1) uniform pseudo-random numbers. 
Such numbers are found in volumes of statistical tables (such as Beyer 
1968), or are easily generated by computer languages or by statistical 
computing packages (such as SPSSx or SYSTA1). A good discussion 
of simulating random digraph distributions can be found in Wasserman 
(1977). 

We emphasize that research on the statistical analysis of M is quite 
limited. We have results only for the UI {X,+} distribution. The popular 
UlMAN distribution is not relevant here, since it conditions on M, the 
graph property of interest. Katz, Tagiuri, and Wilson (1958, page 102) 
state : 

. . .  mutuality should not be interpreted without considering the arrays 
of both given and received choices. 

That is, what we really need is continued research (following the pioneer
ing work of Snijders 1991a) on the sampling distribution of M when X 
� UI{Xi+}, {X+J}' A large level of mutuality in a network with very un
equal indegrees is much more important than in a network which is more 
equitable in the choices received. Interpreting M without controlling for 
the outdegrees and indegrees can be very misleading. 

13.10 Conclusion 

The techniques discovered and used by the early sociometricians are still 
some of the best ever developed, and the concerns of these methodologists 
about the quality of a sociometric analysis still hold today. In this chapter 
we have presented some of their techniques; other ideas, based on the 
research of these scholars, can be found in Chapters 14-16. A good 
social network analysis should begin with these methods. We have 
described a wide range of digraph distributions in this chapter, and will 
use them to get better insights into social structure. We now continue 
with applications of digraph distributions to triads. 
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Triads 

Many researchers have shown, using empirical studies, that social net
work data possess strong deviations from randomness. That is, when 
one analyzes such data using baseline or null models that assume various 
types of randomness and specific tendencies that should arise in such data 
(such as equal popularity, lack of transitivity, or no reciprocity), the data 
often fail to agree with predictions from the models. Other researchers 
have reasoned that these deviations from randomness in social network 
data are caused by the presence of special structural patterns (such as 
differential popularity, transitivity, or tendencies toward reciprocity of 
relations) that have been studied for years by social network theorists. 
In Chapter 6 we described a few of these theories; in this chapter, we 
show how some of these theories can be tested by studying triads using 
the triad census (the counts of the various types of triads). 

For example, consider transitivity, as defined in Chapter 6. This 
theory states that various triads are not possible, or at least should not 
occur, if actor behaviors are transitive. Certain triads should occur if 
behavior is indeed transitive. Suppose that a researcher has a network 
under investigation, and wishes to study whether this proposition is 
viable. We can take the triads that actually arise in the network, and 
compare these observed frequencies to the frequencies that are to be 
expected. The details of this comparison will be given in this chapter. 
For such comparisons, we will need some of the random directed graph 
distributions described in  Chapter 13. 

Much of the work on theories such as balance and transitivity has used 
the triad census and has been empirical. Holland and Leinhardt (1972, 
1979) (as reviewed by Davis 1979) analyzed data from many sociometric 
studies. Their sociometric data bank (see Davis 1970; Leinhardt 1972; 
and Davis and Leinhardt 1972) contains almost 800 sociomatrices from 
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several hundred sociometric studies. A variety of analyses of these data 
have verified the presence of several important structural properties, such 
as balance, clustering, ranked clusters, and transitivity. An important 
research agenda of these early researchers was to link structural patterns 
found in triads (microstructural tendencies) to macrostructural patterns, 
such as ranked clusters, partial orderings, and so on (see the work on 

this micro-macro linkage of Johnsen 1985, 1986). This research on triad 
counts is nicely summarized by Leik and Meeker (1975). We will show 
how statistical analyses of the triad census can test these theories, and 
will present the necessary statistical methods, demonstrating them on 
several examples. 

Throughout this chapter, we will assume that we are studying a sin
gle, directional, dichotomous relation. This assumption is primarily for 
historical reasons; nearly all of the research on triadic methods begins 
with such a statement. Extensions of the triad methodologies to valued 
relations are quite interesting, but because of the complex mathematical 
structures that result, such research has not been undertaken. 

At the heart of triadic analyses is the triad census, a set of counts of the 
different kinds of triads that arise in an observed network. We will show 
how one can examine special sums (actually, linear combinations) of these 
counts in order to study many important theories. The triad census does 
not condense the original data as much as the dyad census, since it has 
sixteen components rather than just three. Therefore, there is considerably 
more that we can learn from the triad census. Triads themselves can 
manifest many interesting structural properties, such as tendencies toward 
clustering, transitivity, and ranked clusterings. Examination of the counts 
contained in the triad census help the researcher determine whether any 
of these properties are present at the network level, and if so, to what 
degree. 

Triads are also important in laboratory studies of social psychol
ogy that involve coalition formation (see Caplow 1956; Festinger 1957; 
Yinacke and Arkoff 1957; Cartwright 1959; Thibaut and Kelley 1959, 
pages 196-197; Kelley and Arrowood 1960; Gamson 1964; Newcomb 
1968; and Henley, Horsfall, and De Soto 1969), and attitude change 
(see Osgood and Tannenbaum 1955; Rosenberg and Abelson 1960; and 
Anderson 1971, 1977). However, despite the recognition of the relevance 
of higher-order subgroups, most studies continue to use the dyad as the 
basic experimental unit (Weick and Penner 1966). 

The methodology described in this chapter is statistical, and uses tho 
random directed distributions described in Chapter 13. We introduce tho 
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triad census, and describe its components and features in detail. Many 
important graph features can be calculated directly from the triad census; 
such calculations all use linear combinations of the census, as we will see. 

We present additional statistical theory for the triad census, and then 
apply it to the testing of substantive structural hypotheses. This theory 
is quite mathematical, and may be skipped by statistical novices (par
ticularly the section concerning the mean and variance of a k-subgraph 
census). A triple of actors gives rise to sixty-four possible configurations 
of choices and non-choices. To test a theory, one must determine which 
of the configurations are possible (according to that theory), and then 
study their empirical frequencies. 

14.1 Random Models and Substantive Hypotheses 

The first question is what statistical model(s) should be used to study 
and test for non-randomness in social network data. In Chapter 13, we 
described a number of distributions for random directed graphs, and 
stated that such distributions are frequently used as null models in social 
network analysis. One compares the data to one of these "models" to 
determine how poorly the model fits the data. We argued that several 
nodal and dyad properties, such as 

(i) Nodal outdegrees - to control for possible experimental con
straints (such as fixed choice data) 

(ii) Nodal indegrees - to control for differential popularity 
(iii) Dyadic mutuality - to control for tendencies toward reciproca

tion of choices 

are perhaps the important directed graph properties. One should consider 
the use of digraph distributions that condition on all of these properties. 
In this chapter, we show how this can be done approximately, so that a 
researcher can test whether a social network data set possesses important 
structural, substantive tendencies beyond the simpler tendencies that one 
conditions on. That is, if one uses a conditional distribution to study 
some data set that conditions on, say, the indegrees, then if the data 
do not adhere to this distributional modeL one can conclude that this 
lack-of-fit must be due to something other than differential popularity 
among the actors. 

We should stress that theories such as structural balance and transitiv
ity are deterministic. They arose in the 1950's and 1960's primarily from 
the use of the mathematical axioms of graph theory. It became easy to 
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state the implications of a particular theory using notions of nodes and 
arcs. In general, these theories state that specific subgraphs contained in 
the graph theoretic representation of a social network should not occur. 
For example, transitivity states that the certain triads, which display 
intransitivity because the first actor of a triple does not "choose" the 
third even though the first chooses the second and the second chooses 
the third, should not arise in a network data set. The determinism is 
readily apparent; certain triads should (or should not) exist. But when 
these theories are placed in a statistical framework, one can study the 
degree to which they hold for the entire network. Holland aud Leinhardt 
(1970) summarized this approach to triadic studies quite well: 

It still remains for empirical verification to help us distinguish formal 
theory from formal nonsense; in this instance, [traditional network use 
of] graph theory, because of its deterministic nature, has limited use. For 
example, a statement which implies that a group cannot be balanced if 
a line between two points links two otherwise disconnected components 
may follow logically from the axioms of graph theory; it does not make 
much sense in the logic of empirical sociology. (page 412) 

We will focus on two examples in this chapter, both of which we have 
discussed in Chapter 2 and have analyzed in earlier chapters in this book. 
We study Krackhardt's high-tech managers and the friendship relation 
measured on them, and Freeman's EIES network of researchers. 

14.2 Triads 

Consider a triple of actors, and assume that this triple involves n" nj, 

and nk, where i i= j i= k. The three actors themselves without the ties that 
may exist between them will be called a triple ; when we also consider the 
ties that may link these three actors we have a triad. We define T'jk as the 
triad, Or 3-subgraph (as defined in Chapter 13) involving n" nj, and nk. 

In a triad, the actual order of the actors matters, so that we will always 
let i < j < k . There are six possible ordered triples associated with each 
triad, since there are six ways that we can permute three actors. Recall 
that we used these triples when defining transitivity in Chapter 6. So 
when considering ordered triples, each threesome of actors can occur six 
different ways. But as mentioned, it is conventional when listing triads 
to let i < j < k. 

For a set of g actors, there are m triads - the number of ways that 
we can take g items or actors, three at a time. We will let :Y denote the 
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nl =Allison 
nz = Drew 
n3 = Eliot 
n4 = Keith 
ns = Ross 
n6 = Sarah 

Fig. 14.1. Sociogram of friendship at the beginning of the school year 
for the hypothetical children network 

set of all triads: f7 = {T123, T124, . . .  , T(g-2).(g_I),g} . This set is of size 
m = (1/6)g(g - 1)(g - 2). 

As an example, we take a set of six actors. Specifically, we will look at 
the six children that we have used as a hypothetical example throughout 
the book. The six children are indexed by i = 1 , 2, . . .  , 6, and we measure 
a new relation: a directional dichotomous relation recording friendship 
at the beginning of the third grade, one full year after the beginning of 
the study. We have an arc from node i to node j in our directed graph 
representing this friendship relation if child i reports that child j is a 
friend at the beginning of third grade. The sociogram for this hypothetical 
relation and this set of actors is given in Figure 14.1. There are m = 20 
triads that can be considered here ; thus f7 = {T123, T124, . . .  , T456} . 

Consider now how many ties can be present in a triad. There are 
three actors in a triad, and each actor can relate to two other actors. 
This gives six possible ties. In the mathematical representation of this 
triad, each of the six arcs can be present or absent, so that there are 26 
= 64 realizations, "states," or possible values for a triad, if we record 
the node labels. If we ignore the labels, then some of these states 
will be isomorphic. That is, they will be structurally indistinguishable 
from one another. All triads that are indistinguishable form one of the 
isomorphism classes for triads. Remember (as discussed in Chapter 13) 
that a dyad has just four states and three unique, isomorphism classes : 
Mutual, Asymmetric (which contains two states), and Null. The question 
here is how many isomorphism classes exist for triads? 



14.2 Triads 561 
To answer this, let us examine some of the triadic realizations. A few of 

these realizations are easy to understand. The triad with no arcs prc"cnl 
arises when the relationships between all pairs of nodes are null. Clearly, 
this is one very special isomorphism class for triads, which we will call 
the completely null triad. And the triad with all arcs present arises when 
the relationships between all pairs of nodes are mutual. This is a second 
isomorphism class, called the completely mutual triad. Only one of the 
sixty-four triad states occupies each of these isomorphism classes. But 
most of the other sixty-two states are harder to label and characterize. 

For example, look at our simple example in Figure 14.1, and the 
triad involving children 1, 2, and 3 - Allison, Drew, and Eliot, T123• 
In this triad, Allison is friendly toward Drew, and vice versa (so that 
nj and n2 relate to each other), Allison chooses Eliot as a friend (nj 
relates to n3), and lastly, Eliot chooses Drew as a friend (n3 relates to 
n2); that is, nl � n2; n2 ----t nl; n1 ---+ n3; n3 -1+ n1; n2 -ft n3; and 
n3 -> n2· This particular triad state is shown in Figure 14.2. Note that 
it has four of the six possible ties present. Missing are the ties from n3 
to nj and from n2 to nJ. Also note that it is not particularly easy to 
understand this triad. We have a single mutual relationship, a two-way 
exchange of friendship involving Allison and. Drew, and an apparent 
cyclic relationship involving all children in the triple: Allison "chooses" 
Eliot, Eliot "chooses" Drew, and Drew "chooses" Allison. We can call 
this particular triad a "mutual/cyclic asymmetrics" triad. Note that this 
triad displays transitivity (see Chapter 6); that is, nj -> n3, n3 -> n2, 
and nj -> n2. In words, Allison chooses Eliot as a friend, Eliot chooses 
Drew as a friend, so Allison chooses Drew as a friend as well. The 
triad also has two intransitivities: n2 ---+ nl, nl ----t n3. but n2 +- n3. and 
nJ -> nz, n2 -> nj, but nJ -/-> nj. The actions taken by the actors in this 
triad are rather complicated, so that the triad is quite interesting. This 
mutual/cyclic asymmetrics triad will play a crucial role in the statistical 
analy�es of triads discussed later in this chapter. 

A very important question is whether there any other triad states that 
are isomorphic to this mutual/cyclic asymmetrics triad. And how many 
different triad isomorphism classes, or triad types are there? Let us 
consider these questions by referring to the mutual/cyclic asymmetrics 
triad. This triad has the following arcs: i -> j; j -> i; i -> k; k -/-> i; 
j -1+ k; and k ---+ j, where the three actors, i, j, and k, are any three generic 
nodes; that is, we ignore the labels attached to the nodes. Consider now II 
triad state where i -> j; j -/-> i; i -/-> k; k -> i; j -> k; and k -> j. Drawing 
both of these triads will demonstrate that the first triad is iSQrmorphic 
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T'23 

Fig. 14.2. Mutual/cyclic asymmetric triad involving children Allison 
(nil, Drew (n,), and Eliot (n3) 

to the second. The second is obtained simply by relabeling the nodes of 
the first. 

To detennine how many triad states are isomorphic to a particular state 
is an onerous task. One must list all sixty-four triad states and categorize 
them into their triad isormorphism classes. As another example, consider 
the simple triad that contains a single arc: one asymmetric dyad, and two 
null dyads. We can call this triad a "single are" triad. There are six triad 
states that are isomorphic to this triad, which are shown in Figure 14.3. 
They are: 

(i) i --> j; j -/->i; i -/-> k ;  k -/-> i; j -/-> k ;  k -/-> j. 
(ii) i -/-> j; j --> i; i -/-> k ;  k -/-> i; j -/-> k ;  k -/-> j. 

(iii) i -/-> j; j -/-> i; i --> k ;  k -/-> i; j -/-> k ;  k -/-> j. 
(iv) i -/-> j; j -/-> i; i -/-> k ;  k --> i; j -/-> k ;  k -/-> j. 
(v) i -/-> j; j -/-> i; i -/-> k; k -/-> i; j --> k ;  k -/-> j. 

(vi) i -/-> j; j -/-> i; i -/-> k; k -/-> i; j -/-> k; k --> j. 

If we erase all the labels on these six triads, we would not be able to 
distinguisb among them. Consequently, they are all isomorphic, and can 
all be referred to as single arc triads . 

Before we list and discuss the triad isomorphism classes (there are 
sixteen), let us think how to determine how many exis t. The answer to 
the triad isomorphism question is found by considering an important 
fact. A triad is a 3-subgraph. A 3-subgraph is an example of the 
general idea of a k -subgraph. To get a k-subgraph from a directed graph 
with g nodes , we simply delete all but k of the nodes, and tbe arcs 
involving those nodes, in the digraph. Viewed in this way, it is clear 
tbat a k-subgrapb is itself a directed graph, but just with k nodes. Its 
sociomatrix is just a submatrix of the sociomatrix associated witb the 
original digraph. So, one can write down the sixty-four 3 x 3 sociomatrices 
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Fig. 14.3. The six realizations of the single arc triad 

associated with the sixty-four triad states. Four of these sociomatrices 
are listed in Table 14.1. These are the triad states considered in earlier 
paragraphs: completely null triad, completely mutual triad, and the two 
mutualj cyclic asymmetries triads, which are isomorphic. 

Given any two sociomatrices (here, of size 3 x 3), if the rows and 
columns of one can be permuted to obtain the second, then the triad 
states represented by the sociomatrices are isomorphic. The total num
ber of triad types is found by considering all sixty-four triad states, and 
permuting the associated sociomatrices to see how many "unique" so
ciomatrices exist. For the four sociomatrices given in Table 14.1, there are 
three unique ones. From this enumeration of all sixty-four triad states, 
one will find that there are six states isomorphic to our mutual/cyclic 
asymmetries triad. We consider two of them in Table 14.1; there are 
four more (which we will not list here, but which are not hard to write 
down). 

There are six sociomatrices associated with the six triad states isomor
phic to the single arc triad studied earlier. These sociomatrices have just 
a single entry of 1. The remaining five, off-diagonal entries are all O. This 
single 1 can occur in any one of the six off-diagonal entries of a 3 x 3 
sociomatrix. There are exactly six states isomorphic to each other, and 
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Table 14.1. Some sociomatrices for three triad isomorphism classes 

Completely 
Null Triad 

n, nj nk 

n, 0 0 
nj 0 0 
nk 0 0 

Completely 
Mutual Triad 

'" nj n, 

n, 1 1 
nj 1 1 
n, 1 

Two Mutual/Cyclic 
Asymmetric Triads 

n, nj nk 

n, 1 1 
nj 1 0 
nk 0 1 

n, nj nk 

n, 1 0 
nj 1 1 
nk 1 0 

any one of the six sociomatrices can be "mapped into" any of the others 
simply by moving the single 1 into one of the other five locations, or by 
relabeling the rows and columns. 

14.2.1 The Triad Census 

There are sixteen isomorphism classes for the sixty-four different triad 
states. These classes are pictured in Figure 14.4. There are indeed several 
ways that these classes can be labeled. We need descriptions of the classes 
more accurate than the rather vague "mutual/cyclic asymmetries" label 
used earlier for one of the classes. A simple labeling scheme comes from 
Holland and Leinhardt (1970) and Davis and Leinhardt (1972). Each 
type has a label with as many as four characters. The characters are: 
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(i) The first character gives the nnmber of mutual dyads in the 
triad. 

(ii) The second character gives the number of asymmetric dyads in 
the triad. 

(iii) The third character gives the number of null dyads in the triad. 
(iv) And lastly. the fourth character, if present, is used to distinguish 

further among the types. 

This labeling scheme (which we will use here) is sometimes referred to as 
M - A - N labeling, since it highlights the dyadic states contained within 
the triad. 

To attach a fourth character to a label (if necessary), we use additional 
features of the triad. For example, there are two 030 triads, containing 
three asymmetric dyads, to which are attached the additional characters 
"T" and "C" (since the first one contains a transitivity, and the second, 
a cycle). Two other labeling schemes, proposed by Wasserman (1977), 
use the numbers of actors with outdegrees (or indegrees) equal to 0, I, 
or 2, within the triad. 

Note that the sIxteen types in Figure 14.4 are organized in a special 
way. The types are presented in seven rows. Within a row, the types have 
the same number of arcs present, from 0 (first row) to 6 (last row). The 
first row has just one type, the 003 triad (0 mutuals, 0 asymmetrics, and 3 
nulls), containing no arcs, while the last row also has just one type, the 300 
triad (3 mutuals, 0 asymmetrics, and 0 nulls, which we previously called 
completely mutual). Under this M - A - N labeling scheme of Holland 
and Leinhardt, the mutual/cyclic asymmetrics triad mentioned earlier is 
properly termed the 120C triad, since it has I mutual, 2 asymmetrics, 0 
nulls, and appears cyclical. Note that the fourth character, if present, is 
"D" (for down), "U" (for up), "T" (for transitive), or "C" (for cyclic). 

Because of the nature of the triad types, every one of the m triads in 
a directed graph with g nodes lllust be isomorphic to one of the sixteen 
classes. Thus, with some patience, one could examine each of the triads 
in a directed graph, and count how many of these triads belong to each 
of the classes. We will let Tu denote the number of these triads that 
belong to isomorphism class u (where u ranges over the sixteen classes 
listed in Figure 14.4). Thus, T003 is the number of 003 triads (those that 
are completely null) in the digraph, To12, the number of 012 triads (those 
with just one asymmetric dyad, that we called the single arc or arc triad), 
and so forth. We will find it convenient to record all sixteen of these 
frequencies in a vector of length 16, which we will call T. Specifically, 
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Fig. 14.4. The triad isomorphism classes (with standard MAN' labeling) 

T= (To03, T0l2, . .. , T3(0)', (14.1) 

where the order of the elements of T matches the ordering of the classes 
in the figure: 003, 0 12 ,  102, 02ID, 02 1 U, 02 1C, 111D, l 1 1 U, 030T, 
030C, 20 1, 120D, 120 U, 120 C, 210, 300. T is a column vector, so it has 
dimensions 1 6 x 1. The vector T is referred to as the triad census, since 
the sum of the sixteen frequencies contained in it is m, and it gives a 



14.2 Triads 567 

complete classification of all triads in a directed graph. The triad census 
was introduced into social network research by Davis and Leinhardt 
(1968 1972). 

Unlike the three frequencies in the dyad census, the 16 components of 
T are difficult to calculate. There are no simple formulas. In fact, one 
must examine all (�) triads, and place each into its proper category or 
ismorphism class. It is easy to write a computer program to do such a 
calculation. One such program, written in FORTRAN, called TRIADS, 
is discussed by Walker and Wasserman (1987). 

There are twenty triads in the directed graph shown in Figure 14.1. We 
have already described the first triad, T123. This triad has the following 
arcs: nt ---+ n2 ; n2 ---+ nl ; nl -+ n3; n3 -1+ nl ; n2 -1+ n3 ; and n3 -+ nz. This 
triad is a type 120C triad. One can see that there are many null dyads 
in the entire digraph; in fact, the dyad census is (M = 3, A = 4, N = 8), 
so that more than one-half of the dyads are null. This sparseness in 
the digraph (the density is only (10/30) = 0.333) gives us several 003, 
completely null triads. A close examination of the 20 triads shows that 
three of them are 003 triads, and five of them are 0 12 triads. The 
three 00 3 triads are T145, T245, and T456, while the five 0 12 triads are 
T135, T146, T156, T235, and T356. Of the other 12 triads that contain at least 
one arc, we have five 102 triads that contain a single mutual relationship 
(T124, T125, T246, T256, and T345), two l 1 1U  triads (T234, T346), and one 
each of the I 1 1D (Tl34)' 030T (Tl36), 120D (T236), 120C (T123), and 210 
(T126) triads. Thus, the triad census vector is 

T = (3,5,5,0,0,0, 1,2, 1,0,0, 1,0, 1, 1,0)'. 

We should note that the HID and 1 1 1  U triads are intransitive, as defined 
in Chapter 6, since both are missing one arc to complete the transitivity, 
while the 030T and 120D triads have transitivities. 

The triad census is a convenient way to reduce the entire sociomatrix 
X to a smaller set of, in this case, sixteen summary statistics. The larger 
that g is, the more of a reduction that occurs. For a set of ten actors, 
the sociomatrix is of size 10 x 10 with ninety entries; consequently, 
summarizing it with just sixteen statistics is a substantial "condensation" 
of the information in X. 

For specific random directed graph distributions, one can calculate the 
mean and variance of the triad census. Such calculations are similar to 
those for the mean and variance of the components of the dyad census 
(particularly the number of mutual dyads). The mean and variance of the 
triad census are multivariate quantities, and the calculations described in 
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this chapter can be complicated. We will illustrate them in detail later in 
the chapter. 

OStability of a Triad Census. We should note an interesting fact 
about triads. If one changes a single arc in a directed graph (suppose 
the arc from i to j), only a single dyad (Dij) is affected, but (g - 2) triads 

will change (all the triads that involve i and j and include the dyad Dij; 
there are (g - 2) such triads, since we can complement the nodes i and 
j with (g - 2) other nodes). So, the triads are clearly not independent 
of each other. If the arc from i to j is deleted, many triads will change. 
Holland and Leinhardt (1975) note that since the triad census itself is an 
aggregation over all triads in a digraph, 

... the information it contains is relatively stable and is not significantly 
affected by a few changes in the lines of the digraph. (page 7) 

This appears contradictory to us, since we know that changing a single 
arc results in many triad changes. But since the triad census is a 
categorization of all triads, a change of a count here and there is minor. 
After all, there are m triads, and g - 2 of them, which will change after 
a single arc change, is a small fraction of the total. 

To demonstrate the effect of a single arc change on the triad census, 
let us take our example, and make such a change. Suppose that Allison 
really does not choose Drew as a friend ; the earlier information was 
erroneous. Thus, Xl2 = 0, rather than the entry of unity first reported. 
Now, since this set JV has g = 6 nodes, this single arc change will 
affect (g - 2) = 4 triads: Tm, T124, T125, T126; that is, all triads that 
include the dyad D12• These four triads will be re-assigned to different 
isormorphic classes. Specifically, Tl2J loses one arc, and becomes a 030T 
triad, exhibiting a single, transitive relationship. The triads T124 and T125 

lose one arc from the mutual relationship between Allison and Drew, 
and become 012 triads, with just a single arc (from Drew to Allison). 

Lastly, T126, the only triad with five arcs, now has just four, and becomes 
a 120C triad. The triad census becomes 

Tnew = (3,7,3,0,0,0,1,2,2,0,0,1,0,1,0,0)', 

There are now more triads with just a single arc, but the overall conclusion 
about this census is not that different from the conclusion about the 

original T. Most triads are either completely null or include just a 
single arc or single mutual, and there are a non-negligible number of 
intransitive triads. 
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Holland and Leinhardt (1973) have shown that because of this slability 

in the triad census, the vector T is relatively unaffected by measurement 
error (such as loss of arcs due to a fixed choice design) that can arise 
in social network data. This statement must be conditioned on the 
actual outdegrees. If the outdegrees are limited too much by the data 
collection design (such as fixed choice designs, perhaps requesting just 
two nominations, when the actors may really interact with ten other 
actors), no analytic technique will be able to salvage the data. Such 
"measurement errors" caused by fixed choice designs can have large 
effects on the triad counts. Analyses will be difficult, and any structure 
uncovered will likely be artifactual. If, however, the measurement error is 
not too severe, Holland and Leinhardt argue that because of its stability, 
T is an ideal statistic for network analysis. Social network data, as noted 
by Holland and Leinhardt, as well as Hallinan (1972), Killworth (1974), 
and Killworth and Bernard (1979), can be quite "buggy"; hence, triadic 
analyses are usually recommended. 

There are disadvantages to the triad census. If interest is in a small 
number of nodes or arcs in the digraph, focusing on T will not allow the 
researcher to study the necessary quantities. If one is primarily interested 
in the number of isolated nodes in the graph, then such information will 
not be available from T. Our attitude is that the triad census is one of 
a number of digraph properties that should be included in a thorough 
network analysis since it captures and then summarizes several important 
structural properties (such as transitivity) in a parsimonious way. 

Information from a Triad Census, There are mauy graph prop
erties that can be calculated from the sixteen frequencies of the triad 
census. Since each of the triads is categorized into one of the sixteen 
classes, the sum of the counts of the triads in the various classes must be 
(D. Thus, from the triad census, T= {T"}, we have an identity involving 
(D: 

m = L T" . 
" 

(14.2) 

For example, from the first triad census analyzed in the previous para
graphs, the sum of the sixteen counts is (3+5+5+'" + 1+0) = 20; such 
a value for m can only arise with g = 6; that is, g = 6 is the solution 
to the equation g(g - l)(g - 2)/6 = 20 . Thus, the triad censns can tell uS 
the number of nodes in the digraph. The triad census can also give uS 
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counts of the number of arcs, and the counts in the dyad census, as we 
discuss in the succeeding paragraphs. 

Suppose we consider the number of arcs present in each of the 16 
triad types. Each of the types has between 0 and 6 arcs. If we multiply 
the number of triads of each type by the number of arcs in the triad, 
and divide by (g - 2), we obtain the number of arcs, L, in the directed 
graph. The reasoning behind the dividing by (g - 2) is that each arc is 
contained in (g - 2) triads, and so is counted (g - 2) times in the triad 
census. The number of arcs in the sixteen triad types, listed in the same 
order as the types in T, are : 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6. Let 
us call these sixteen numbers or coefficients c"' for u = 1, 2, ... ,16; that 
is, Cl=O, c2=1, c3=2, .. " C16=O; in general, Cu = the number of arcs in 
the uth triad type. Then, 

(14.3) 
" 

gives us the total number of arcs in the digraph. To demonstrate with 
our simple example, we find 

1= (1/4)(0 x 3 + 1 x 5 + ... + 6 x 0) = (40/4) = 10 arcs, 

as can be verified by counting the number of non-zero entries in the 
sociomatrix. 

Note how (D, g, and L are all obtained from the triad census. The first 
quantity is calculated by summing all the counts in the triad census, or 
by multiplying each count by 1 and then summing. The second quantity 
is calculated by multiplying all the counts by special coefficients (in this 
case, the numbers of arcs in each triad type) and then summing. This 
process of multiplying the counts by coefficients and then summing is 
defined mathematically as a linear combination of the triad census; in 
general, it is equal to L:u lu Tu. where the lu are the coefficients of the linear 
combination and are specified in advance. The index u ranges over the 
sixteen triad types: u = 1,2, . . .  ,16. The notion of a linear combination 
of the triad census is quite important in this chapter. It is simply the 
sixteen counts in the census, multiplied by specified coefficients, and then 
summed. 

We have already seen one use of such a linear combination. As 
noted in equation (14. 2), if these coefficients are all equal to 1, then the 
combination gives the sum of the triad counts, or just the total number 
of triads (m). One can use this calculation to verify that all triads have 
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been counted during a triad census. If the sum of counts in the t!'lud 
census is not (�), then an error has been made. 

We can also calculate the mean (and even the variance) of the indcgrccH 
and outdegrees. Unfortunately, the indegree and outdegree of a particular 
node cannot be calculated as a linear combination of the triad counts, 
since such statistics are properties of individual nodes and not of the 
directed graph as a whole. Only digraph properties can be calculated 
from the triad census, which is a digraph statistic itself. 

For the calculation of the mean and variance of the indegrees and 
outdegrees, we note that the total number of ties is exactly L, a graph 
property that can be calculated as a linear combination of the triad 
census using equation (14.3). Consequently, the mean outdegree, which 
equals the mean indegree, is X = Lj g; that is, the means of these nodal 
properties can be found using a linear combination of the triad census: 

- 1 "'" 
X = (g(g _ 2)) L" cuTu. 

u 
(14.4) 

The variance of the outdegrees and variance of the indegrees can also 
be calculated using the triad census. We denote the variance of the 
outdegrees, the {X,+}, by 

S;ut = .!. L (X,+ - X)
2 

g i 
and the variance of the indegrees, the {X+f}, hy 

2 1 "", - 2 Sin = - L,, (X+j-X) , g j 
To calculate these statistics using the triad census, we use two results, 
proven by Holland and Leinhardt (1975), which rely on two weighting 
vectors, the first with coefficients {bout,u} and the second with coefficients 
{bin,u}. These weighting vectors are given in Table 14.2, under the two 
columns headed bin,u and bout,u' The coefficients in these vectors are 
determined by studying how the variances of the degrees depend on the 
counts in the triad census. Using the coefficients from these two weighting 
vectors, we first calcnlate two intermediate quantities: 

and 

Bout = L bout,u Tu 
u 

(14.5) 
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Bill = L bin,ll Tu. 

" 
(14.6) 

Holland and Leinhardt (1975) show that with Bo", from equation (14.5) 

and B,,, from equation (14.6), one can then calculate the two variances. 
The variances depend on these two intermediate quantities, and the mean 
outdegrcc (equation 14.4): 

2 - -
S,,'" = (2/g)B"", � X(X � 1)  

2 - , -
S,,, = (2/g)B,,, �X(X � 1). 

(14.7) 

(14.8) 

Thus, one can compute these two important variances just using linear 
combinations of the triad census, rather than the outdegrees ami inde
grees themselves. The entire sociomatrix is not needed here, just the triad 
census. 

Using our simple example of six children, whose triad census was given 
earlier in this chapter, we note that the outdegrees are 3, 2, 3, 1, 0, 1, and 
the indegrees are 1, 3,2,1,0,3. These two sets of numbers are identical; 
thus, the variances are S;ut = Si7! = 1.222, calculated directly from this 
set of six numbers. 

We can also calculate the variances from the triad census. First, we 
use the linear combination with components {eu}, given in Column 6 

of Table 14.2, to calculate the mean number of choices. From equation 
(14.4), we calculate x = 40/[6(4)] = 1.6667. Next, we calculate the inter
mediate quantities discussed above using the triad census and Columns 
7 and 8 of Table 14.2: Bo", = (0 x 3) + (0 x 5) + . . . + (3 x 0) = 7 and 
Bin = (0 X 3) + (0 x 5) + . . . + (3 x 0) = 7. From the above equations, 
we find that S:;", = S,;, = (2/6)(7) � (1.667)(0.667) = 1.222, verifying the 
direct calculation. 

One can calculate several other graph properties using linear combi
nations of the triad census. Three important properties easily obtained 
in this way are the counts in the dyad census, M, A, and N. Let us 
define m" as the number of mutual dyads in the uth triad type, a" as the 
number of asymmetric dyads in the uth triad type, and n" as the number 
of null dyads in the uth triad type. These three sets of sixteen coefficients 
are shown in Columns 3, 4, and 5 of Table 14.2. Using these coefficients, 
and remembering that each dyad in a digraph is contained in (g � 2) 
triads, we can calculate the counts in the dyad census: 

M = (1/(g � 2))L m"T" (14.9) 
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Table 14.2. Weighting vectors for statistics and hypothesis concerning tlie 
triad census 

Close friends 
Triad type bil1,u bout,u m, a, n, c, Trans. Intrans. disagreeing 

003 0 0 0 0 3 0 0 0 0 
012 0 0 0 I 2 1 0 0 0 
102 0 0 1 0 2 2 0 0 0 

02lD 0 1 0 2 1 2 0 0 0 
021U 1 0 0 2 1 2 0 0 0 
021C 0 0 0 2 1 2 0 1 0 
lllD 1 0 1 1 1 3 0 1 0 
lllU 0 1 1 1 1 3 0 1 1 
030T 1 1 0 3 0 3 1 0 0 
030C 0 0 0 3 0 3 0 3 0 
201 1 1 2 0 1 4 0 2 2 

120D 2 1 1 2 0 4 2 0 0 
120U 1 2 1 2 0 4 2 0 0 
120C 1 1 1 2 0 4 1 2 1 
210 2 2 2 1 0 5 3 1 1 
300 3 3 3 0 0 6 6 0 0 

A = (1/(g - 2))L OuTu (14.10) 
u 

and 

N = (1/(g - 2))Lnu Tu. (14.11) 
u 

Thus, if we regard g as given, or simply find it from the triad census, 
the counts in the dyad census, M, A, and N, can be written as linear 
combinations of the frequencies in the triad census, using the weights 
mu/(g - 2), Ou/(g - 2), and nu/(g - 2). 

Again demonstrating on our simple example, we find that (0 x 3) + 
(0 x 5) + (1 x 5) + ' "  + (3 x 0) = 12, so that m = 12/4 = 3, since 
(g - 2) = 4. Similarly, using the weighting vector coefficients for the 
number of asymmetric dyads, (0 x 3) + (1 x 5) + (0 x 5) + . . .  + (0 x 0) = 
16, so that a = 16/4 = 4. Lastly, for the number of null dyads, 
(3 x 3)+ (2 x 5)+ (2 x 5)+'" + (0 x 0) = 32, so that n = 32/4 = 8. Thus, 
the dyad census is (3,4,8), calculated directly from the triad census (with 
the help of the appropriate weighting vectors given in Table 14.2. We 
should note that the coefficients, shown in the columns of Table 14.2, were 
termed weighting vector coefficients by Holland and Leinhardt (1975). 

There are many digraph properties that can be calculated from T, 
many of which may not be obvious from the triad census itself. Further, 
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while some of these quantities might be straightforward and relatively 
simple to calculate by hand, others can be quite time consuming; thus, 
use of T can simplify and speed up calculations. 

We can think abstractly about all possible linear combinations of the 
triad census. Such a collection of graph statistics is quite important. 
There is much information that it contains, as we have discussed in 
this chapter. We will examine the collection in general in later sections 
of this chapter. But, the most important reason for focusing on linear 
combinations of T arises because many important structural properties, 
such as tendencies toward balance and transitivity, can be studied using 
such linear combinations. We will return to this use of the triad census 
after a continued examination of our example. 

14.2.2 The Example and Its Triad Census 

Let us turn to Krackhardt's high-tech managers, and the friendship 
relation. The triad census for this relation, measured on the twenty-one 
managers, is 

T!riends (376, 366, 143, 34, 1 14, 35,101, 39, 

23,0, 20, 25, 16,9,23, 6)'. 

There are ('n = 1330 triads (which is the sum of these sixteen numbers). 
More than half of the triads are of types 003 and 012, the completely null 
and single arc triads. There is a surprisingly large number of 021 U triads 
(114; almost 9 percent of the total), perhaps indicating some sort of 
hierarchical structure for this relation. Note also that there are no 030e 
triads, which of course are prohibited under the theory of transitivity. 

Making sense out of sixteen numbers is difficult. In this chapter, we will 
first rely on linear combinations of the sixteen to make comprehension 
easier, and then study the entire set of sixteen counts. For example, it is 
easy to calculate m = 23, a = 56, and n = 131, directly from the triad 
census using the appropriate weighting vectors. And we find that 1 = 102, 
using the census, and Column 6 of Table 14.2. Interested readers can 
calculate the variances of the indegrees and outdegrees using Columns 7 
and 8. 

Krackhardt's advice relation is more interesting. Its triad census is 

Tadvice (74, 153, 90, 86, 160,49, 101, 

59, 190, 2,72,78, 62, 17, 107, 30)'. 
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Note that there are considerably more triads with more than 2 al'cs lhun 
for the friendship relation. There are 107 210 triads, and even 30 300 
triads. There are also 190 transitive 030T triads (roughly 14 perccnt of 
the total), a very large number, indicating an apparent large tendcncy 
toward transitivity. We will return to these data, and their tendencies, 
later in this chapter. 

14.3 Distribution of a Triad Census 

We now show how statistical analyses of the triad census can be used to 
test the theories of Chapter 6. We will present the necessary statistical 
methods, and demonstrate them on our examples. We first give some 
statistical results, calculations, and properties of the triad census, as a 
prelude to tests of structural theories such as balance and transitivity. 
We note first, however, that this section requires some statistical sophis
tication. Those readers without such background can skip to the end of 
this section, where we review its major points. 

Random directed graph distributions can be used to study the triad 
census, assuming that the censuS has been drawn from a random directed 
graph. The distribntional assumptions are similar to those made in 
Chapter 13, although we can now consider distributions that condition 
on the dyad census (which was not possible in Chapter 13 since we were 
making inferences about that census itself). We discuss the formulas 
which calculate the average counts of the triad census; that is, what we 
should expect for triad frequencies if the digraph were truly random. 
Such expected frequencies provide a convenient baseline to compare with 
observed frequencies from a digraph under study, and consequently, lead 
to statistical tests of the siguificance of various substantive hypotheses 
such as tendencies toward transitivity. 

We should note that the distribution of the triad census, except for 
its mean and covariance matrix, is too complicated to calculate. (A 
covariance matrix is a square, symmetric array that gives the variances 
of the components down the diagonal, and the covariances between all 
pairs of components off the diagonal.) We have noted that T has sixteen 
components, and hence has a covariance matrix which has dimensions 
16 x 16 and a multivariate distribution which is 16-dimensional. 

Because of the complicated nature of the distribution, there have been 
approximations to it. There is good evidence (see Holland and Leinhardt 
1970 1975 1979) that the distribution of T can be well-approximated 
by the multivariate normal distribution. Thus, we need only discuss 
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calculations for the mean and covariance matrix of the triad census, since 
the multivariate normal depends only on these two parameters. Most 
multivariate statistical inference relies on assumptions of approximate 
multivariate normality. Fortunately, we will also be able to make such 
assumptions. 

14.3.1 @Mean and Variance of a k-subgraph Census 

We begin by briefly discussing the mean and variance of a general 
k-subgraph census; that is, we first figure out how to calculate these 
two statistics for a general k-subgraph census, and then demonstrate 
these calculations for 3-subgraphs, or triads. The mean and variance 
of a k-subgraph census contain expected counts or frequencies of the 
isomorphism classes, and measures of how these counts vary. We note 
that the use of these general results is usually limited to dyads and triads, 
since k-subgraphs for k � 4 are far too numerous; for k=4, there are 120 
isomorphism classes (see Chapter 4). Some results are given, however, in 
Muon (1968). 

As stated, we start with general formulas for the expected number 
of k-subgraphs in each of the isomorphism classes for such subgraphs. 
We start with a directed graph with g nodes, and imagine that we 
have calculated from it a k-subgraph census with a specific number of 
isomorphism classes (3 for dyads, 16 for triads, 120 for tetrads, and so 
forth). We will let u and v be two distinct isomorphism classes for our 
k-subgraphs. In the case of the dyads, there are three possibilities for u 
and v. For triads, there are sixteen classes. 

We will also let K and L be two of the m distinct k-subgraphs 
that can be examined for a particular directed graph (for example, the 
m dyads that must be examined for a dyadic analysis, or the m 

triads necessary for a triadic analysis). We will therefore talk about K 
belonging to isomorphism class u (and/or L belonging to class v). These 
two subgraphs K and L will be distinct. Keep in mind the distinction 
here between K and L, and u and v - the former are symbols that 
reference subgraphs, while the latter reference isomorphism classes for 
those subgraphs. And, k will always be fixed at the subgraph size. 

We assume that the digraph in question is random, so that we will need 
a notation for the various probabilities that arise with our k-subgraphs. 
We define the probability that any one of the k-subgraphs (K) falls into 
one of the isomorphism classes (u), and the probability that any pair of 
the k-subgraphs fall into two particular classes as follows: 
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and 

PK.L(U, v) = P(K is in class u and L is in class v). 
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(14.12) 

(14.13) 

These probabilities will be theoretically determined (as we note below) 
by assuming some underlying stochastic mechanism for the digraph. 

The general equations for the expected frequencies of the counts in the 
k-subgraph census depend on averages of the {p,(u)}. Specifically, to find 
the expected number of k-subgraphs falling into each of the isomorphism 
classes, we must average these probabilities over all k-subgraphs derived 
from the complete digraph: 

1 
p(u) = m �p,(U). (14.14) 

From equation (14.14), we can state the first part of Theorem 14.1 from 
Holland and Leinhardt (1975): 

Theorem 14.1 Using the notation given above and assuming that 
a random digraph is generated by some stochastic mechanism, then the ex
pected number of k-subgraphs in class u, which we will call Hu, is 

E(Ru) = (nP(U). (14.15) 

This equation is quite simple. It says that the average number of k
sub graphs of a particular type is exactly equal to the total number of 
these k-subgraphs times the average probability that a k-subgraph is of 
type u. 

Thus, the expected number of k-subgraphs that fall into the uth 
isomorphism class is computed by averaging the probabilities that the 
K th k-subgraph is of type u, over all possible k-subgraphs. Further, there 
is one of these expectations for each of the isomorphism classes, and 
the expectations sum to the total number of k-subgraphs (m - like 
they should). One determines the individual subgraph probabilities by 
referring to the underlying probability model for the digraph (a step that 
we will describe in detail below for triads and the conditional uniform 
distribution that conditions on the dyad census, UlMAN). 

To evaluate how large these expected numbers really are, we need 
to determine the variances (and simultaneously, the square roots of the 
variances, the standard deviations) of the expected counts. At the same 
time, if interest is on linear combinations of the k-subgraph census, then 
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we must also have formulas for the covariances of the frequency of type 
u k-subgraphs, and type v k-subgraphs. 

In order to calculate the variances of the frequencies, and covariances 
between the frequencies for two different classes, we must consider how 
similar our pair of k-subgraphs, K and L, is. We note that these 
two subgraphs can have some nodes in common; in fact, the possible 
numbers of nodes that these two can have in common are from 0 
(completely disjoint subgraphs) to k (identical subgraphs). In general, 
there are 

pairs of k-subgraphs of a digraph with g nodes for which there are 
j 

nodes in common. We now define the average probability that any two 
k-subgraphs, K and L, with 

j 
nodes in common, belong to classes u and 

v, as 

1 pj{u, v) = (f)(L�)(;) 2::>KL(U, v), (14.16) 

where the sum is taken over all pairs of k-subgraphs with 
j 

nodes in 
common. From such average probabilities, we can give the second part 
of Holland and Leinhardt's first theorem: 

Theorem 14.2 Using the notation given above and assuming that a 
random digraph is generated by some stochastic mechanism. then the vari
ance of the number of k-subgraphs in class u. is 

Var(Hu) = (0 {P(U)(1 - p(u)) 

k-1 ( - k) (k) } + � ! _ j j [iJj(u, u) - (ji(u))'] . (14.17) 

Further. the covariance of the number of k-subgraphs in class u and the 
number in class v is 

Cov(Hu,H,) (0 { -p(u)p(v) 

+ � (!=�) C)Wj(U,U)_(P(U))2]}. (14.18) 
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This is no doubt a difficult theorem to comprehend (which is why 
this section receives a 181). We give it here just for the mathemat
ically advanced and! or curious reader. The proofs of these theo
rems can be found in Holland and Leinhardt (1975). Clearly, the 
quantities needed to find all variances and covariances are compli
cated. We will turn shortly to the triad census to illustrate the cal
culations. 

But before we do, we should note that the results in these theorems 
apply to any k, includingk = 2 (dyads). Consequently, we could (although 
we do not here) calculate the mean and variance of the number of 
asymmetric dyads in a dyad census, as well as the covariance between 
the numbers of mutual and asymmetric dyads. We noted in Chapter 13 
that the focus in the literature has been only statistics for M ;  with these 
results, however, we can consider the entire dyad census, and conduct a 
more complete analysis. 

14.3.2 Mean and Variance of a Triad Census 

We now take the two theorems given above, equations (14.15), (14.17), 
and (14.18), and apply them to triads. These applications can be found in 
Holland and Leinhardt (1970, 1975), Wasserman (1977), and Fershtman 
(1985). 

Under the assumptions of the theorems given above, the mean, vari
ances, and covariances of the counts in a triad census Tare 

and 

(14.19) 

Var(Tu) = (;)P(U)(1- p(u)) 

+ m t (; =�) G) [PAu, u) - (p(u)p] (14.20) 

Cov(Tu, T,) m { - p(u)p(v) 

+ t (; = �) G) [Pj(u, u) - (p(U))2] }. (14.21) 
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Here, Tu is one of the sixteen counts of the triad census, and replaces 
Hu in Theorems 14.1 and 14.2. So, to calculate the average counts of the 
triad census, along with their variances, and the covariances between any 
pair of counts, we need to calculate seven sets of probabilities: {p(u)), 
the average probabilities (across all triads) that any one of the triads is 
of type u; {Po(u, u)), {Pl (u, ul), {pz(u, u)), the average probabilities (across 
all triads) that a pair of triads, with 0, 1, or 2, respectively, nodes in 
common, are both of the same type u; and lastly, {po(u, vl}, {Pl (u, v)), 
{P2(U, v)j, the average probabilities (across all triads) that a pair of triads, 
with 0, 1, or 2, respectively, nodes in common, are of different types u and 
v (where u f v). It is clear that these covariances can be time-consuming 
to calculate (and maybe even difficult to comprehend). Fortunately, the 
calculations have been programmed (Walker and Wasserman 1987). 

These seven sets of probabilities depend on which stochastic mechanism 
we assume for the directed graph itself. The most popular distribution 
in use for the statistical analysis of the triad census is the UlMAN 
distribution. This distribution, popularized by Holland and Leinhard� 
"fixes" the values of the dyad census at M = m, A = a, and N = n, and 
considers all digraphs with these values for the dyad census to be equally 
likely. It is the uniform distribution, defined on the set of all labeled 
digraphs with given values of M, A, and N. 

Another distribution, studied by Wasserman ( 1977) and Fershtman 
(1985), that has been used to study the triad census is the UI{X,+) distri
bution. This distribution "fixes" the values of the outdegrees of the nodes 
at XI+ = Xl+, X2+ = X2+, ... ,Xg+ = xg+, and considers all digraphs 
with these values for the outdegrees to be equally likely. It is the uniform 
distribution, defined on the set of all labeled digraphs with given values 
of X1+, X2+, ... ,Xg+. Researchers have stated the importance of these 
distributions (Feld and Elmore 1982a, 1982b; Hallinan 1982), arguing 
that the inequality of popularity (unequal indeg rees) may cause dispro
portionate frequencies of particular types of triads, but were unaware of 
prior research on these distributions. 

Additional distributions, which can be used to calculate the necessary 
probabilities for the means, variances, and covariances of the triad census 
counts, are discussed by Wasserman (1977). We also refer the interested 
reader to Snijders and Stokman ( 1987) and Snijders ( 1987), who extend 
the class of distributions for the triad census to include those where the 
actors have been partitioned into subsets using actor attribute variables. 

Holland and Leinhardt (1975), using results from Davis and Leinhardt 
( 1972) and Holland and Leinhardt (1970), give expressions for the seven 
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sets of probabilities assuming that the UlMAN random digraph distribu
tion is operating. The advantage gained by using this distribution is that 
tendencies toward reciprocity are removed (via statistical conditioning) 
prior to the analysis. Thus, any triadic effects (such as transitivity) arc 
not due to any "lower-order" tendencies. 

Wasserman (1977) and Fershtman (1985) give the seven sets of prob
abilities assuming that either the UI{X,+} distribution or the UI{X+j} 
distribution is in effect. Snijders and Stokman (1987) give the probabilities 
necessary to calculate equations (14.19), (14.20), and (14.21), assuming 
variations on these three distributions which arise when nodes have been 
classified into distinct subsets. And, we should also mention the very 
important research of Snijders (1991a, 1991b) on the UI{X,+}, {X+j} dis
tribution. Snijders used Verbeek and Kroonenberg's (1985) "enumeration 
tree," designed for counting all two-way contingency tables with given 
marginals, to count all sociomatrices with fixed indegrees and outdegrees. 
This distribution has yet to be applied to the components of the triad 
census. 

Fortunately, we need not give these sets of probabilities here, since 
they have been computerized. Originally, only SOCPAC (Leinhardt 
1971) performed the calculations for the UlMAN distribution (see also 
Appendix C to Holland and Leinhardt 1975). Recently, however, several 
more widely available computer packages have automated the necessary 
calculations, particularly a program by Noma and Smith (1978) and 
TRIADS (Walker and Wasserman (987). Either of these programs 
will give the means, variances, and covariances of the counts in the 
triad census, assuming a variety of random digraph distributions. We 
note, however, because of Holland and Leinhardt's influence on triadic 
methods, the most commonly used distribution is UlMAN. 

14.3.3 Return to tile Example 

The triad census for the friendship relation from Krackhardt's high-tech 
managers network was given earlier in this chapter. In Table 14.3, we 
give the mean vector (with alJ sixteen components), and in Table 14.4, 
the 16 x 16 covariance matrix for this triad census, calculated under the 
UlMAN distribution. Table 14.3 gives the counts of the triad census 
(the T vector, which is given in the second column), the expected counts, 
assuming that UlMAN distribution is operating (the mean vector), and 
the standard deviations of these counts (the square roots of the diagonal 
elements of the covariance matrix). 
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Table 14.3. Triadic analysis oj Krackhardt·s friendship relation 
Triad type Triad census Expected value Standard deviation 

003 376 320.06 9.39 
012 366 416.82 14.56 
102 143 171.19 9.43 

021D 34 44.09 6.22 
021U 1 14 44.09 6.22 
021C 35 88.17 8.17 
l 1 1D 101 73.74 7.78 
1 1 1 U  39 73.74 7.78 
030T 23 18.17 3.86 
030C 0 6.06 2.39 
201 20 28.97 4.52 

120D 25 7.74 2.71 
120U 16 7.74 2.71 
120C 9 15.48 3.74 
210 23 12.38 3.25 
300 6 1.55 1.20 

Table 14.4 gives the covariance matrix, again calculated under the 
assumption that the UlMAN distribution is operating. 

These quantities are standard output of the computer programs men
tioned above. Note how the triad counts compare to their expectations, 
relative to their standard deviations (one could subtract the expectations 
from each count, and divide these deviations by their standard deviations, 
to obtain a set of standardized scores). The expected counts are what 
we would expect (on average) from a random directed graph, with the 
dyad census M = 23, A = 56, and N = 131. For example, we see far 
too many 003 triads «376 - 320.06)/9.39 = 6 standard deviations), and 
far too few 012 triads ('" 3 standard deviations). The number of 021U 
triads (as noted earlier) is many more than expected. We note that the 
quantities in Table 14.3 are the only statistics needed to test structural 
hypotheses about the relation under study. Such hypotheses are usually 
tested by examining not the entire triad census and its expectation, but 
linear combinations of it, which we now discuss. 

14.3.4 Mean and Variance of Linear Combinations of a Triad 
Census 

As we have mentioned and demonstrated, linear combinations of the 
triad census, defined as L, I, Tu where the lu are the coefficients of the 



14.3 Distribution of a Triad Census 583 

Table 14.4. Covariance matrix for triadic analysis of Krackhcmlt's 
friendship relation 

003 012 102 021D 021U 021C IUD I I I U  
003 88.2 
012 -107.0 212.0 
102 -44.0 -3.24 88.9 

021D 4.71 -21.4 4.55 38.7 
021U 4.71 -21.4 4.55 -5.35 38.7 
021C 9.42 -42.9 9.11 -10.7 -10.7 66.8 
IUD 7.87 -8.65 -19.6 -2.09 -2.09 -4.18 60.5 
U 1 U  7.87 -8.65 -19.6 -2.09 -20.9 -4.18 -13.3 60.5 
030T 6.65 -5.68 3.56 -3.57 -3.57 -7.14 -1.01 - 1.01 
030C 2.22 -1.89 1.19 -1.19 -1.19 -2.38 -0.34 - 0.34 
201 3.09 7.29 -18.4 1.12 1.12 2.23 -6.02 -6.02 
120D 2.83 -0.38 -0.52 -0.68 -0.68 -1.35 -1.77 - 1.77 
120U 2.83 -0.38 -0.52 -0.68 -0.68 -1.35 -1.77 - 1.77 
120C 5.66 -0.77 -1.04 -1.35 -1.35 -2.71 -3.54 - 3.54 
210 4.53 2.64 -4.09 -0.06 -0.06 -0.13 -3.66 - 3.66 
300 0.57 0.74 -0.92 0.08 0.08 0.16 -0.40 -0.40 

(continued) 

030T 030C 201 120D 120U 120C 210 300 

030T 14.9 
030C -1.09 5.69 
201 0.60 0.20 20.5 

120D -0.63 -0.21 -0.43 7.36 
120U -0.63 -0.21 -0.43 -0.38 7.36 
120C -1.25 -0.42 -0.86 -0.76 -0.76 14.0 
210 -0.17 -0.06 -3.11 -0.58 -0.58 -1.17 10.5 
300 -0.03 -0.01 -0.86 -0.04 -0.04 -0.08 -0.37 1 . 11  

linear combination and are specified in advance, are very useful. Such 
combinations yield many graph statistics. To more fully utilize these 
linear combinations, we now consider how to calculate the mean and 
variance of general combinations. 

We first need some more notation for the mean and variance of 
T. The triad census T contains sixteen counts, one for each of the 
isomorphism classes. Consequently, there is an expected count for each 
of the isomorphism classes, as defined in equation (14.19), for each u. We 
will array these components into a single vector, ilr which is the vector 
of expected values of the Tu. We also have sixteen variances, and ('2') 

covariances, which we place into a 16 x 16 covariance matrix, Er, which 
has the sixteen variances along the diagonal, and the covariances off the 
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diagonal. The (u, v)th entry of I:T is the covariance of Tu and Tu' These 
variances and covariances are given in equations (14.20) and (14.21). 

We remarked earlier that linear combinations of the triad census 
can be quite important. Besides giving us a variety of directed graph 
properties, they can also be used to test substantive hypotheses. In an 
earlier section of this chapter, we defined Lu lu Tu as a general linear 
combination, where the lu are the coefficients of the linear combination, 
for the sixteen possible components of T, indexed by u. Sometimes it will 
be convenient to arrange the sixteen coefficients of the linear combination 
into a vector I. Vector algebra and statistical calculations give formulas 
for the mean and variance of any linear combination of the triad census 
counts. Specifically, 

L luE(Tu) 
u 

(14.22) 

and 

(14.23) 

Formulas such as these may appear daunting, but will be very useful to 
test substantive hypotheses. They certainly provide a compact, shorthand 
notation for the mean and variance of a general linear combination of 
the triad census, a scalar quantity since the linear combination itself is 
just a single count. The operation l' T is simply the transpose of a 16 x 1 
vector (I) multiplied by another vector (T), so that the result is a scalar 
quantity. Applying the same principles to the variance equation (14.23), 
one can see that the variance is also a scalar. 

14.3.5 A Brief Review 

Let us summarize briefly. First, we postulated that the relation under 
study was random, and assumed that some random directed graph 
distribution governed this randomness. We then discussed (and showed in 
a couple of theorems) how one could compute the mean and covariance 
matrix for a general k-subgraph census assuming that some random 
directed graph distribution was indeed operating. 

We next demonstrated this theory for the 3-subgraph or triad census. 
The theorems giving the means, variances, and covariances have been 



14.4 Testing Structural Hypotheses 585 

implemented by a variety of computer programs. Most of these pro
grams work with the UlMAN random directed graph distribution. the 
uniform distribution conditional on the dyad census. We then turncd 
to Krackhardt's network, and the measured friendship or acquain tancc
ship relation, and discussed the mean vector and covariance matrix 
of the triad census (which was generated as output of the TRIA[)S 
computer program of Walker and Wasserman 1987). To study struc
tural hypotheses, all one needs are the mean vector and covariance 
matrix. 

14.4 Testing Structural Hypotheses 

Consider now the various structural hypotheses, such as balance and 
transitivity. The first step in the testing process is to consider how these 
hypotheses can be "operationalized" in terms of triads; that is, what 
predictions these theories make about the various triadic configurations 
that occur (or should not occur) in a data set. 

14.4.1 Configurations 

The best way to proceed is to consider the configurations implied by 
a theory. A configuration is simply a subset of the nodes and some 
of the arcs that may be contained in a triad. A configuration is more 
general than a subgraph since it does not have to include all the lines 
that exist between the chosen nodes. Since we are only focusing on 3-
subgraphs here, the nodes must be a triple. Thus, a configuration involves 
a subset of the arcs that can erist between the nodes in the triple. In 
general, however, we could study theories which make propositions about 
configurations involving k nodes. 

It is best to think of a configuration using an example. Consider 
transitivity. We take the triple of nodes i, j, and k, and assume that 
i -+ j and j -+ k. For this triple to be transitive, then i must also -+ k. 
These three nodes, and the three arcs, constitute a configuration. There 
really are only three arcs of interest here: the arcs from i to j and from 
j to k (which we assume are present) and the arc from i to k (whose 
presence completes this transitive triple). Consequently, of the six arcs 
whieh could be present in the triad involving these three nodes, we are 
interested in only three of the arcs in this configuration. We will first 
consider configurations of nodes and arcs, and then determine how many 
of these configurations are present in the sixteen triad types. 
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First look at the nodes and arcs that are part of a triad. Recall that 
there are sixty-four possible states for each triple of nodes (since there are 
six possible arcs, each of which can be present or absent - 26), and each 
has a unique 3 x 3 sociomatrix. The general form of this sociomatrix, 
which contains all the data for a triple, is 

where the distinct nodes i, j, and k index both the rows and columns. 
Our theories will make predictions about the patterns of some of the O's 
and 1'8 that ,.:;hould occur in this matrix. 

An example of a configuration (that we will use below in a discussion of 
transitivity) is the set containing the (1,2), (2,3), and (1,3) entries from the 
triad sociomatrix, where the lines i -+ j, j -> k, and i -+ k are present. 
It is common to picture a configuration by dropping from the triad 
sociomatrix those cells not of interest. For a transitivity configuration, 
this implies that we list only three cells (which Holland and Leinhardt 
referred to as a transitive triple). The specific configuration just mentioned 
can be recorded as the array ( ij jk 

1 1 
ik ) 
1 ' 

which we can recognize immediately as a tranSItIve configuration of 
nodes and arcs. We note that sometimes, it may be instructive to picture 
these configurations with a digraph, rather than with arrays. 

Configurations are used to translate substantive theories into mathe
matical statements about triads. These statements are then interpreted 
using the triad census. Configurations are useful because most theories 
are manifested as characteristics of triples, subsets of nodes, and arcs 
which are then contained in triads. As an example consider some of 
the triad isomorphism classes and transitivity (see Figure 14.5). The 300 
triad contains six configurations involving threesomes of actors. These 
six are all transitive configurations. This triad type is transitive from the 
perspective of each of the members of the triple. In general for transi
tivity, each triad contains six configurations. Only those configurations 
which are transitive or intransitive are of interest. 

The 120C triad has one transitive configuration, and two intransitive 
configurations. Examining Figure 14.5, and naming the actors i, j, and 
k (starting from the southwest vertex, and going clockwise), we can see 
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these three configurations. We have i -+ j, j -+ k, and i -+ k, the transitive 
configuration. But we also have two intransitive configurations: k -, i, 
i -+ j, but k 1> j, and j -+ k, k -+ i, but j 1> i. So, a triad contains 
many configurations. These configurations, which consist of some subset 
of the entries in the generic 3 x 3 triadic sociomatrix, may be quite 
different substantively. And all must be taken into account when testing 

substantive hypotheses. 

We can characterize each triad isomorphism class according to the 
numbers and nature of the configurations it contains. Such a charac
terization tells us about the overall presence of the configurations (and 
hence, a substantive theory) in the data set under study. 

Let us consider a different hypothesis, and examine some configura
tions in more detail. We take as an example the theoretical statement by 
Mazur (1971), based on the standard theory from psychology detailing 
the close relationship between similarity and attraction: 

Friends are likely to agree, and unlikely to disagree; close friends are 
very likely to agree, and very unlikely to disagree. (page 308) 

Holland and Leinhardt (1975) interpret "friends" as asymmetric dyads, 
and "close friends" as mutual dyads. To study this statement further, we 
assume that agreements and disagreements are made about third parties 
(whose own choices are irrelevant to the theory). Consequently, this 
statement (about friends or close friends agreeing) is about particular 
configurations, focusing on how the actors in either asymmetric dyads or 
mutual dyads relate to a third actor. 

The configuration for this similarity/attraction theory has the standard 
structure for configurations. It can be quantified by constructing a two
row array, where the first row lists the reading rule for the configuration 
(the cells of the 3 x 3 array that are involved in the theory), and the 
second, the configuration type (the values of the cells that satisfy or are 
implied by theory). The reading rule is simply the pairs of nodes that 
are involved in the configuration, and the type is the list of which of 
these arcs are present and which are absent (that is, which of the pairs 
are such that the first actor relates to the second). We take actors i and 
j as close friends, so that the reading rule contains both ij and ji, both 
of which have 1'8 in the configuration type row. If these actors agree 
(as predicted by the similarity/attraction hypothesis), then they both 
should relate to a third actor, k. Putting all of this together gives us the 
"close friends agreeing" configuration, which can be quantified using the 



588 Triads 

• 

. � 
030T 

• 

L-1 
120D 

;\ 
.-<-----+8 

120U 

;\ 
.�. 

120C 

.� 
210 

L1 
300 

1 transitive triple 

2 transitive triples 

2 transitive triples 

1 transitive triple 

2 transitive triples 

3 transitive triple 

1 transitive triples 

6 transitive triples 

Intransitive configuration: ij jk ik 
1 1 0 

Transitive configuration: ij jk ik 
1 1 1 

Fig. 14.5. Transitive configurations 

configuration matrix 

ji 
1 

ik 
1 

jk ) 
1 ' 

where the close friends agree on their choices. These close friends could 
also agree on their non-choices, so the theory also predicts that the 
configuration matrix 
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is likely to arise. The "close friends disagreeing" configuration matrices 
are 

and 

ji ik 
1 0 

( ij ji ik jk ) 
1 1 1 0 ' 

which, according to the theory, are equivalent. These are the four 
predictive configurations for close friends. 

There are eight more predictive configurations, for pairs of actors who 
are just "friends" rather than close friends. These eight fall into four 
pairs, and have the same reading rule as those for close friends ; that is, 
they all involve exactly the same ties: ij, ji,ik,jk. Their types (the second 
rows of the configuration matrices - the predicted values for the ties) 
are : 101 1 and 0 1 1 1  (which are equivalent) ; 1000 and 0100 (which are 
equivalent); 1010 and 0101 (which are equivalent) ; and 1001 and 0110 
(which are equivalent). The first four are the agreements between friends, 
and the last four, the disagreements. 

Thus, there are twelve total configurations for this theory - four 
involving close friends, and eight involving friends. The theory predicts 
that the four "friends agreeing" configurations are more likely to occur 
than the four "friends disagreeing." Theory also says that the two 
"close friends agreeing" configurations are much more likely to occur 
than the two "close friends disagreeing." We should note that since this 
hypothesis does not consider the "choices" made by the third party, it 
involves configurations rather than triads. Such is frequently the case 
with substantive theories. 

The primary reason for considering configurations is that it makes 
the step from theoretical statement to statistical test somewhat simpler. 
Configurations are easier to deal with, and are more refined than triads, 
since the actors involved in the configuration are exactly those that play 
important substantive roles in the triad according to some specific theory. 
A triad contains many configurations. Further, many sociological and 
psychological theories make predictions about configurations and not 
triads, as we have shown for transitivity and for the similarity jattraction 
hypothesis. However, even though these theories must be quantified at 
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the level of the configuration, they are all tested at the level of the triad, 
using the triad census. We now turn to this most important step in theory 
testing. 

14.4.2 From Configurations to Weighting Vectors 

Consider a specific substantive hypothesis, and the collection of con· 
figurations which should and/or should not occur if the hypothesis is 
correct. The hypothesis itself is actually a set of predictions about actor 
and "choice" behavior on the relation under study. Each of the configu· 
rations associated with a hypothesis to be studied will be examined, and 
the hypothesis judged by how frequently the configurations occur. This 
study can be conducted statistically using the data and the frequencies 
of the sixteen components of the triad census since each configuration 
is present in at least one of the triad types. By comparing the actual 
frequencies to those predicted by the configurations, we can conduct a 
statistical test of the hypothesis. 

The first step in this procedure has already been outlined - determine 
which configurations are predicted or not predicted by the substantive 
hypothesis. For example, we have discussed the similarity/attraction 
hypothesis, and showed that there are six configurations that should 
occur (the configurations that show agreement: 1111, 1100, 1011/011 1, 
1000/0100) and six that should not occur (the configurations that show 
disagreement: 1 101/1110, 1010/0101, 1001/0110). The four arcs mak· 
ing up the reading rule for these configurations are all ij, ji, ik, and 
jk. 

The similarity/attraction hypothesis predicts that the first six config· 
urations should occur much more frequently than chance, and the last 
six, much less. By "chance," we mean the expected numbers of these 
configurations that would arise as given by a random directed graph 
distribution, assuming that the hypothesis is true. Note that this com
parison strategy is identical to the standard approach to significance 
testing in statistics: let the data give the empirical frequencies or value 
of the relevant statistic, and then compare the empirical value(s) with 
the value(s) to be expected based on some null model (assuming that 
the hypothesis is correct). We will always assume (as a null hypothesis) 
that the substantive theory is not correct; that is, the network does not 
display similarity of attraction, transitivity, and so on. Hence, we want 
to reject this null hypothesis, so that we will be able to state that the 
data give evidence in favor of the hypothesis. 
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We will take the configurations, and determine the triads in which they 
are embedded. This step requires that the researcher consider each of 
the relevant configurations, and find all the triads in which they occur. 
This determination tells us which triads should occur (assuming that the 
particular configuration is true) and which ones should not. We then 
count the numher of configurations of a given kind which arise in each 
of the triad types. The best way to understand this step is to consider 
some examples. We will look at the similarity/attraction hypothesis here 
and, later in the chapter, will focus on transitivity. 

For the similarity/attraction hypothesis, consider each of the twelve 
configurations. The simplest of the twelve configurations, 11 11, should 
occur if the similarity/attraction hypothesis is true, since it implies that 
two close friends agree in their choice about a third party. This config
uration occurs in three triads: 120U, 210, and 300. The configuration 
1 1 1 1  occurs just once in triad 120U, once in triad 210, while it oc
curs six times in 300. So, to enumerate the frequency with which this 
configuration arises in a data set, we should: (1) count the number 
of times 120U occurs ; (2) count the number of times 210 occurs; (3) 
count the frequency of 300 triads, and multiply by 6; and then (4), sum 
these counts. We do this enumeration for each of the twelve configu
rations, and then aggregate the numbers of predicted triads across all 
configurations. 

The steps in this process constitute the construction of a linear com
bination of the sixteen triad counts, or a weighting vector, that gives us 
the frequency of a configuration. If we apply the vector to the triad 
census, we get the empirical frequency of the configuration, while if we 
apply it to the mean of the triad census, calculated by assuming some 
random digraph distribution, we get the expected frequency of the same 
configuration. The weighting vector for the 1 1 1 1  configuration is (0 0 0 
o 0 0 0 0 0 0 0 0 1 0 1 3). 

Applying this weighting vector to Krackhardt's high-tech managers 
and the friendship relation, we find that there are 16 120U triads, 23 
210 triads, and 6 300 triads. So, the linear combination of the triad 
census (ignoring all the triad census components which get 0 weights) 
equals (1 x 16) + ( 1  x 23) + (3 x 6) = 57 of the 1 1 1 1  configuration. From 
the expected values of the triad counts (see Table 14.3), we see that this 
configuration should occur with a frequency of (l x 7.74) + (1 x 12.38) + 
(3 x 1.55) = 24.77, considerably less than actually arose. To judge the 
"statistical significance" of this difference (57 versus 24.77), we need to 
use the covariance matrix for the triad census, and equation (14.23). This 
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calculation is easy to do with the program TRIADS, and is discussed at 
length in the next section of the chapter. 

Another interesting weighting vector is that associated with the con

figuration types 1 101 and 1 1 10. These types imply that close friends 
disagree. This configuration occurs in triads l 1 1 U, 201 (twice), 120C, 
and 210. Thus, its weighting vector is (0 0 0 0 0 0 0 1 0 0 2 0 0 1 1 0), 

and is given in the last column of Table 14.2. For Krackhardt's managers 
and the friendship relation, these triads occur with frequencies 39, 20, 9, 
and 23, respectively, so that the "close friends disagreeing" configuration 

occurs with a frequency of (1 x 39) + (2 x 20) + (1  x 9) + (1 x 23), again 

ignoring the triads that have 0 weights. This empirical frequency of 1 1 1  
should be compared to an expected frequency of 159.54, indicating that 

this "bad" configuration occurs less frequently than predicted. 

To summarize this stage in the test statistic construction process, we 

form a weighting vector for each of the configurations that are predicted 
to occur more or less frequently than chance if the hypothesis in question 

is true. For Mazur'S similarity jattraction theory, there are twelve con

figurations, and seven weighting vectors (since ten of the configurations 
are "paired up" into five equivalent configurations). All seven vectors are 

given in Table 14.5. The first four (concerned with agreements among 
friends or close friends) should occur more frequently than expected, 
if the substantive hypothesis about similarity and attraction is true for 

this network, while the remaining three (concerned with disagreements) 

should occur less frequently. If a particular triad type has a zero for a 
specific vector, then it does not contain the configuration(s) that represent 
the theory. 

Once all the vectors are constructed, we can tum to the statistical 
theory outlined above for linear combinations of triad counts to test the 

relevant hypothesis. We simply take the frequencies for the collection of 

configurations and compare them statistically to the expected frequencies, 
weighting by appropriate standard errors. We now outline this final step 
in substantive hypothesis testing. 

14.4.3 From Weighting Vectors to Test Statistics 

As described above, a substantive hypothesis is first "operationalized" 
by determining which configurations should occur or not occur if the 
hypothesis is correct (for the network and relation in question). The 

configurations are contained in one or more triad types, so weighting 

vectors can be constructed to count the configuration frequencies across 
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Table 14.5. Configuration types for Mazur's proposition 

1011 1000 1101 1010 1001 
Triad type 1 1 1 1  1100 0111  0100 1 110 0101 01 10 

003 0 0 0 1 0 0 0 
012 0 0 0 0 0 0 0 
102 0 1 0 0 0 0 0 

02!D 0 0 0 0 0 2 0 
021V 0 0 0 2 0 0 0 
021C 0 0 0 1 0 0 1 
111D 0 1 0 0 0 0 1 
1 1 1 V  0 0 0 0 1 1 0 
030T 0 0 1 1 0 1 0 
030C 0 0 0 0 0 0 3 
201 0 0 0 0 2 0 0 

120D 0 1 2 0 0 0 0 
120U 1 0 0 0 0 2 0 
120C 0 0 1 0 1 0 1 
210 1 0 1 0 1 0 0 
300 3 0 0 0 0 0 0 

all triad types. These weighting vectors are simply the weights for 
linear combinations of the triad census components that give us the 

configuration frequencies. 

Mathematically, we let 1 be one of these weighting vectors, which 
always has sixteen coefficients, one for each of the triad types. As usual, 

we let T denote the triad census vector. As we noted previously, I'T is a 
linear combination of the triad census, using oue of the weighting vectors 
derived from the substantive hypothesis under study, written using linear 

algebra notation. This linear combination can also be written as a sum: 
l:u I" T" = 1'T. This linear combination is the number of times that the 
specific configuration, associated with the chosen weighting vector, occurs 

in the observed sociomatrix. Under one of the random directed graph 
distributions, we can calculate the expected value and covariance matrix 

of T, and hence the expected number for this configuration (equation 

(14.22)) and its variance (equation (14.23)). This expected number is 

I'PT, and the standard error is !I'LTl, where PT, the mean triad census 
vector, is given by the components of equation (14.19). We note that LT 
is the 16 x 16 covariance matrix of the counts of the triad census, whose 

variances are given by equation (14.20) and covariances by equation 

(14.21). We comment on where to obtain these statistical quantities (PT 
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and LT) - that is, which statistical package to use - later in this 
section. 

The test statistic that we construct to study the specific configuration 
associated with the weighting vector compares the observed count of the 
frequency of this configuration, ['T, to its expected frequency, [' I'T. This 
difference must be standardized by the standard error of the configuration 
frequency to give us an interpretable statistic. The recommended test 
statistic is 

(14.24) 

and is usually assumed to have an approximate normal distribution with 
mean 0 and variance 1, when the hypothesis under study is true. Holland 
and Leinhardt (1970, 1979) lend evidence that this assumption is quite 
adequate. However, the accuracy of the assumption is certainly affected 
by the sample size, which for the triad census is m. We have more 
confidence in this assumption for social networks with larger sets of 
actors (say, g > 15). We note that this approach to hypothesis testing is 
identical to calculating a t-statistic to test a hypothesis about an unknown 
population mean. Davis and Leinhardt (1972) advocate the use of an 
"index" different from equation (14.24), which, unfortunately, could not 
be standardized, so comparisons were difficult to make. Both this index, 
and the tau statistic, are generalizations of an index of intransitivity 
proposed by Kendall and Smith (1939). 

To review, a hypothesis generates a collection of configurations about 
actors' choices or nominations, which are predicted (by the theory) to 
occur or not occur. This theory can then be stated as a statistical 
alternative hypothesis, and tested using the available data gathered from 
the set of actors. The null hypothesis states that the theory is not true. 
The configurations associated with the theory yield a set of weighting 
vectors, to be applied to the counts of the triad census, since the triad 
types contain the various predicted (or not predicted) configurations. The 
weighting vectors for the theory (for example, the similarity/attraction 
hypothesis has seven of these vectors) are then used to calculate tau 
statistics (equation (14.24)) to test the hypothesis. There will be one , for 
each weighting vector, and all must be evaluated simultaneously to reach 
a decision about the validity of the hypothesis. 

The only question that remains is how to calculate the mean and 
variance of the triad census, and hence, the mean and variance of a 
linear combination of the triad census. These two quantities are needed 
to calculate a test statistic. The examples that we discuss here use 
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both the UlMAN distribution, which conditions on the components of 
the dyad census, and the UI{Xi+} and UI{X+j} distributions, which 
condition on the outdegrees and indegrees, respectively. Comprehension 
of the statistical theory for these quantities is not really necessary for the 
typical user, since computer programs exist to calculate the mean and 
covariance matrix of the triad census under these three distributions. 

14.4.4 An Example 

To illustrate the use of the t test statistic defined in equation (14.24), 
let us again take Krackhardt's managers and the measured friendship 
relation, and the similarity/attraction hypothesis that we have been 
describing. The mean and covariance of the triad census (which we 
discussed earlier in this chapter) are given in Table 14.3 and Table 14.4. 
The hypothesis makes statements about twelve configurations, and seven 
linear combinations of the triad census. These linear combinations are 
given in Table 14.5. Four of these linear combinations (see the first 
four weighting vectors in Table 14.5 associated with the "agreement" 
part of the hypothesis) are predicted by the alternative hypothesis to 
have empirical frequencies greater than expected; hence, the numerator 
of their t statistics should be large, and positive. The other three (those 
associated with the "disagreement" part of the hypothesis) should be 
negative, since the empirical frequencies for the triads involved should 
be less than expected. The last three t statistics should be large, but 
negative. 

Consider the weighting vector for the 1 1 1 1  configuration. As men
tioned, only 57 triads contain this configuration. The expected frequency 
for this configuration, assuming that the UlMAN random digraph dis
tribution is operating, is 24.77, using the same linear combination just 
applied for the empirical frequency. The standard deviation of this fre
quency can be computed (using equation (14.23)) easily, and equals 5.20. 
Therefore, the t statistic for this configuration is 6.174, positive (and quite 
large) as predicted. It clearly has a very small p-value, less than 0.0001 
(which is computed simply by using the tail areas of the standard normal 
distribution), so that we can safely reject this part of the null hypothesis. 
It certainly appears that close friends agree about third parties (when 
both actors choose the third party) far more than predicted by chance 
alone. 

The entire set of t statistics, along with their configurations, are: 
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• Configuration 1 1 1 1 :  T = 6.17 
• Configuration 1 100: T = 1.54 
• Configuration 101 1/01 1 1 :  T = 5.82 
• Configuration 1000/0100: T = 2.92 
• Configuration 1 101/11 10 :  T = -4.63 
• Configuration 1010/010 1 :  T = -2.26 
• Configuration 1001/0110 :  T = -4.09 

The signs are as predicted - the first four statistics are large, and positive, 
and the last three are large, and negative. We see, for example, that close 
friends also agree about third parties even when neither actor chooses 
the third party - configuration 1100. But this tendency is not as strong 
as that displayed by the 1 1 1 1  configuration. The agreeing configurations 
occur more frequently than expected, and the disagreeing configurations, 
less frequently. The smallest statistic in absolute value (and the only one 
with a p-value greater than 0.05) is for the second configuration - close 
friends agreeing about no choice. 

Holland and Leinhardt (1975) studied the similarity/attraction hy
pothesis carefully using 408 randomly selected sociomatrices contained 
in Davis and Leinhardt's (1972) sociometric data bank. All of these 
social networks had people as actors. The median values of T for the 7 
statistics associated with the hypothesis are : 

• Configuration 1 1 1 1 :  3.48 
• Configuration 1 100:  1.73 
• Configuration 1011/01 1 1 :  2.36 
• Configuration 1000/0100: 1.82 
• Configuration 1 101/ 1 1 10 :  -3.81 
• Configuration 1010/0101 :  -1.73 
• Configuration 1001/0 1 10:  -1.49 

These results support the hypotheses. All statistics have the predicted 
sign. Note how similar these are to those calculated for Krackhardt's 
friendship relation. It appears that there is solid evidence that "close 
friends" agree more strongly about third parties than do just "plain" 
friends, especially when both friends choose the third party. 

14.4.5 Another Example - Testing for Transitivity 

As a second example, we consider Freeman's EIES data, and the ac
quaintanceship relation measured for the researchers. Here, we want to 
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test the structural hypothesis about transitivity. We wish to study the 
proposition stated formally by Davis, Holland, and Leinhardt (1971): 

Interpersonal choices tend to be transitive � that is, if actor P chooses 
actor 0, and actor 0 chooses actor X, then P is likely to choose X. 
(page 309) 

There are two configurations relevant to the theory of transitivity. Both 
involve just three ordered pairs : ij, jk, and ik. The first configuration, 
which we will label the intransitive configuration, is ( ij jk 

1 1 

ik ) . 
o ' 

that is, to use the classical terminology, actor P chooses actor 0, actor 0 
chooses actor X, but there is no choice of X by P.  Clearly, this threesome 
displays an intransitive structure. The second configuration, which we 
will label the transitive configuration, is ( ij jk ik ) 

1 1 1  
. 

These two configurations are pictured at the bottom of Figure 14.5. 

There are many triads that contain these two configurations: seven 
triads contain as many as three intransitive configurations, while six 
contain as many as six (see triad 300) transitivities ! The six triads 
containing at least one transitive triple are also shown in Figure 14.5. 

For simplicity, we give the two weighting vectors for these configurations 
on the right of Table 14.2. One could also determine the weighting 
vectors for theories of balance, clustering, and ranked clustering. We 
note there that every triad type not allowed by the transitivity hypothesis 
(those that have a non-zero coefficient in the intransitivity weighting 
vectors) are also not allowed by these other theories. This demonstrates 
(quantitatively) the generality of this substantive hypothesis; it contains 
the other hypotheses as "special cases." 

Consider now Freeman's EIES researchers. We looked at the acquain
tanceship relation, which is valued on an integer scale from 0 to 4, and 
measured at two points in time. We dichotomized the valued relation 
Uust to apply tbis methodology) by making scores of 0 (unknown), 1 

(person I've heard of, but not met), and 2 (person I've met) equal to 0, 
and scores of 3 (friend) and 4 (close personal friend) equal to 1. Since 
there are two weighting vectors, one for each configuration, there will be 
two r statistics : ri, which measures how many intransitivities the network 
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exhibits, and r" which measures transitivities. If the actors make choices 
transitively, then r, should be large and positive, while r, should be large 
and negative. For the first time point, we calculated r, = 13.44, and for 
the second, r, = 14.142. Both are extremely large, and positive. Transitive 
triads occur far more than expected. There is even a bit of evidence that 
transitivity is increasing over time. For intransitivity, tj = -7.104 for 
the first time point, and for the second, r, = -8.575, again showing that 
intransitivities are decreasing over time. Clearly, intransitive triads are 
very rare. 

We note that Holland and Leinhardt (1975) tested this transitivity 
hypothesis on 408 matrices chosen at random from their sociometric 
dala bank. Using the UlMAN random digraph distribution, the median 
valne of r, was 5.18 (qnite large !)  and the median value of r, was 
-3.89. Remember that these are approximately standard normal deviates 
(assnming that the null hypothesis of no transitivity is true), and thus, 
have very small p-values. 

These results are very supportive of the proposition that interpersonal 
choices tend to be transitive. The majority of the relations measured in 
the data bank are measures of positive affec� such as friendship, work 
with, play with, and so forth. In a study of positive affect relations 
measured in classrooms and other groups of schoolchildren, Leinhardt 
(1972, 1973) shows that transitivity tends to increase with the age of the 
actors (see also related research by Hallinan and Hutchins 1980). The 
evidence strongly supports the transitivity of such relational variables. 
Transitivity forces actors to interact in ways that concentrate "choices" 
within subgroups; consequently, there are also tendencies in sets of actors 
toward partitioned actor sets. 

However, we note that not all relations for all sets of actors have 
transitive tendencies. In fact, economic relations among firms, and 
political relations among individuals in a large bureaucracy, can certainly 
be intransitive, rather than transitive. Relational ties that are expensive 
to maintain (that is, those using scarce resources) also are unlikely to 
yield transitive triples. Thus, the same configurations can be used to test 
a hypothesized theory, but depending on the actors and the relation, one 
would expect rather different p-values for the hypothesis. 

14.5 Generalizations and Conclusions 

Most statistical triadic analyses use the UlMAN distribution; however, 
computer programs exist for distributions which condition on either the 
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indegrees or outdegrees. It is possible to get approximations to the mean 
and variance of the triad census (and hence approximate " statistics) using 
the ideas described in Appendix B of Holland and Leinhardt (1975) and 
applied in Holland and Leinhardt (1979). The approximation assumes 
that T is multivariate normal, and thus, standard formulas exist for the 
mean and variance of conditional distributions of T. The conditional 
distributions used by Holland and Leinhardt fix linear combinations of 
the triad census, and thus condition on the number of mutuals, the 
variance of the outdegrees (using B", defined in equation ( 14.5)), and the 
variance of the indegrees (using B;, defined in equation (14.5)). We refer 
the interested reader to this research, but note that the strong empirical 
tendency toward transitivity remains even when conditioning on more 
lower-level graph properties. 

An interesting question that arises is whether one can find a weighting 
vector that gives the largest possible " test statistic. Holland and Lein
hardt (1978) show how to calculate this maximal ", whose formula is 
a simple function of the inverse of the covariance matrix for the triad 
census. Another question addressed by Holland and Leinhardt concerns 
whether one needs to look at higher-level subgraphs (such as tetrads) 
to study network intransitivities. Holland and Leinhardt ( 1976) (as well 
as Hallinan and McFarland 1975) discuss the effect that a change in 
the elements of the sociomatrix has on the transitivity present in the 
set of actors. Holland and Leinhardt show that it is not necessary to 
consider tetrads when examining the effect of arc changes on the number 
of intransitive triads. 

There are other substantive theories that can be tested using the triad 
census. Cartwright and Harary (1977) discuss quasi-transitivity, which is 
a weakened transitivity condition allowing for partially ordered clusters 
of actors. Killworth and Bernard (1979) study a variety of hypotheses 
related to balance theory and transitivity. Winship (1977) considers a 
model for balance theory for a continuous, rather than dichotomous, 
relation, based on the triangle inequality. Hallinan (1974a, 1974b) used a 
weighting vector different from the one given here for testing transitivity, 
arguing that the 210 triad is permissible under a "weighted transitivity" 
hypothesis. Feld (1981) presents a theory of the social organization of 
friendship relations, based on, but more general than, Heider's (1946) 
balance theory. Triads are important to Feld's theory, but so are lo
cal bridges between actors, which can exist (much like Granovetter's 
(1973) weak ties) when transitive relationships are unlikely. Such bridges 
lead naturally to distinct subgroups of actors. More mathematical treat-
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ments of triad counts and alternative statistical models can be found 
in Davis (1977), Frank (1978a, 1979a), and Frank and Harary (1979, 
1980). 

One can also focus on individual actors, and ask how many transitive 
and intransitive triads each is involved in. Cartwright and Harary (1956) 
were the first to look at this notion of local balance, by considering nodal 
transitivity and intransitivity. Several important structural properties 
can be studied in this way. For example, actors involved in many 
intransitive and transitive triads could be important brokers or cutpoints 
linking almost disconnected subgroups. Killworth (1974) also discusses 
nodal transitivity and intransitivity, and finds that actors with high node 
transitivity also have high intransitivity. Peripheral actors in subgroups 
(that is, those actors not very central or prestigious) are likely to be 
involved in many 300 triads, and thus have high node transitivity. Such 
actors, since they are on the periphery, are also likely to be have ties 
to actors outside their own subgroup, and thus be involved in many 
201 triads, thereby having high node intransitivity. Such actors maintain 
important links between subgroups without which no "communications" 
could flow, and hence, are cutpoints (Granovetter 1973, 1982). Recently, 
triads have been used by Hummell and Sodeur (1987) (see Burt 1990) to 
define a type of role equivalence. 

Hallinan and Kubitschek (1988, 1990), in one of the few studies of 
triads and intransitivities in recent years, examined data from elementary 
school classrooms (for other analyses of these same data, see Eder and 
Hallinan 1978; Hallinan and Smith 1985; Hallinan and Teixeria 1987a, 
1987b; and Hallinan and Williams 1987). They used logistic regression, 
with the states of the many intransitive triads extracted from these 
groups of children as the response variable, and a variety of explanatory 
variables measured on the actors involved as predictors. They argued that 
intransitivity must be studied at the individual actor level, and sought 
an answer to the question, «Why are some actors involved in more 
intransitive triads than others?" The predictor variables used included 
the gender of the actors in the triple, the race of the actors, the number 
of mutual and/or asymmetric ties in the triad, grade of the children, 
and the point in time the triad was measured (several time periods were 
studied here). 

Such analyses, using dyads or triads as basic modeling units, are quite 
interesting, but potentially flawed, since the triples are not independent 
of each other. The change of one "choice" can affect many triads (as 
we pointed out earlier in this chapter), so that the triples arising from 
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one of the classrooms should not be interpreted as independent sampling 
units. This problem also arises in the log linear models of Davis (1977) 
and the stochastic models of Sorensen and Hallinan (1975), who view 
triads as independent units. Hallinan and Kubitschek recognize this, and 
state that this lack of independence has no effect on this analysis, but no 
evidence is presented to back up this assertion. Researchers using such 
methods should be cautioned that the basic assumptions of the logistic 
regression model do not hold for dependent units. An alternative way to 
model these basic units will be described in the next chapter. 

The two chapters in Part V have focused on dyads and triads. There 
has been a bit of research on statistical analyses of genera� k-subgraph 
censuses, and on other types of subgraphs. For example, there has 
been some interest in isomorphism classes for tetrads (4-subgraphs), 
but the number of such classes (over 100) is so daunting, that (to our 
knowledge) few statistical models exist for such subgraphs (although 
recent research of Frank and Strauss (1986) focuses on models that can 
include substantive effects, such as sociometric stars, which are functions 
of higher-order subgraphs). 

Less-fonmidable structures include the rows and columns of the so
ciomatrix, or the ego-centered networks "beginning" or "ending" with 
particular actors. From the latter, one can study how likely it is that 
such structures are completely empty; that is, whether a particular actor 
receives no nominations, or is an isolate. Katz (1952) presents statistical 
theory for the study of isolates. 

14.6 Summary 
All things considered, the research program of Davis, Holland, and 
Leinhardt has had a tremendous impact on triadic analysis. (A detailed, 
rather humorous, history of this collaboration can be found in Davis 
1979). Their research was also the first social network methodology to 
use sophisticated statistical models. Research on triads and the theories 
that can be tested using the triad census seems to have peaked in the mid-
1970's (a special issue of the Journal of Mathematical Sociology, edited 
by Samuel Leinhardt, was devoted to this research in 1977). This date 
is not at all surprising, since the mid-1970's saw the introduction of 
structural equivalence, and the first of many methods that this important 
theoretical notion spawned. By 1980, structural equivalence had replaced 
balance and transitivity as the "hot" substantive theory in social network 
analysis. 
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There have been few papers in the 1980's in methodological and 
substantive journals discussing triads and related substantive theories. 
We have found that researchers frequently forget to study lower-order 
structures in their data. We feel that such analyses are quite important in 
social network analyses, and we hope that the methods described in this 
chapter will help researchers conduct additional, and important tests of 
substantive hypotheses. 

As we have mentioned, there are many substantive questions about 
structure that cannot be answered by focusing on triads. Questions about 
connectivity, centrality and prestige, and algebraic properties of measured 
relations are among the issues that cannot be addressed by looking at 
configurations of triads. At the same time, a remarkable amount of 
network information can be gathered by examining configurations defined 
on two or three nodes. If information necessary to answer important 
substantive questions can be obtained from the simple subgraphs of sizes 
2 and 3 (remember that one can learn all about the dyad census from the 
triad census), then there is no need to examine higher-order structures 
(tetrads, pentads, . . .  , subgroups). 

The methods described in this chapter can be quite complementary 
to the subgroup methods and the role and position methods discussed 
in Parts III and IV. As mentioned, one logical outcome of a transitive 
relation is that actors can be partitioned into subgroups; however, triadic 
analyses cannot tell the researcher about the nature of these subgroups. 
Are they completely disconnected, or is there a hierarchy among the 
subgroups (with subgroups "choosing" upward to a top-most subgroup)? 
Are there more complicated relationships among the subgroups? All of 
these structural patterns are possible with transitivity. A researcher 
should consider complementing a triadic analysis with methods designed 
to study actor subgroupings. A complete social network analysis begins 
by using methods from Parts III, IV, and V of this book. 
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Statistical Dyadic Interaction Models 





15 
Statistical Analysis of Single 
Relational Networks 

by Dawn Iacobucci 

We now turn our attention to stochastic models for social network 
data. The methodology described here continues the development of 
statistical methods for network data begun in Chapter 13. We begin in 
Chapter 15 by considering a (very special) class of statistical distributions 
for random directed graphs, which, as we will show, is a special case of 
the uniform random directed graph distributions presented in Chapter 
13. This class is more interesting than the distributions of Chapter 13, 
and contains substantively meaningful parameters which reflect a wide 
variety of graph properties. Further, the parameters can actually be 
estimated from data. The basic model has many generalizations and 
extensions, some of which are described in Chapter 16. 

In Chapter 16 we turn to the last question raised in Chapter 9 concern
ing methodology for studying a positional analysis. We want to measure 
the adequacy of a representation of a positional analysis. We stated that 
there are four tasks that have to be undertaken in a positional analysis: 

(i) Define equivalence 
. (ii) Measure how closely the actors adhere to this definition 
(iii) Represent the equivalences of the actors 
(iv) Measure the adequacy of this representation 

Two of the necessary tasks are measurement-oriented. These tasks are 
the second and fourth. The second task requires the analyst to determine 
how equivalent the actors are, for a given set of relations; that is, one 
mnst find which actors are equivalent, and which ones are not, using some 
measurement device(s). After such an examination, one then turns to the 
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third task in order to represent the discovered equivalences (and non
equivalences) mathematically. In Chapter 16, we focus on the adequacy 
of this mathematical model. 

The statistical models described in Chapter 15 allow a researcher to 
perform significance tests - a formal evaluation of the statistical sig
nificance of various substantive effects based on null hypotheses. For 
example, an outdegree used as a descriptive measure of an actor's ex
pansiveness cannot be evaluated as absolutely large or as significantly 
larger than other outdegrees, but such inferences can be made with sta
tistical models. Furthermore, parameters that quantify the "structural 
effects" present in a network, such as reciprocity and tendencies toward 
differential indegrees, can be estimated simultaneously; for example, we 
can model actor expansiveness while controlling for differential actor 
popularity. The models described here are dyadic interaction models, 
which use the (natural) log of probabilities as their basic modeling unit. 
The models posit a structural form for the (natural) logarithm of the 
probability that actor i "chooses" actor j at one strength while actor j 
"chooses" actor i at a possibly different strength. 

Chapter 16 first describes goodness-of-fit indices for positional analyses 
not based on statistical models. Next, it presents methods that assume 
that a statistical model is actually operating, so that the index considered 
arises naturally from the underlying model. We call both types of indices 
goodness-of-fit indices, because both attempt to measure the fit of a model 
to a data set, but note that there is this fundamental distinction between 
them. And the last section in the chapter describes generalizations and 
extensions of the models presented in Part VI. 

Statistical network analyses allow the researcher to assess a model 
by measuring the fit of the model to data. In addition, statistical ap
proaches yield flexible probabilistic models that can be generalized by 
using random directed distributions based on network characteristics. 
These distributions allow comparisons of the observed effects to hypoth
esized effects, as well as significance tests to determine whether an effect 
is due to sampling variability. 

We begin this chapter by presenting models for a network with mea
surements on a single, directional relation for one set of actors. We then 
describe and demonstrate the interpretation and fitting of a basic statis
tical network model. Attribute variables measured on the actors can also 

be incorporated into the models, so that we have the flexibility to model 
network structure among individual actors or among subsets of actors 
iu situations in which the subsets are defined a priori based on actor 



15.1 Single Directional Relations 607 
attributes. We also describe models that focus entirely on the relation, to 
the exclusion of the individual actors or the subsets to which they belong. 
Modifications of the basic statistical model are also described that allow 
for ordinal, rather than just nominal or dichotomous, relations. Lastly, 
we briefly discuss recent research on related statistical models for single 
relations. 

Toward the end of the chapter, we present models for networks with 
two sets of actors in which a single relation is measured. We describe 
models for one set of actors in greater detail, but we also hope to 
encourage researchers to consider more applications to networks with 
two sets of actors. 

This chapter docs require the reader to have some background in 
categorical data analysis. Specifically, a knowledge of log linear models, 
and the methods for fitting such models to three- and fonr-dimensional 
contingency tables is needed. Those desiring more background in log lin
ear models should study the excellent texts of Fienberg (1980), Kennedy 
(1983), Wickens (1989), or Agresti (1990). 

The end of this chapter gives the "commands" needed to fit these 
models to network data using several computer packages. We give 
specific details on how to fit the models described in this chapter using 
the standard packages. Some of the computations for the basic models 
presented in this chapter are included in the latest release of UCINET 
IV. 

More statistically knowledgeable readers may find sections of this 

chapter rather elementary, and possibly boring - we suggest to such 
readers that the elementary, discursive parts of the chapter, which ex
plain likelihood functions and maximum likelihood estimation of the 
parameters in log linear models, can be skipped. 

15_1 Single Directional Relations 

In this section, we first describe the construction and modeling of the 
Y-array, a contingency table basic to our models which is derived from 
the relational data in X. This array focuses on dyads, and is descriptive 
of individual actors' ties to other actors. 

We demonstrate these methods in detail on the hypothetical set of 
second-grade children. We use this fabricated social network as an 
illustrative example because of its small size, which makes the analyses 
easier to follow. We also present the application of these methods to 
Krackhardt's friendship relation measured on managers in a high-tech 
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organization, and Padgett's Florentine marital and business relations. 
Analyses of these data display different aspects of the methodology 
discussed in this chapter. 

15.1.1 The Y-array 

The models for single relational networks are not easily fit to the X 
matrix, so we reorganize the network data into a different contingency 
table, to which the models are mOre easily fit. We first illustrate the 
construction of this new table using the small hypothetical social network 
of second-grade children. 

Data Review and the Definition of Y. We begin by describing 
a model for a single, directional relation measured for a single set of 
actors, %. Recall that a dyad with measurements on a directional 
relation consists of two actors, i and j, and the possible ties between 
these two actors. 

The ties between the actors may be viewed from the perspective of 
either actor i or actor j. First, take the perspective of n,. The relational 
variable Xi} records the possible "choice" ofnj by n" while the relational 
variable Xj, records the possible "choice" received by n, from nj. Now, 
take the perspective of actor j. The relational variable Xj, records the 
possible "choice" of actor i by actor j, while the relational variable Xij 
records the possible "choice" received by actor j from actor i. Both of 
these perspectives are incorporated into our modeling. 

Recall that a social network consisting of g actors contains m dyads. 
In a statistical model, each dyad consists of information represented by 
two random variables, X'j and .Kj,. We will let Dij denote the dyadic 
variable. With g actors and a single relation, we have g(g - 1 )  = 2 m 

dyadic random variables to consider. We wish to model all the dyadic 
ties in a network simultaneously and as parsimoniously as possible. 

Consider a pair of actors, a single dichotomous relation, and the dyad 
Dij. The ties in the dyad, for both actors, can be presented in a 2 x 2 
array. The two variables of this array, both of which have just two levels, 
are rather novel. The first, with two levels, which we index with a k and 
which can be either 0 Or 1, codes the value of the tie scnt by the row 
actor i to the colnmn actor j. The second, also with just two levels and 
which we index with an I, codes the value of the tie sent by the column 
actor j to the row actor i. So, the ties for each and every dyad can be 
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presented in one of these 2 x 2 arrays. The new indicc" " and I equal 
either 0 or I, depending on the state of the dyad. 

Consider now all dyads and this single, dichotomous relation. If we 
take the original g x g X binary matrix, and replace each entry with the 
appropriate 2 x 2 table, we obtain a new contingency table. Sincc there 
are m dyads, which can be indexed by the g x g pairs of actors involved, 
the new contingency table will be of size g x g x 2 x 2. 

We can consider valued, as well as dichotomous, relations. The re
striction to dichotomous relations common to the statistical methods 
presented in Chapters 13 and 14 is relaxed here. To model all dyads 
on a single, valued relation simultaneously, we create a four-dimensional 
contingency table of size g x g x C x C. The first two dimensions of this 
table are indexed by the actors in %. The size of the third and fourth 
dimensions is C, the number of integer values the measnred relation can 
take on. For dichotomous data that are coded k, I = 0 or I, C equals 2. 
For relational data coded as k = 0, 1 ,2  and I = 0, 1, 2, C equals 3. 

We call the g x g x C x C matrix Y, and define its entries as follows : 

Yijkl 1 if the dyad Dij takes on the values 

(Xij = k, Xji = I) 

o otherwise. (15.1) 

The Y-array is a cross-classification of four variables and thus, its entries 
have four subscripts: The actors as senders (i), the actors as receivers (j), 
and the relational variables Xu (indexed by the third subscript, k) and 
Xji (indexed by the fourth subscript, I). The structure of Y is similar to a 
sociomatrix, where rows represent sending actors and columns represent 
receiving actors. The entry in the (i, j)th cell of a sociomatrix is Xij. The 
(i, j)th cell of Y is not a single quantity, but rather a C x C submatrix. 
In this C x C submatrix, there will be a single I found in the (k, l)th 
cell. The remaining C2 - I elements will be o. Thus, one can view 
these submatrices as simply indicator matrices, giving the "state" of each 
dyad. The Y -array has a special symmetry, Yijkl = Yjilk for all (i, j) and 
(k, I) pairs, due to the fact that the dyad may be viewed from either 
the perspective of actor i or the perspective of actor j. The Y -array 
was created so that the models we are about to describe could be fit to 
discrete-valued relations using standard log linear modeling procedures 
that exist in the widely available statistical computing packages. 

An Example of Y. As an example, refer to the small fabricated 
social network of second-grade children first introduced in Chapter 3. 
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Table IS.l. Sociomatrix for the second-grade children 

Friendship at Beginning of Year 

Allison Drew Eliot Keith Ross Sarah 

n1 Allison 0 0 1 0 
n2 Drew 0 1 0 0 1 
n3 Eliot 0 1 0 0 0 
n4 Keith 0 0 0 1 0 
n5 Ross 0 0 0 0 1 
n6 Sarah 0 1 0 0 0 

In this network, the actors are labeled as follows: nl =; Allison, n2 = 
Drew, n3 = Eliot, n4 = Keith, ns = Ross, and n6 = Sarah. To focus on 
one dyad in particular, we might observe the data for nl = Allison and 
ns = Ross on the relation of friendship at the beginning of the school 
year. The data show that Ross does not name Allison as a child he likes, 
but Allison nominates Ross. From Allison's perspective, the relational 
variable sent is XIS = 1, implying that Allison likes Ross as a friend, and 
the relation received is XSI = 0, implying that Allison is not liked as a 
friend by Ross. From Ross's perspective, the relation sent is XSI = 0, 
Ross does not choose Allison, and the relation received is XIS = 1, Ross 
is chosen by Allison. The recorded data for actors 1 and 5 in this pair 
< nl, ns > would be DIS = (XIS, xsll = (1,0), so that YISIO = 1 ,  while 
YISOO = YIS01 = Y1511 = O. 

We can build the Y that corresponds to the network describing friend
ship choices among these six children at the beginning of a school year. 
We first present these data as a sociomatrix in Table IS.l. 

Remember that it is common statistical practice to use capital, bold
faced letters (such as Y) to denote random variables, while actual real
izations (such as the y given here) have lowercase, boldfaced letters. 

In Table 15.2, we present the y-array for these data The size of this 
array is 6 x 6 x 2 x 2 because the contingency table is actors (i = 1, 2, . . .  , 6) 
by partners (j = 1 ,2, . , . , 6) by strength of choices sent (xij = 0, 1)  by 
strength of choices received (Xji = 0, 1), where C = 2. 

Note the other stated properties of y hold in the example: In each 
2 x 2 submatrix, there is one 1 and (C2 - 1)= 3 0's. The submatrices 

along the main diagonal are filled entirely with -'s, because no reflexive 
ties ("self-choices") are measured for this relation. Finally, note that y is 
symmetric as described earlier (Yijkl = Y}Uk). 
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Table 15.2. y for the second-grade children 
j 

Allison Drew Eliot Keith Ross Sarah 

1 = Xji 
i k 0 1 0 1 0 1 0 1 0 1 0 1 

nl Allison Xij = 0 - - 0 0 1 0 1 0 0 0 1 0 
Xij = 1 - - 1 0 0 0 0 0 1 0 0 0 

n2 Drew Xij = 0 0 1 - - 0 0 1 0 1 0 0 0 
Xij = 1 0 0 - - 0 1 0 0 0 0 0 1 

n3 Eliot Xij = 0 1 0 0 0 - - 1 0 1 0 1 0 
Xij = 1 0 0 0 1 - - 0 0 0 0 0 0 

n, Keith Xij = 0 1 0 1 0 1 0 - - 0 0 1 0 
Xu = 1 0 0 0 0 0 0 - - 1 0 0 0 

ns Ross Xij = 0 0 1 1 0 1 0 0 1 - - 0 0 
Xij = 1 0 0 0 0 0 0 0 0 - - 1 0 

n6 Sarah Xij = 0 1 0 0 0 1 0 1 0 0 1 - -
Xij = 1 0 0 0 1 0 0 0 0 0 0 - -

The margins of the y-array are quite important to the estimation of 
parameters for various models. These margins are sums over the elements 
of y, and are denoted with subscripts including "+" signs. A + used as a 
subscript on various Y terms indicates that one sums over the subscripts 
replaced by the +'s. For example, Y++k+ denotes the sum of the entries of 
y over i, j, and I, for each k. These sums form a one-way table with one 
cell for each level of k. This margin, {Y++k+} gives the number of ties on 
the relation at the various strengths k = 0, 1, . . .  , C - 1. It is aggregated 
over actors (i), their partners (j), and the choices received (I). 

For the example of the fabricated network of second-grade children 
(the y-array appears in Table 15.2), the {Y++k+} margin is: 

Y++o+ 22 

Y++1+ 8 

These numbers tell us that 22 ties have strength k = 0 (that is, 22 possible 
ties are absent), and 8 have strength k = 1 (that is, 8 ties are present). 
Another example is the Yi+k+ margin, which gives the numbers of ties 
that are present (k = 1) and ties that are absent (k = 0) for each actor: 

Y1+o+ 3 

Yl+1+ 2 



612 Statistical Analysis of Single Relational Networks 

y2+�+ 3 

Y2+1+ 2 

YHO+ 4 

YHl+ = 1 

Y4+O+ 4 

Y4+l+ 1 

Y5+0+ 4 

Y5+1+ 1 

Y6+O+ 4 

)16+1+ 1 

For example, n3, n4, n5, and n6, all have one tie - these four children 

choose just one child as a friend. 

15.1.2 Modeling the Y-array 

We now present statistical models for the analysis of a single, directional 

relation, whose data we represent by a 4-dimensional Y -array. Before 

presenting the mathematical model statement itself, we will motivate the 

model and describe its utility by explaining the substantive effects that the 

parameters of the model are designed to reflect. For a single, directional 

relation, we focus on effects that represent the "expansiveness" of actors, 

the "popUlarity" of their partners, and the "reciprocation" of the ties 

within the dyads. 

Description of the Key Model Parameters. The basic model con

sists primarily of three sets of parameters: one set of parameters describes 

the actors' sending behavior, one set describes the actors' receiving behav

ior, and one set describes the interactions between pairs of actors within 

a dyad. The first set of parameters are called expansiveness effects. In a 

children's friendship network, these effects reflect the propensity of each 

child to nominate others as friends. The second set of parameters are 

called popularity effects. In the children's friendship example, popularity 

reflects the tendency for a child to be nominated by others as a friend. 

Patterns of friendship choices among children are described in terms uf 

the expansiveness and popularity of the individual children. While these 

terms, "expansiveness" and "popularity," might apply equally well to 

other network data sets, particularly when actors are people and relations 
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measure positive affect or evaluation (for example, the expansiveness and 
popularity of employees as measured on a communication relation), they 
apply less well in other applications. For example, if the network is 
one describing children taking toys from other children, one would not 
necessarily describe as "popular" a child whose toys are frequently taken. 
Nevertheless, the terms "expansiveness" and "popularity" have become 

commonplace in the literature. We use these terms in this context to mean 
precisely this: parameters representing the propensities for actors to have 
ties to and from the other actors. Positive values of the parameters 
increase the probability of having ties. 

The final set of parameters are those that reflect the reciprocation, 
or mutuality, between two actors, independent of the expansiveness or 
popularity of either actor. This set is not all that different from the 
measures of reciprocity described in Chapter 13. However, the parameters 
described here are not limited to dichotomous data, and are probabilistic 
in nature. Further, these reciprocity effects describe interactive behaviors 
unique to the dyad, above and beyond the probabilistic tendencies for 
expansiveness and popularity of the actors who comprise the dyad. 

Reciprocity is the extent to which a dyad exhibits mutual, as opposed 
to asymmetric, ties. With respect to the statistical models discussed here, 
positive reciprocity parameters increase the likelihood that the dyad is 
mutual. The model we present for a single relation includes parameters 
to measure the probabilistic tendencies of all of these substantive effects: 
expansiveness, popularity, and reciprocity. 

We estimate these parameters using log linear modeling techniques. Log 
linear models are the standard statistical method for studying discrete
valued data organized as counts in multi-way contingency tables (see 
Agresti 1984, 1990; Bishop, Fienberg, and Holland 1975; Fienberg 1980; 
Goodman 1979; Haberman 1978, 1979; Kennedy 1983; Wickens 1989). 
The vast majority of social network data are discrete, and almost always 
C is small. Social network data that are not discrete can often be cate
gorized withont losing important information in the data. For example, 
we might take a continuous measure of time spent talking and code it 
as high, medium, or low. Thus, our concentration on network models 
that can be fit to discrete-valued relations using log linear models seems 
appropriate. 

The Basic Model for Dichotomous Relations. We begin by dis
cussing the modeling of a dichotomous relation. After presenting the 
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models for dichotomous relations, we exteud the model to the more 
general case of discrete relations (c > 2). 

The basic model, introduced and termed "PI" by Holland and Lein
hardt (1977, 1981), is expressed in four statements. Each of the four state
ments represents one of the four possible states of any given dyad: the 
null dyad (Xij � Xj, � 0, or YijOO � 1), the mutual dyad (X'j � Xj, � 1, 
or Y'jll � 1), and two cases of asymmetric dyads (Xij � I,Xj' � 0, or 
YijlO � 1, and X'j � 0, Xj, � 1, or Y'jOI � 1). We represent the (natural) 
log of the probabiliti,,> vi "ach of these four dyadic states as a function 
of several parameters, in order to specify PI : 

10gP(YijOO = 1 )  Aij 

10g P(Y'jIO � 1) Aij + e + IX, + f3j 

10gP(Y'jOl = 1) � Aij + e + IXj + 13, (15.2) 

10g P(Yijl1 � 1) Aij + 2e + IX, + IXj + f3j + 13, + (IXI3). 

This model is log linear. It can be viewed as an analogue of the 
linear models arising in analysis of variance. Log-linear models begin 
multiplicatively, but once the log of the response variable is taken, 
the model is additive, or linear, in the parameters. Thus, PI begins 
with a probability of a dyadic state as a response variable, equated 
to au expansiveness parameter (actually, e raised to the power of the 
expausiveness parameter) multiplied by a popularity parameter. When 
the model aud response "probabilities" are transformed to the log scale, 
PI shows an expansiveness parameter added to a popularity parameter. 
The log-linear form of the model is simple to fit and to understand. 
The log of the probability that n, has ties to and from nj becomes an 
additive function of terms that include the expansiveness of n, and nj' 
the popularity of both actors, and the reciprocal effects between the two. 
When a parameter is positive, it contributes to (or increases) the (log) 
probability that n; has a tie to nj, and if it is negative, the probability 
decreases. 

The {Aij} parameters are mathematical necessities included in the model 
to insure these four probabilities sum to one for each dyad. Thus, these 
parameters appear in all four statements, regardless of the state of 
the dyad. The e parameter is interpreted as an overall choice effect 
(analogous to a grand mean), reflecting the overall volume of choices 
sent and received. If one tie is present in the dyad, one e appears in the 
statement ;  when the tie is reciprocated, two e's appear. 
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Note that e does not appear in the model statement when ties are not 
present, and (afJ) is present only when the dyad is mutual. No substantive 
parameters appear in the first statement of the model which represents 
a null dyad. For asymmetric dyads, the log probabilities depend on 
parameters reflecting only one of the two possible ties in the dyad: dyads 
in which actor i chooses actor j without reciprocation (so an lXi but 

not an aj is relevant, and a fJj but not a fJ; is included) and dyads in 
which actor j chooses actor i with no reciprocated choice (so the relevant 
parameters are aj and fJ;, but not a; or fJj Or (afJ)). All the parameters 
appear together only for mutual dyads (the last statement of the model). 

The (afJ) (sometimes denoted by p in the literature), is also called a 
mutuality parameter. When choices on some relation, such as friendship, 
tend to be mutual in some network, the parameter will be positive and 
large. In this sense, the parameter is a measure of association between ties 
sent and received (analogous to a correlation coefficient for continuous 
data). For some relations like friendship, one would expect reciprocity 
to be present. However, we might not expect reciprocation for other 
relations, such as " assigns work to" or "asks for advice." Although a 
superior might ask a subordinate for advice, we might expect this to occur 
less frequently than the subordinate asking the superior for advise. With 
dichotomous data, such patterns on these relations would be modeled 
with a large negative, (afJ) parameter indicating that actors who choose 
others tend not to be those chosen by those others. When reciprocation 
is not an important factor in a network, the reciprocity parameter would 
equal o. We can view (ap) as a model-based measure of reciprocity, so 
that it can be compared and contrasted to the indices for reciprocity 
discussed in Chapter 13. 

Constraints are necessary to estimate the parameters in this model. 
We use the standard analysis of variance-like constraints in which the 
parameters and their estimates sum to 0 across their subscripts. We have 
2:; a; = 0, and 2:j fJj = o. 

These constraints determine the degrees of freedom (dl) associated 
with each set of parameters. The df associated with any set. of parameters 
is the number of parameters that are independent and free to vary. The 
expansiveness parameters {a,} have a subscript of i, which ranges from 
1 to g, the number of actors. There are g a; parameters, but they are 
constrained to sum to O. Thus, the df for this set of parameters is 
(g - 1) because we can calculate a, from the other (g - 1) parameters. 
Similarly, the popularity parameters {fJ;} also require (g - 1) degrees of 
freedom. Lastly, the reciprocity parameter (afJ) requires a single degree 
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of freedom. Estimation of the parameters of this model is discussed in 
detail by Fienberg and Wasserman (1981a) and Wasserman and Weaver 
(1985); we also describe how to estimate these parameters shortly. 

We now consider the more general form of the PI model, which 
allows us to study single relational variables that are discrete and not 
necessarily dichotomous (Wasserman and Iacobucci 1986). We assume 
that the relational variable can take on values 0, 1, . . .  , C - 1, and that 
Yijkl = 1, when Xij = k and Xji = l . The following model statement 
generalizes the four statements of PI : 

10gP(Yijkl = 1)  = Aij + 8k + 81 + ai(k) + aj(l) 

+[3j(k) + [3i(l) + (a[3)kl. (15.3) 

Note the actor-level parameters in this modeL The parameter ai(k) mea
Sures the tendency for actor i to send ties at strength k, while [3j(1) measures 
the tendency for actor j to receive ties at strength l. We will sometimes 
refer to such parameters as actor-level, because of their dependence on 
the individual actors. 

The parameters are subject to the following constraints : 

eo = ° 
Cli(O) = 0, for all i 

I:;ai(k) = 0, for all k 

[3 j(O) 0, for all j 

I:; [3j(l) 0, for all I 
j 
(a[3)kO = 0, for all k 

(a[3)ol 0, for all I 
(a[3)k/ (a[3)lk 

In words, we constrain the parameters to equal zero when a choice is 
made at the lowest strength (k = ° or I = 0). This generalization of the 
PI model thus becomes equivalent to PI when C = 2. In Ph ai is defined 
only when a choice is sent (k = 1). Here, ai(k) = ° when k = 0, but ai(k) 
can be non-zero (and usually is) when choices are made at any strength 
(k = 1 , 2, n., C - 1). For every k > 0, the a'(k) sum to ° across actors. 
Because the estimates sum to zero across actors, relative comparisons 
among actors (at each strength) are easily made. The constraints on the 
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Table 15.3. Constraints on the {ai(k) } parameters in model (15.3) 

i � 1 
i � 2 
i �  3 

i � g 
Total 

k � O  k � 1  k � C - l  

0 al(t) 
0 0:2(1) 
0 ct3(1) 

0 IXg(l) 

0 0 

al(e-I) 
IX2(C-l) 
Gt3(C-I) 

elg(e_l) 

o 
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a parameters are depicted in Table 15.3. The constraints stated above are 
consistent with the fact that the {Ok}, {ai(k)}, {Pj(l)}, and {(ap)kJ} require 
(C- l), (g- I)(C - l), (g - l)(C - l), and C(C - l)/2 degrees of freedom, 
respectively. 

As before, the {ai(k)} parameters are the expansiveness parameters, and 
the {Pj(J)} are the popularity parameters. The IX'(k) represents the tendency 
(or the additive effect on the logarithm of the probability) of actor i to 
send ties at strength k. Similarly, Pj(I) represents the tendency (or the 
additive effect on the logarithm of the probability) of actor j to receive 
ties at strength l. Actor i's expansiveness is reflected by a'(k) and actor i's 
popularity by p'(J)' Actor j's expansiveness is reflected by aj(J) and actor 
j's popularity by pj(k). 

The {(ap)kJ} parameters are the reciprocity effects. Note that these 
parameters do not depend on the specific actors being modeled (there is 
no i or j subscript). The model assumes these effects are constant across 
all pairs of actors. The reciprocity parameters are symmetric in their 
indices, (aplkJ = (ap)Jb so there is C(C - 1)/2 degrees of freedom. 

The model for dichotomous data contains just a single reciprocity 
parameter (because C(C - 1)/2 = 2(2- 1)/2 � 1), as specified by Pl. The 
single (ap) parameter for modeling dichotomous relations is analogous 
to a measure of association. When C > 2, the C x C matrix of (ap)kJ 
parameters is analogous to an entire matrix of such measures. For 
example, (aphs = (apisl measures the positive or negative association 
between ties sent at the weak strength of k � 1 and ties received at the 
much greater strength of I � 5. 

It is important to note that when ties are valued, the a and P estimates 
(derived from (15.3), not (15.2)) depend on the number of possible values. 
For every level k = 1, . . .  , (C - 1), there are g alpha's and g beta's. For a 
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Table 15.4. PI parameter estimates Jor the second-graders 
Node label 

n1 

", 
"3 
", 
", 
n, 

Actor &i 

Allison 1.414 
Drew 0.817 
Eliot -0.474 
Keith 0.197 
Ross --0.977 
Sarah -0.977 

(ap) = 3.077 

IJ = -1.437 

p, 
-00 

0.867 
-1.223 

-00 
0.178 
0.178 

fixed k, these parameters measure how likely it is that an actor has ties 
(sent or received) at that particular strength. 

An Example - Fitting PI to tbe Fabricated Network. To illus
trate, we fit the model to the fabricated network of second-grade children 
and study its parameters. The parameter estimates resulting from fitting 
model (15.2) to the y-array based on the friendship choices among the 6 
children are presented in Table 15.4. 

Note that these parameters are on a logarithmic scale. Thus, if an a 
increases by 1 unit, say, from 1 to 2, the logarithm of the probability 
of a choice increases by 1 unit. Or, the actual probability increases by 
exp(l)  = 2.718. 

The alpha estimates tell the following story : Actor 1 (Allison) has the 
largest expansiveness parameter. She was far more likely to have friends 
(at the beginning of the school year) than were any of the other children. 
Actor 2 (Drew) was next most likely, and actors 5 and 6 (Ross and 
Sarah) were least likely. 

The beta estimates quantify the tendencies with which each of these 
children is chosen as a friend by the other children in the network. And 
these estimates are qnite different from the alphas; specifically, two of the 
parameter estimates are infinite. We will discuss this situation technically 
later in the chapter, but for now, we note that Allison and Keith are not 
chosen by any other children as friends; hence, they have 0 indegrees. 
This forces the beta parameters to be -00 for these two children. 

Whereas child 1 (Allison) was most likely to choose others, she was 
least likely to be chosen by others, since her P is the smallest (in fact, she 
was not chosen so her Ii is infinite). Child 4 (Keith) is similar. The other 
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children (n2, ns, n6, and n3) can be chosen as friends, with Drew, Ross, 
and Sarah exhibiting positive tendencies. 

The reciprocity parameter gives additional information about this re
lation. With dichotomous data, the analogy between the (ap) parameter 
and a measure of association is especially easy to see. Here, the estimate 
is positive and large, indicating tendencies for positive association or 
mutual friendships - if child i nominates another j as a friend, that 
friend j in tum tends to reciprocate the friendship. Similarly, if n, does 
not nominate nj, nj also tends to not nominate n,. If this parameter 
estimate were negative, it would indicate a relation for which there are 
many non-reciprocated friendships (or asymmetric dyads). 

15.1.3 Parameters 

We now discuss theoretical issues and the practical means for calculating 
the parameter estimates of model (15.3). We also describe how to test 
the statistical significance of each set of parameters to see which effects 
in the network are statistically large. 

Parameter Estimation - Theory and Practice. In this section, 
we discuss several issues regarding the estimation of the parameters in 
model (15.3): We begin with some theoretical issues (such as maximum 
likelihood estimation and the likelihood-ratio goodness-of-fit statistic), 
and then explain how to analyze network data using these methods 
(including significance testing of the parameters). Finally, we describe 
the statistical analyses of several social network data sets. 

(i9Distributions and Maximum Likelihood Estimation. In this sec
tion, we discuss the statistical theory underlying model (15.3), including 
the form of the likelihood function, the statistical function from which 
the maximum likelihood parameter estimates are derived. Alternative 
estimation techniques are described later in this chapter. 

Holland and Leinhardt (1981) describe model (15.3) as belonging 
to an exponential family of distributions, which means parameters can 
be estimated via the maximum likelihood estimation procedure. With 
maximum likelihood, estimated parameters are those that give the best 
fit to the data. By "fitting the data the best," we mean that the best
fitting parameters maximize the joint probability distribution of the data. 
l! is as if many estimates of each parameter, say Pl(l) = 0.05, or 0.12, 
or 0.73, were tried out in the model, and the value that "fits" the data 
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the best is chosen as the "best" estimate. In practice. several values 
are not actually tried out; the optimal estimates for parameters are 
usually computed numerically through various exact (or, if necessary, 
approximate) mathematical procedures. These procedures are used in 
statistical computing packages to maximize the likelihood function (or 
really, the logarithm of this function, which is easier computationally). 

For PI, the goal of maximum likelihood estimation is, "Find the best 
(maximum likelihood) estimates of all the parameters in the model (the 
A'S, 0'8, a's, f3's, and (af3)'s) that could have produced the given dyadic 
interaction data, represented by our y-array." The likelihood function 
is the joint probability distribution of the data. Maximum likelihood 
estimation strives to find parameters that maximize this function. The log 
likelihood function explicitly tells which functions of the data - which 
"margins" of the y-array - are needed to estimate the parameters. These 
margins must be specified when using a statistical computing package. 
We will discuss these margins at length shortly. 

The log likelihood function for model (15.3) assumes independence of 
dyads (an assumption we discuss at the end of this chapter) and is as 
follows (Wasserman and Iacobucci 1986) : 

1 1 
L Aij + 2 L OkY++k+ + 2 L O'Y+++l 
i<j k I 

1 1 +2 L L ai(k)Yi+k+ + 2 L L aj(l)Y+i+1 
i k j I 

1 1 
+2 L L f3j(k)Y+jk+ + 2 L Lf3i(I)Yi++1 

j k j I 
+ L L(af3)kl LYijkl. 

k I i<j 
(15.4) 

Thc terms in the log likelihood function that depend on the data y I)ave 

subscripts which include "+"'s. 
The margins of y which are needed to estimate the parameters are 

those arising in the log likelihood function (15.4). These margins are 
sufficient statistics for the parameters in the model. These are the only 
summaries of the data (y) that are needed to maximize the likelihood 
and obtain the parameter estimates. We later describe these margins at 
length. 

Maximum likelihood estimation not only yields estimates of the pa
rameters of a model (such as PI), but also estimates of the random 
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variables being modeled. In this instance, we are modeling the elements 
of the Y -array; and we will denote the maximum likelihood estimates 
of these quantities using "I\" 's: {Yijkl}. These maximum likelihood es
timates, which are often referred to as fitted values, usually do not have 
a simple equation to calculate them. They are calculated iteratively by 
the algorithm chosen to solve the likelihood equations arising from the 
maximum likelihood problem. 

Goodness-ol-Fit Statistic. Once we have fit model (15.3) to the 
data and obtained maximum likelihood estimates of the parameters, we 
need to be able to evaluate how well the model fits and which of the 
parameters are statistically large (that is, statistically different from 0). 
The statistic used in maximum likelihood estimation for these purposes 
is usually the likelihood-ratio statistic. For the log-linear models discussed 
here, this statistic is G2, which, for our application, is: 

G2 = 2 L L Yuki log (Yijkl!Yijk!l. 
i<j k,l 

(15.5) 

This statistic is well-known in categorical data analysis; further. The 
likelihood-ratio statistic is a function of the observed data, Yijkl, and 
the calculated model predictions (fitted values), Yijkl, which are standard 
output from log-linear model computing packages. These fitted values 
are the predictions for the network data arising from the model PI. The 
parameter estimates can also be combined, as stated by the model, to give 
us the fitted values (the Y's). The statistic is calculated as the sum over 
all cells in a contingency table of quantities that compare the observed 
values to the fitted values. 

The fitted values, Yijkl. for the friendship relation for the fabricated 
network of second-graders are given in Table 15.5. 

The goodness-of-fit statistic for our statistical models for social network 
data (in 15.5) has a similar interpretation. The only difference is that the 
sum is not taken over all cells of the y-array, but over all dyads (i < j), 
since the basic unit in these models is the dyad. We want to compare 
each dyad to its fitted value only once, so we sum over one-half of the 
y-array (remember that y is symmetric). 

The statistic G2, defined in equation (15.5), has the property that as 
we add parameters to a model and make the model more complicated, 
it will stay the same or go down, indicating better fit, or closer agree
ment of the Y's and Y's. This property is especially important when 
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we compare two hierarchically nested models. For example, a model 
with parameters ,I, e, a, and p is hierarchically nested in a model with 
parameters '\,e,a, p, and (ap). The models are identical except that one 
model contains one mare set of parameters (the {(aPlkl}). The "larger" 
model has all the parameters of the first, plus an additional set. All of 
the models we consider here will be hierarchical - if one model can 
be obtained from a second model by setting some of the parameters to 
zero, then we say tbat the first model is hierarchically nested within the 
second. 

In general, we can test hypotheses about the model parameters by 
comparing the test statistics for hierarchically nested models. The dif
ference between the G2 statistics for two hierarchically nested models is 
approximately asymptotically distributed as a X2 random variable. Thus, 
this difference can be compared to tabled values of X2 (with certain de
grees of freedom) to establish whether the model with more parameters 
fits significantly better than the simpler model. If it does, the extra 
parameters are statistically important. We can compare the fit of model 
(15.3) to the fit of a model that is similar except that it contains no 
a parameters, for example. The difference between the two G2,s would 
be tested on (g - 1)(C - 1) degrees of freedom in order to evaluate the 
statistical significance of the {ai(k)}' 

UCINET IV can fit Pl .  One can also use a standard statistical com
puting package, such as GLIM, SPSSx, or SYSTAT, to fit the model 
and to calculate the fitted values, {Yiikd, which are used to compute 
the goodness-of-fit statistic G2 It is important to note tbat the G2 and 
degrees of freedom obtained directly from such standard packages are 
incorrect, and need modifications that we describe shortly. The fitted 
values and the residuals (the differences between the observed table en
tries and the fitted table entries {Yijkl - Yiikd) can also be diagnostic of 
cells that are fit particularly well or particularly badly. Holland and 
Leinhardt (1981) discuss how to use the residuals from fitting PI to 
network data. Particularly poorly fit cells or dyads may be of special 
concern to a researcher. One should investigate possible reasons for 
the large discrepancies. When models do not fit data well, one means 
of improving the fit is to add parameters to the model. For exam
ple, some more complicated models have been investigated by Wasser
man and Galaskiewicz (1984), Wasserman and Anderson (1987), and 
Wang and Wong (1987), who add terms that depend on the blocks or 
positions into which actors can be classified (more on this in Chap
ter 16). 
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Practical Guide to Fitting These Models to Data. Once the data 
are arranged into a y-array, model (15.3) can be fit (and parameters 
estimated) using the log-linear modeling procedures that are contained 
in any of the major statistical computing packages. 

Comments on parameter estimation and model fitting using several of 
the major packages, including SPSSx, BMDP, GLIM, and others can bc 
found in the literature (Fienberg and Wasserman 1981b; Wasserman and 
Weaver 1985 ; Wasserman and Iacobucci 1986). 

Fitting the Models. Maximum likelihood estimation of the pa
rameters of log linear models for categorical data is discussed at length 
in Appendix II of Fienberg (1980). Specifically, each set of parameters 
has associated with it sufficient statistics, which are margins of the data 
array being modeled. The maximum likelihood equations, which must 
be solved to obtain the maximum likelihood estimates of the expected 
values of the cell counts (or the "fitted" values), all have the form: ob
served margin = fitted margin. Thus, the appropriate model parameters 
will be estimated, and the fitted values obtained, when we constrain 
the fitted margins to be equal to the observed margins. Philosophically, 
this is like saying, if forty men and sixty women responded to a sample 
survey, any modeling of the data that includes the variable gender must 
still reproduce the given figures of 40 and 60. Or, referring to network 
data, if we include (J's in our model, and if actor 1 is chosen by four of 
the eight actors, then fitted probabilities that nl is chosen must sum to 
(4/8) = 0.50. This equating is the critical computation that will produce 
maximum likelihood estimates of cell expected values, and parameters. 

Our models for single relational network data can be fit by following 
the theory discussed above ; specifically, one focuses on the model pa
rameters, and their sufficient statistics, which are margins of the Y -array. 
All six of the two-dimensional margins of the four-dimensional Y -array 
are the sufficient statistics for the parameters in (15.3). The same is true 
for PI, since it is equivalent to the basic model when C = 2. 

The four variables that define Y comprise the four dimensions of 
the contingency table to be modeled. We have been referring to these 
variables and their subscripts as: 

(i) Sending actor (i) 
(ii) Receiving actor (j) 

(iii) Strength of choice made (k = X'j) 
(iv) Strength of choice received (1 = Xj,) 
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We label these variables as 1,2, 3, 4, respectively. In order to fit model 
(15.3), we fit the following log-linear model to a Y-array : 

[12] [13] [24] [23] [14][34] . (15.6) 

The numbers in brackets in (15.6) are the margins of Y, which are 
sufficient statistics for the parameters in the basic model. This notation 
is common for log-linear models, and was first introduced by Fienberg 
(1980), based on the notation in Bishop, Henberg, and Holland (1975,. 
We will call it Fienberg notation. 

A collection of variable numbers in brackets implies that we have 
included the parameter associated with the sufficient statistics given by the 
variable numbers in a model. Because the log-linear models considered 
here are hierarchical, all lower-order terms (for example, main effects) are 
also necessarily fit. For example, [12] is the interaction between variables 
1 and 2 (that index initiating and receiving actors) and corresponds to 
the margin {Yij++}. This margin includes the 1 -dimensional margins for 
these two variables ({Yi+++} and {Y+H+ }). 

The correspondence between the margins and the parameter sufficient 
statistics is as follows. The [12] margin is fit in order to include the {Aij} 
parameters in the model. Because the A parameters must be included 
in all onr models in order to constrain the probabilities properly, the 
margin [12] must always be included. 

Margins [13] and [24] are sufficient statistics for the {a,(k)} parameters. 
There is only one set of (g-I)(C -1)  {"'i(k)} expansiveness parameters, but 
there are two sets of margins, [13] and [24] . These margins are actually 
equal, due to the symmetry of the Y -array, and thus do not produce 
superfluous parameters. Both margins [13] and [24] must be inclnded in 
any model for which we desire estimates of the alpha's. 

Similarly, margins [23] and [14] are sufficient statistics for the {flj(l)} 
parameters. The margin [23] is equal to the margin [14], because of the 
symmetry of the Y -array. Both must be included in any model for which 
we desire estimates of the beta's. 

The final margin, [34] , is the sufficient statistic for the reciprocity 
parameters, {("'fl)kI}. The only remaining parameters given in model 
(15.3) are the elements of the set of {OYs. The sufficient statistics for 
these parameters are the margins [3] and [4], but since our models are 
hierarchical, these are automatically "fit" whenever higher-order margins 
[13] and [24], or [23] and [14], or [34], are fit. 
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['!finite Parameters. One problem in this modeling and compu

tation process can arise when an actor has an indegree or outdegree 
equal to either ° or (g - 1). In the first instance, the actor neither 
sends nor receives any ties; while in the second, the actor either has 
ties to or from every other actor. We discuss each of these situa
tions in turn. When a relation is valued, the problem also arises when 
all ties sent (or received) by a particular actor have exactly the same 
strength. 

Let us focus just on dichotomous relations. Suppose first that an actor 
has an indegree equal to 0. Statistically, this actor has no tendency to 
receive ties. Thus, the fitted probabilities that this actor receives ties must 
all be O's. If an actor has an outdegree equal to 0, this actor has no 
tendency to send ties. Thus, the fitted probabilities that this actor makes 
choices must all be O's. 

If a fitted probability is to be 0, then the logarithm of this probability 
is -a:;. And to make this logarithm -a:;, the appropriate parameter must 
also be -a:;. A 0 row sum in the sociomatrix forces the associated alpha 
for this actor to be -w. A zero column sum in the <ociomatrix forces the 
associated beta for this actor to be -w. For example, two children in the 
fabricated second-grader network received nO friendship nominations; 
hence, there are two betas fitted with PI equal to -w. 

Now suppose that an actor has an indegree equal to (g-I). Statistically, 
this actor is certain to receive ties from all other actors. Thus, the fitted 
probabilities that this actor receives any ties must all be I's. If an actor 
has an outdegree equal to (g - 1), this actor is certain to send ties to all 
other actors. Thus, the fitted probabilities that this actor sends ties must 
all be l's. 

If a fitted probability is to be unity, then the logarithm of this probabil
ity is 00. And to make this logarithm infinity, the appropriate parameter 
must also be 00. A row sum in the sociomatrix equal to (g - 1) forces the 
associated alpha for this actor to be w. A column sum equal to (g - 1) 
forces the associated beta for this actor to be 00. 

Lastly, we note that these infinite parameters are not counted when 
tallying up degrees of freedom. For the second-graders, we have a 
full set of alphas, and hence 5 degrees of freedom for these parame
ters, but only estimate four betas. Hence, there is only 3 degrees of 
freedom for the betas. Further, the infinite parameters are not con
sidered when centering the finite parameters to sum to O. Note once 
again from the second-graders that the four finite estimated betas sum 
to O. 
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Model Comparisons and Statistical Tests/or Parameters. We have 
presented (15.3) with three sets of meaningful parameters - representing 
effects of expansiveness, popularity, and reciprocity. We can conduct 
hypothesis tests to determine whether the actors demonstrate any or all 
of these effects on a relation. We can postulate and subsequently fit 
alternative, simpler models that might be able to reproduce the network 
data just as well, or almost as well, as the more complicated model (15.3). 
Comparing the fit of (15.3) to simpler versions of the model allows us to 
determine whether each set of parameters is statistically different from O. 

We use likelihood-ratio hypothesis tests to study each of the sets 
of parameters. The test statistic for these hypotheses compares the 
goodness-of-fit statistic of model (15.3) to the goodness-of-fit statistics 
of the simpler models. These statistics are all likelihood-ratio statistics, 
where the {yijkl} fitted values are computed from different competing 
models. 

To be more concrete, there are seven models, shown below, that 
are simpler than (15.3), derived by dropping one or more sets of the 
parameters {a'(k)}, {fij(l)}, or {(afilk,} from the model. A model is more 
parsimonious than (15.3) if it contains fewer parameters. Model (15.3) is 
listed again, and then the seven simpler models follow: 

(15.3) 10gP(Y'lkl = 1) A'l + Ok + 0, + a'(k) + "'l(l) 
+fi}(k) + fi'(I) + (afilkl 

a) 10gP(Y'lkl = 1) = Ai} + Ok + 8, + fil(k) + fi'(I) 
+(afi)kl 

b) 10g P(Yi}kl = 1) Aij + Ok + 0, + a'(k) + "'l(l) 
+(afi)kl 

c) 10gP(Y'lkl = 1) Ai} + Ok + 0, + a'(k) + "'l(l) 
+fil(k) + fi'(I) 

d) log P (Yijkl = 1) Aij + Ok + 0, + a'(k) + "'l(l) 
e) 10g P(Y'Jkl = 1) Aij + Ok + 0, + fim + P'(I) 

f) 10gP(Yijkl = 1) Aij + Ok + 0, + (afi)kl 
g) 10g P(Y'lkl = 1) A'l + Ok + 0, (15.7) 

In Table 15.6 we list these models, (15.3) and (15.7a) - (15.7g), along with 
the list of margins that specify each model. Recall from the definition 
of PI that if the relation under study is dichotomous, these parameters 
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Table 15.6. PI parameters. modeis, and associated margins 
Model Parameters included in the model Margins 

15.3 
15.7a 
1 5.7b 
IS.7c 
IS.7d 
15.7e 
IS.7! 
15.7g 

[12] [13] [24] [23] [14] [34] 
[12] [23][14] [34] 
[12][13] [24] [34] 

[12][13][24] [23][14] 
[12][13][24] 
[12] [23] [14] 

[12] [34] 
[12][3] [4] 

appear in the models only when choices are made (that is, for example, 
IX;(O) == 0 and ";(1) == IX;). 

Consider one of these models in more detail. In model (15.7b), there 
are no p's. This model assumes that all Ws equal 0; thus, there are no 
differential popularity effects among the actors. By definition, we would 
expect this model to fit single relational social network data reasonably 
well only when the popularity of the actors is constant. If it were 

true that all {J's were 0, we would expect (15.7b) to "fit" the observed 
dyadic interactions just as well as the full model (15.3). To test the null 
hypothesis, 

Ho : Pj(ll = 0 for all j and i, 
we compare the goodncss-of-fit statistics for the two models (15.7b) and 
(15.3). 

Similarly, a comparison of the fit statistics for model (15.7a) or (1 5.7c) 
to (15.3) would test the null hypotheses 

Ho ; ";(kl = 0 for all i and k, 

or 

Ho : (a{Jhi = 0 for all k and i, respectively. 

Model (15.7b) is hierarchically nested in model (15.3), so that the first 
model is a special case of the second. Thus, the fit statistic for (15.7b) will 
be equal to or larger than the fit statistic for (15.3). The comparison of G2 
statistics indicates whether the parameters are statistically different from 
zero. The difference between the two Gz,s is a conditional likelihood-ratio 
test statistic, testing a null hypothesis that the parameters are indeed 
equal to O. We statistically condition on the more complicated model 
and test to see whether we can simplify it by "dropping" terms. 
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In practice, to test these conditional hypotheses regarding sets of 
parameters, we take the G2 for model (15.3), and subtract it from the 
G' for the model that does not contain the parameters being tested. For 
example, to test whether the /J's are 0, we calculate two G" s, one for 
the full model, and one for (15.7b). We get a difference score (G' for 
(15.7b) minus the G2 for model (15.3)), a I1G' that quantifies whether the 
additional parameters are significantly different from O. This new statistic, 
I1G', is approximately asymptotically distributed as a X' random variable, 
with a certain number of degrees of freedom. Just as the statistic I1G' is 
equal to the difference in G' for the two models, the degrees of freedom, 
I1df, is equal to the difference in degrees of freedom for the two models. 
The model that contains more parameters is the alternative hypothesis 
model (HA), and the model with fewer terms is the null hypothesis model 
(Ho). The I1df is equal to the number of independent parameters being 
tested. 

For example, when evaluating the null hypothesis, Ho : (rt./J)kl = 0 (for 
all k, I), we reject Ho if I1G' is greater than the upper percentage point 
of the X' distribution with C(C - 1)/2 degrees of freedom. If I1G' is 
statistically large compared to the X' distribution on C(C - 1)/2 degrees 
of freedom, we would conclude that the (rt./J)kl parameters are statistically 
large and should be included in any model truly descriptive of the given 
network. 

We should note that one reason the "asymptotic" distributions of G' or 
I1G' are only approximations to X2 is due to the difficulty in achieving the 
"asymptotic" property itself. As the number of actors in a set of actors, g, 
increases, so do the number of "i(k) and /J j(1) parameters to be estimated 
((g - 1)(C - 1)), so even at the asymptote (g tending toward infinity), the 
number of parameters in PI and model (15.3) also gets infinitely large. 
We comment on these problems a bit later in this chapter. 

The tests that can be conducted for parameters that model a single 
relation are listed in Table 15.7. The first test listed in Table 15.7 
compares the fit of model (15.7a) with the fit of model (15.3). Model 
( 15.7a) has no ,,'s, so in conducting this comparison, we are testing the 
null hypothesis, Ho : rt.i(k) = 0 for all i, k. The degrees of freedom for 
this test is (g - 1)(C - 1). If I1G' is not large, we cannot reject the 
null hypothesis, which means the actors are statistically equivalent with 
respect to their expansiveness (sensible perhaps in networks in which the 
number of ties is restricted by design to a constant value). The second 
test is the counterpart for testing the null hypothesis, Ho : /Jj(l) = 0 (for 
all partners j and all strengths I). 
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Table 15.7. Tests of significance for parameters in model (15.3) 
Test /!.G' I!.df Null hypothesis 

I 
2 
3 

15.7a - 15.3 
15.7b - 15.3 
15.7c - 15.3 

(g - I)(C - I) 
(g - I)(C - I) 

C(C - 1)(2 

Ho : iXi(k) = 0 for all i, k 
Ho : /3j[k) � 0 for all j, k 
Ho : (af3)kJ � 0 for all k, l 

The second test in Table 15.7 compares the fits of models (15.7b) and 
( 15.3). It is a test of the null hypothesis, Ho : all (ij(l) = O. If t.G2 is 
large, we would conclude that the actors exhibit differential popularity, 
thus, the {{ij(l)} parameters need to be included in any model that would 
adequately represent the data. If the statistic is not large, we would 
conclude the data may be described adequately without including effects 
for popularity. 

The alpha, beta, and reciprocity parameters are independent sets of 
parameters in the sense that for any particular set of actors with mea
surements on a single relation, any of the three effects may be statistically 
large. Knowing the characteristics of the a's for some network data set, 
for example, does not inform us about the characteristics of the P's, or 
the reciprocation parameter(s) present in that same network. 

Examples. We have fit model (15.3) and its relatives, models 
( 15.7a), (15.7b), and (15.7c), to a variety of data sets. We first demon
strate lhe model fits for the fabricated network of second-grade children, 
and then discuss the analysis of Krackhardt's friendship and advice re
lations at length. The second-graders and Krackhardt's network both 
consist of dichotomous relations, so we fit PI directly. Freeman's EIES 
communications network, which we also would like to model, has valued 
relations ; thus, we must fit the more general model to it. 

Fabricated Network of Second-Graders. Table 15.8 gives the 
goodness-of-fit statistics for each of the four models applied to the 
dichotomous friendship relation for the second-graders. 

The information in this table indicates which parameters are statisti
cally important for these fabricated data. We see that the expansiveness 
parameters are not very important (t.G2 is quite small). Knowing this, 
we would not bother to study the individual actor rJ.; parameter estimates 
iu an attempt to distinguish among the children. On the other hand, the 
popularity parameters (the (i's) are of interest in this network because 
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Table 15.8. Goodness-of1it statistics for the fabricated network 
Second-graders - friendship at the beginning of the year 

Model Null hypothesis G' t.G' t.df 

15.3 20.630 
15.7a Ho : CX;(k) = 0 for all i and k 23.072 2.442 3 
1 5.7b Ho : /3j(l) = 0 for all j and I 31.956 11.326 5 
15.7c Ho : (a/3) = 0 22.564 1.934 1 

Table 15.9. Goodness-of1it statistics for Krackhardt's network 

Model 

15.3 
15.7a 
15.7b 
15.7c 

Krackhardt's high-tech managers - advice relation 

Null hypothesis 

Ho : lXi(k) = 0 for all i and k 
Ho : /3jtl) = 0 for all j and I 

Ho : (a/3) = 0 

G' t.G' 

322.564 
506.778 184.214 
440.471 117.907 
339.632 17.068 

Krackhardt's high-tech managers - friendship relation 

Model Null hypothesis G' t.G' 

15.3 288.303 
1 5.7a Ho : lXi(k) = 0 for all i and k 421.965 133.662 
1 5.7b Ho : /3j(l) = 0 for all j and I 337.068 48.765 
15.7c Ho : (a/3) = 0 312.455 24.152 

Mf 

20 
20 

1 

t.df 

20 
20 

1 

631 

i\.G2 = 31.956 - 20.630 = 1 1.326, which is large. We reported and dis
cussed these parameter estimates earlier in the chapter (Table 15.4). Also 
noteworthy here is the fact that reciprocity does not seem to be a strong 
force for this friendship relation. 

Krackhardt's Network. Now look at the analyses of Krackhardt's 
data, shown in Table 15.9. We analyzed both the advice relation and the 
friendship relation (separately). All three sets of parameters appear to be 
large when modeling either of the relations. 

The a and f3 estimates are listed in Table 15.10. The expansiveness 
parameters indicate that, for the advice relation, actors 3, 5, and 18 are 
likely  to give advice, while actors 2, 6, and 12 are unlikely to. Note also 
that actor 15 gives advice to all other actors. The popularity parameters 
for this relation indicate that actor 2 is very likely to receive advice, while 
actors 9 and 15 are very unlikely to receive advice. For friendship, the 
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Table 15.10. Parameter estimates for Krackhardt's high-tech managers 
Advice Friendship 

Actor &i Pi &i Pi 

n, -0.98 1.75 -0.37 1,40 
n2 -2.64 4.54 -1.46 2.36 
n, 2.63 -2.09 -1.36 0.66 
n, 1 .40 -0.63 0,41 0.03 
n, 2.63 -2.09 0.60 0.34 
n6 -3.75 1.10 0.86 -1.84 
n7 -0.28 1.56 -co 0.04 
n8 -0.01 0,42 -2.22 0.83 
n9 2.02 -2,44 -co 1.39 
nlO 1.95 -0,44 1.29 -3.17 
n" -2.20 1.25 2.39 -0.41 
n12 -2.47 -0.08 -0.76 1.53 
n" -0.13 -1.79 -0.58 -2.30 

nl4 -1.58 0.79 -1 .36 0.66 
n" +co -2.91 1.16 -0.74 
n16 -1.38 0.07 -1.18 0.19 

n17 - 1.03 0.33 4.59 -0.96 
nIB 2.55 1.48 -2.04 0.38 
n'9 1.42 -2.27 1.33 -0.36 
n20 1,40 -0.63 -0.99 0.38 

n21 0.46 2.07 -0.33 0.33 

expansiveness parameters indicate that actor 17 has many other actors 
as friends, while actors 7 and 9 (who make no choices) do not. Actor 2 
is 'a relatively popular friend, while actor 10 is not. Note the dual role 
played by actor 2. This actor gives very little advice, but is a friend to 
many other actors. 

The reciprocity parameters for the advice « orP)=2.233) and friendship 
« orP)=2.937) relations are both positive and large (relative to the actor
level parameters), indicating substantial tendencies toward mutuality. 

The or and p estimates for the advice relation can also be studied by 
using attribute information on the tenure of each actor (the number of 
years of service in the organization). One way to use such information is 
to correlate the parameter estimates with this attribute variable. 

The &is are negatively correlated with tenure while the P/s are posi
tively correlated, indicating that more experienced workers seek advice 
less frequently than others and are the source of advice more frequently 
than others. Tenure has a very small correlation with the &is and the 
P/s for the friendship relation. 
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We note that there are other ways to incorporate attribute variables 
directly into our statistical models. We discuss another approach in the 
next section. 

Other Analyses. In Table 15.8, we presented test statistics for 
the second-graders that told us (in general) whether the a, 13, and (ap) 
parameters were statistically large. We could stop our statistical analyses 
at this point. For example, for the second-graders, we would summarize 
by saying that the network structure indicates strong differential pop
ularity effects among the actors and that there is a small tendency for 
reciprocated friendship ties. Alternatively, we might proceed to study 
these results in more detail, by conducting other analyses to learn, for 
example, exactly which actors are significantly more or less popular than 
which others. To do so, we can use the methods reported in Wasser
man and Weaver (1985), based on statistical theory for log-linear models 
for categorical data (see Bishop, Fienberg, and Holland 1975). These 
methods involve contrasts, as in the analysis of variance. 

For example, the magnitude of each individual pj(l) parameter may be 
studied in turn, by calculating 

where 13' is an a priori constant, specified in the null hypothesis (often 
13' = 0), and S.E.(pj(l)) is the standard error of the parameter estimate, 
a value obtained as a function of information reported by statistical 
computing packages. 

15.1.4 ®ls PI a Random Directed Graph Distribution? 

Given our discussion of random directed graph distributions in Chapter 
13, one important question is how PI compares to these distributions. 
Specifically, is PI a conditional uniform distribution for random graphs? 

The answer to this question is yes, with a bit of explanation needed. 
First, note that PI is an exponential family of distributions, with minimal 
sufficient statistics consisting of the indegrees, outdegrees, and the number 
of mutual dyads. Thus, any two random digraphs with equal values of 
these statistics have identical fitted values from PI. Thus, if we condition 
on specific values of {x,+), {X+j), and M, all random digraphs with 
these values have exactly the same probability of occurring. Thus, PI 

is identical to the random digraph distribution UI{Xi+}, {X+j), M, as 
discussed by Snijders (1991b). 
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But, PI is also a Bernoulli digraph distribution (see Karonski 1982; 
Pahner 1985; Bollobils 1985; Frank 1985, 1989; and, of course, Chapter 
13). Such distributions focus on a set of Pij probabilities, specifiying the 
probability that i chooses j, for all pairs of actors i and j. Since digraphs 
are representations of dichotomous relations, one can define Oij as the 
logit for Pij :  

( Pij ) Oij = log -
1 
-- • 
- Pij 

If we assume that all ties are statistically independent (as with a general 
Bernoulli distribution), then the likelihood function can be written down. 

Further, one can postulate an additive model for the logits, quite 
similar to Pl.  The main difference between such a logit model and PI 

is that the off-diagonal elements of the sociomatrix, xij and Xji, are not 
assumed by PI to be statistically independent. Indeed, the basic modeling 
unit of PI is the dyad, not the individual tie or arc. Thus, one can view PI 

as a Bernoulli dyad distribution, rather than a Bernoulli arc distribution, 
where all dyads, not ties or arcs, are assumed to be independent. 

15.1.5 Summary 

We have presented a class of models designed to study how ties from a 
single relation vary across actors. The class is comprehensive, and allows 
one to posit substantively meaningful parameters, all of which can be 
estimated and studied via significance tests. 

But, there are a number of statistical problems with this class. These 
problems are caused by the lack of an asymptotic statistical theory -
the number of parameters does not remain constant as the number of 
actors in the set increases. Even so, we note two facts. First, as g 
increases, the number of (a{3)kl parameters to be estimated (C(C - 1)/2) 
remains constant. Thus, the test of reciprocity is not affected by the 
main statistical problem, and we can be confident that the asymptotic 
properties hold for this test. Secondly, we note that these problems 
are non-existent when incorporating attributes of actors into the models 
(which we describe in detail shortly). For now we note that subsets 
of actors can be formed on the basis of their attributes, such as gen
der (male and female). Then as g increases, the number of subsets 
remains fixed. Thus, if parameters depend on subset memberships, rather 
than the individual actors themselves, we can be confident that asymp
totic distributions hold. We note that these uncertainties regarding the 



15.2 Attribute Variables 635 

asymptotic distribution of G' force us to evaluate hypothesis tests more 
tentatively. For example, we do not attach p-values to these compar
isons in general, but can do so when the modeling includes attribute 
variables. 

Fortunately, one does not need an asymptotic statistical theory for 
the significance tests described here. There is an alternative approach. 
One can use permutation tests to compare matrices of fitted values, as 
discussed by Hubert and Baker (1978). Specifically, one can determine 
how close an observed data matrix is to a predicted, fitted matrix, 
by looking at a large number of permutations of the original data 
matrix, and comparing each to the "target." Details on such tests, as 
applied to social network data, can be found in Baker and Hubert (1981) 
and Krackhardt (1987b). We apply such technology to blockmodels in 
Chapter 16. 

As a brief aside, we mention some researchers who have investigated 
models more complicated than (15.3), such as stochastic blockmodels 
(Wasserman and Anderson 1987; Wang and Wong 1987). Fienberg 
and Wasserman (1981a) also extended Pl to allow for "differential reci
procity"; the {(af3)kIl parameters are replaced with {(af3);(kl)} parameters, 
allowing the rates of reciprocation to depend on the sending or receiving 
actors. (The model that adds these parameters includes the margins : 
[12] [134] [234] .) Further generalizations of this idea can be found in 
Wasserman and Galaskiewicz (1984). 

15.2 Attribute Variables 

We now wish to aualyze data on the attributes for the g actors contained 
in JiI' in conjunction with the relation measured between actors. We 
thus build models that use both network composition and network 
structure. We first discuss why information about the characteristics of 
the individual actors is helpful in modeling the relational information. 
We then modify our Y-array into a new contingency table (the W
array) that incorporates such attribute information. Once again, we use 
the small fabricated network of second-graders to illustrate. We will 
then modify the statistical model (15.3) designed for a single relational 
variable to allow for the simultaneous analysis of one or more actor 
attribute variables. Lastly, we offer more examples. 
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15.2.1 Introduction 

Studying Y using statistical models for dyadic interactions is one way 
to summarize the information contained in a single relational variable 
measured on the m pairs of actors from the set %. In some applications, 
we might be interested in studying the patterns of dyadic interactions 
within and between subsets of persons who share similar characteristics. 
For example, we might be interested in understanding how a classroom 
of thirty children interacts. We would create Y based on a relation among 
the thirty actors. However, even simple theories might predict that boys 
and girls differ in the way they interact with others. For example, we 
might at least suspect that in a classroom of kindergarteners, children 
would be most likely to nominate as friends children of their same 
gender. We might be less interested in modeling individual differences 
in the interactions of thirty children than in understanding how gender 
affects the childrens' interactions. Thus, we might be led by theoretical 
concerns to model subset differences - the interactions of these thirty 
children in conjunction with the attribute of gender. We would form 
two subsets, boys and girls, and study the between- and within-subset 
interactions. 

Attribute variables can be of interest in many different social networks. 
For example, network researchers might use variables such as gender, 
age, and socioeconomic status. Researchers studying dyadic interactions 
in married couples might suspect that communication patterns depend 
on attributes such as gender of the speaker, or whether the couple was 
in marital distress (Gottman 1979a). Researchers interested in modeling 
interorganizational behavior might wish to include the size of the or
ganization or its industry as predictive attribute variables (Galaskiewicz 
1979; Galaskiewicz and Marsden 1978; Wasserman and Galaskiewicz 
1984). 

Before we proceed wiLh the methodology, it is important Lo note that 
the attribute variables, and hence the categorization of actors into subsets, 
must be chosen independently of the relation under study. Subsets must 
not be formed using the relational information; otherwise, the error rates 
of the tests discussed here will be affected. The use of attribute variables 
described here is a priori; a posteriori analyses will be described in 
Chapter 16. 

For the small network of second-graders nominating friends, we use 
the attribute of age to distinguish between the 7- and 8-year-olds. We 
might hypothesize that children prefer to play with others of the same 
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age, so 7-year-olds would choose other 7-year-olds as friends, 8-year-olds 
would choose 8-year-olds, but few 7-year-olds would have 8-year-olds as 
friends. Perhaps a competing hypothesis would be that children gravitate 
toward older children, so that the 7-year-olds nominate other 7-year-old 
children as well as 8-year-old children, whereas the 8-year-old children 
only nominate each other. 

In our analysis of our other examples, we use the following attribute 
information: for Krackhardt's management network, there are two at
tribute variables of interest to us: age of actors, and seniority or tenure 
of actors in the organization. We categorized the employees into four 
subsets on the basis of their age and tenure with the organization: 

(i) Those with 10 or fewer years of tenure and younger than 40 
years of age 

(ii) Those with 11+ years of tenure and younger than 40 
(iii) Those with 10 or fewer years of tenure and older than 40 years 

of age 
(iv) Those with 11 + years of tenure and older than 40 

15.2.2 The W-array 

Attribute variables were first introduced into models based on Holland 
and Leinhardt's PI by Fienberg and Wasserman (1981a). Individuals 
are placed into subsets using relevant actor characteristics, and actors 
within a subset are assumed to behave similarly (at least with regard to 
the measured relations being modeled). Specifically, PI (or model (15.3)) 
is postulated, and it is assumed that all actors within a subset have 
equal parameters; for example, if we partition actors based on gender, 
then every male actor shares a common expansiveness parameter (! and 
a common popularity parameter p (as would the females). We give a 
formal mathematical definition of this assumption below. 

Stochastic Equivalence. This assumption of comparable behavior 
of actors within subsets (with respect to some statistical model) has 
been viewed as a generalization of structural equivalence. Wasserman 
and Weaver (1985) termed this assumption stochastic equivalence, and 
Wasserman and Anderson (1987) developed this idea in more detail. 
Holland, Laskey, and Leinhardt (1983) and Wang and Wong (1987) 
proposed alternative versions of stochastic actor equivalence, all using 
generalizations of PI for their statistical models. We will discuss them in 
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more detail in Chapter 16, along with the idea of a stochastic blockmodel, 
whjch follows naturally from the notion of stochastic equivalence. 

Based on the assumption of equal parameters within subsets, our basic 
model can be greatly simplified. Rather than postulating and estimating 
separate expansiveness and popularity parameters for each individual 
actor, a single expansiveness parameter and a single popularity parameter 
is assumed for each subset. This simplification, enabled by the assumption 
of stochastic equivalence, allows us to estimate far fewer parameters. 

Definition. A set of attribute variables is used to classify each 
of the g actors into one of S subsets. The size of S depends on how 
many attribute variables are used, and how many levels the individual 
attributes take on. With just a single, dichotomous attribute (such as 
gender) we need only S = 2 subsets. In other social network data sets, 
we may have more attribute variables with considerably more levels. For 
example, gender ("males" and "females") crossed with race ("Whites," 
"Blacks," and "Asians") would result in S = 6 subsets. We denote the 
subset to which the sending actor (i) belongs by s(i), and the subset in 
which the receiving actor (j) belongs by s(j). Thus, we have a mapping 
function s(.), where this function is defined a priori (based on attribute 
variables) and not on the basis of relational information. 

We use subscripts for parameters which index the actors, and super
scripts for subsets of actors. Thus, we will replace "i(k) and fJ j(l) in model 
(15.3) by ,,�(i)! and fJi'Ul!, respectively, where the superscript indexes the 
subset modeled by that parameter. 

The assumption of stochastic equivalence may be stated more preCisely 
with this new notation. We assume that: 

"i(k) = ,,�(i)! 

for all ni E subset s(i), and 

/lj(l) = fJ!'U
)
! 

for all nj E subset s(j). 
We modify Y so that all actors with similar characteristics are aggre

gated into a single subset. To accomplish this, we aggregate over the 
elements in Y, collapsing over actors with identical attributes. In doing 
so, we obtain W, with elements { W'(i)'U)kl}, defined formally as 

WS(I)s(j)kl = L: L Yijkl. 
iEs(i) jEs(j) 

(15.8) 
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That is, we simply sum the relational data, coded as the elements of Y, 
over pairs (ni, nj) where actor i is a member of subset s(i) and actor j is 
a member of subset s(j). 

The Y-array is of size g x g x C x C, but the W-array can be much 
smaller. In general, the W-array (the aggregated Y-array), is of size 
S x S x C x C, where S, the number of subsets, is usually much smaller 
than g. For example, in Krackhardt's network, twenty-one managers' 
friendship (g=21), aggregating on the basis of age (categorized into 
those younger than 40, and those older than 40) would give us only two 
subsets (S = 2). Thus, W for this example is 2 x 2 x C x C. The number 
of levels of the relational variable, C (the different strengths the relation 
can take on), remains the same for both Y and W. 

An Example W-array. The W-array is symmetric in the same 
way that Y is symmetric, W,(i),(j)kl = W'(j)'(i)lk. Unlike Y, however, the 
entries in W are usually not simply O's and 1 's, since they are sums of 
the O's and l's contained in the elements of Y. The entries in W are 
counts of the frequencies of the different dyadic states. In Table 15.11, 
we present the w-array obtained by collapsing over the y-array for the six 
second-graders, using the attribute of age. The children in the first subset 
are 7 years old (Eliot, Keith, and Sarah), and the children in the second 
subset are 8 years old (Allison, Drew, and Ross). This partitioning gives 
us two subsets of actors: {n3, n4,n6} and {nJ,n2, ns}. Note how the array 
is symmetric, and that entries in the table are integer counts, some of 
which are greater than 1 .  For example, consider the two values of "5" 
in this array. The lower-left entry of 5, cell (2,1,0,0), indicates there were 
five dyads with the following characteristics :  The actor (i) was 8 years 
old and thus belonged in the second subset (s(i) = 2), the chosen partner 
(j) was 7 years old, and so belonged in the first subset (s(j) = 1), and 
neither actor chose the other - a null dyad. Due to the symmetry, these 
five null dyads also appear in cell (1,2,0,0), where the actor is a 7-year-old 
(s(i) = 1) and the partner is an 8 year-old (s(j) = 2). 

Table 15.12 contains some of the w-arrays for Krackhardt's network, 
for both of the relations, using one or two attribute variables (tenure 
in the organization and age of actor). The first tenure subset consists 
of the managers with ten or fewer years of service, and the second 
subset consists of the managers with more than ten years of service. 
We also dichotomize age into two subsets : those actors forty years and 
younger, and those actors older than forty years. We will model these 
data sets shortly, but for now simply note that these w-arrays are of 
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Table 15.11. The W-array for the second-graders using friendship and 
age (the first subset consists of the 7-year-old children, Eliot, Keith, and 
Sarah, and the second subset consists of the 8-year-old children, Allison, 
Drew, and Ross.) 

s(j) = 1 :  7-year-olds s(]) = 2: 8-year-olds 
l: xji = O  Xji = 1 xli = 0  Xji = 1 

s(i) = 1 k : xij = O  6 0 5 1 
xij = 1 0 0 1 2 

s(i) = 2 Xij = 0 5 1 2 2 
xij = 1 1 2 2 0 

more manageable sizes (2 x 2 x 2 x 2 if we use one attribute variable or 
4 x 4 x 2 x 2 if we use two attribute variables) than their corresponding 
y-arrays (21 x 21 x 2 x 2 for both of the relations). 

15,2.3 The Basic Model with Aurihute Variables 

The model we fit to this new contingency table (the W-array defined 
in equation (15.8)) is a special case of the basic model (15.3), subject 
to the constraints placed on the parameters (defined above), which arise 
through the use of the actor attribute variables and the assumption of 
stochastic equivalence. This version of model (15.3) follows: 

10gP(Yijkl = 1) = Aij + Ok + 01 + af(il] + ai'W] 
+jJk'W] + jJl'(il] + (ajJ)klo (15.9) 

where ", is a member of subset s(i) and nj is a member of subset s(j) (for 
s(i) and s(j) between 1 and S). Note that the model is still postulated 
for dyads, so that the basic modeling unit remains unchanged. The use 
of attribute variables is taken into account in the parameter structure 
on the right-hand side of the equation above, where the ais are replaced 
with a['(nJ 's, and so on. If each actor belonged to a unique subset of size 
1, we would have g = S, and this model would be equivalent to model 
(15.3). 

The parameter structure in (15.9) is simpler than in the basic model 
(15.3). There are fewer parameters to estimate. When fitting the model 
(15.3) to Y, we must estimate : 

• (g - 1)(C - 1) a's 
• (g - 1)(C - 1) jJ's 
• C(C - 1)/2 (ajJ)'s 
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Table 15.12. The W-arrays Jar Krackhardt's high-tech managers, using 
tenure, and age and tenure 

Advice s(j) � 1 s(j) � 2 
I : Xji = O  Xji = 1 Xji = 0  Xji = 1 

sri) � 1 k: xtj = O  32 20 39 9 
(Less tenure) Xij = 1 20 38 48 14 

sri) � 2 Xij = 0  39 48 20 23 
(More tenure) Xij = 1 9 14 23 24 

Friendship sCi) � 1 sCi) � 2 
I :  Xji = 0  xji = 1 Xji = 0 Xji = 1 

s(i) � 1 k :  Xij = 0  74 12 68 15  
(Less tenure) Xij = 1 12 12 14 13 

s(i) � 2 Xij = 0 68 14 52 15  
(More tenure) Xij = 1 15  1 3  15 8 

Advice s(j) � 1 s(j) � 2 s(j) � 3 s(j) � 4 

s(i) � 1 18 1 1  7 5 12 7 18 1 
(Less tenure, Younger) 1 1  32 3 3 15 1 1  23 3 

sri) � 2 7 3 0 1 6 1 3 0 
(Less tenure, Older) 5 3 1 0 3 0 7 0 

sri) � 3 12 15  6 3 2 5 6 0 
(More tenure, Younger) 7 1 1  1 0 5 8 14 5 

sri) � 4 1 8  23 3 7 6 14 6 4 
(More tenure, Older) 1 1 0 0 0 5 4 6 

Friendship 

sri) � 1 44 8 14 1 25 7 27 5 
(Less tenure, Younger) 8 12 3 0 7 6 7 6 

s(i) � 2 14 3 2 0 9 1 7 2 
(Less tenure, Older) 1 0 0 0 0 0 0 1 

sri) � 3 25 7 9 0 12 3 14 3 
(More tenure, Younger) 7 6 1 0 3 2 5 3 

s(i) � 4 27 7 7 0 14 5 12 4 
(More tenure, Older) 5 6 2 1 3 3 4 0 
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When using attribute variables, and postulating S subsets of actors, 
we fit model (15.9) to W and estimate only (S - 1)(C - 1) each of 
,t's and p's, but still C(C - 1)/2 (aP)'s, for all the combinations of a 
pair of relational tie levels. In network data sets where the number of 
actors (g) is large, this simplification can mean the estimation of many 
iewer parameters. For example, in Krackhardt's network with twenty
one actors and a simple dichotomous relation, when we model individual 
differences among actors, we would have (21 - 1)(2 - 1) = 20 ,,'s, 20 
pos, 1 e, and 1 (ap), for a total of 42 independent parameters. If we 
aggregate the actors into four age and tenure subsets (S = 4), and model 
the resulting W-array, we estimate only (4 - 1)(2 - 1) = 3 a's and 3 p's, 
1 ("P), and 1 e, for a total of just 8 parameters. 

This simplification is due to our stochastic equivalence assumption. All 
actors in a subset relate to all other actors statistically similarly and are 
also related to by all others statistically similarly. Statistical similarity 
implies that the probabilities of such interactions are constant. This 
similarity in the behavior of social interactions is assumed on theoretical 
grounds, using the attribute variables at hand. 

The importance of this special case of our basic model to social 
network analysis is that it allows researchers to go beyond using only 
relational variables to understand network structure. With these models, 
information about the actors themselves, such as their age, gender, size, 
status, and so on, can also be used to help understand the network 
structure. One can study and test the association between the attribute 
variables and the relational variables by comparing model (15.3) fit 
to y with model (15.9) fit to w, as we will discuss and demonstrate 
shortly. 

Parameter Estimation and Testing. Parameter estimation and 
testing proceeds just as in fitting model (15.3) to y. The correspon
dence between the margins and the parameters discussed earlier still 
applies. So, for example, to include the a'(k)'s in a model for y, we fit the 
margins [13] and [24]. To include the a[,(i)],s in a model for w, we still fit 
the margins [13] and [24]. The difference is simply that in the first, the 
margins [13] and [24] are fit to the y-array (and are g x C in size) and in 
the second, the margins [13] and [24] are fit to the .v-array (and are S x C 
in size). The margins themselves arc quite different, since the sums are 
over different arrays. In Table 15.13, we list some special cases of model 
(15.9), alternatively dropping the a, p, and (ap) parameters, and give the 
rules for testing hypotheses regarding the various model parameters. 
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Table 15.13. Parameters, models, and associated margins for models for 
attribute variables 

Model Parameters included in the model Margins 

15.9a (Ad, {Ok}, 
15.9b {Aij}, Ie,), 
15.9c P'ij}, {ek}, 
15.9d {Aij}, Ie,), 

Test I\G' 

I 15.9b - 15.9a 
2 15.9c - 15.90 
3 15.9d - 15.9a 

{a[,liI] }, {p!,Ull }, {(ap),,) 
{p1,(j)] }, {(ap)k!) 

[12] [13] [24] [23] [14] [34] 

{a!>(ill }, {(ap)kI) 
{a[lill}, {pl'Ull} 

I\dt 

(S - I)(C - I) 

(S - I)(C - I) 
C(C - 1)/2 

[12] [23] [14] [34] 
[12] [13] [24] [34] 

[12] [13] [24] [23] [14] 

Null hypothesis 

Ho : a[s(i)] = 0 for all i, k 

Ho : pfU)] = 0 for all j, k 
Ho : (ap)" = 0 for all k,l 

The model fitting strategy for (1 5.9) is parallel to that for model (15.3), 
from the general logic to the specific margins fit and tests made. The 
arrays being modeled are usually quite a bit smaller, so the computations 
are easier to handle. 

There is one important computational difference which concerns the 
likelihood-ratio statistics. When fitting models to a y-array using sta
tistical packages designed for standard data, rather than just for social 
network data, one needs to divide the likelihood-ratio statistic 02 ob
tained as output from the statistical package by 2 (to adjust for the 
fact that these arrays count each dyad twice). However, when fitting 
the models given in Table 15.13 to a w-array, the cP's on the printouts 
must be adjusted in a slightly more complicated way. The reason for this 
adjustment is that while the "subset" models are fit to the aggregated 
array (defined in (15.8» , the model itself uses the dyad as its basic unit 
(in (15.9)). The adjustment that is needed takes the parameter estimates 
for a model with attribute variables (which are based on S(S - 1)/2 pairs 
of subsets), and calculates fitted values for all g(g - 1 )/2 pairs of actors, 
then compares these fitted values to the relational data contained in the 
original sociomatrix. 

The FORTRAN program GSQUARE (Iacobucci and Wasserman 1990) 
takes as input the fitted values for w as calculated by the standard log
linear model statistical packages, and the observed y-array. The program 
then calculates the correct, adjusted 02 

Other than the adjustments that must be made to get the correct test 
statistics, the models fit to y and to w are analogous. The important dis-
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tinction revolves around what is most interesting to the researcher. That 
is, a researcher wishing to model dyadic interactions at the individual 
actor level would analyze y. The researcher who has attribute variables, 
and is less interested in individual differences than in subset differences, 
would analyze w. 

Testing the Statistical Importance of Attributes. Suppose that 
two (or more) attribute variables are available, along with the single, 
relational variable. We now discuss how one can nse the above method
ology to test directly that each attribute variable is statistically important. 

If an attribute variable is statistically important, then actors within 
subsets defined by the categories of the attribute variable really do have 
equal parameter values. Thus, the partitioning of the actors based on the 
attribute variable has not only theoretical meaning but also statistical 
importance. With respect to model fits, the subset model will fit as well 
as an equivalent model not based on subsets. 

To test the statistical importance of an attribute variable, one must fit 
two models : one that uses the attribute variable under study, aljd one 
that does not These two models must otherwise be identical. Due to 
the hierarchical nature of the models described here, the model with the 
attribute variable includes the model without the attribute variable as 
a special case. Because these models are nested within each other (the 
model with the attribute variable being a null hypothesis, and the model 
without, an alternative hypothesis), standard likelihood-ratio tests can 
be used. One must fit these models to different w-arrays, and obtain the 
O" s, whose difference becomes the likelihood-ratio statistic for the test 
of the importance of the attribute. 

The details of this strategy are as follows. Use all the attribute variables 
to categorize the actors in S subsets. For example, if the network data 
set measured for g = 30 actors contains two attributes (gender - Males 
and Females - and race - White, Black, Asian, Other), then there are 
eight subsets that can be formed from the cross-classification of these 
two : White Males, White Females, Black Males, . . .  , Other Females. 
Thus, S = 8, and the 30 x 30 x C x C y-array can be compressed 
through aggregation (summing over all actors in the eight subsets) into a 
8 x 8 x C x C w-array. Such aggregation assumes stochastic equivalence, 
so that actors diITer only at the level of subsets. 

One now fits models to this w-array, and finds the one that fits best. 
We will call this w-array the "big w," since one next forms another 
w, of smaller size. The best-fitting model found here is the alternative 
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hypothesis model for the test of the importance of the attribute variable. 
The G' for this model should be recorded. 

One now has to fit a model which does not use the attribute variable 
in question. One should form a second, smaller w-array, using all the 
other attribute variables (that is, exclude the one under study). For the 
above example, this means there will be a new w; a w-array based just 
on race (of size 4 x 4 x C x C). One then fits the "best-fitting" model 
found for the big w matrix to the smaller w, and obtains the G2 

Then, to test that the attribute variable under study has no effect on the 
relational variable, we assume that the parameters from the model using 
all the attributes do not depend on this first attribute variable. If so, then 
the difference between the G' for the big w and the G' for the smaller 
w, which does not use the attribute variable, is a conditional likelihood
ratio statistic for the test of this hypothesis. We will illustrate this 
methodology shortly, using Krackhardt's high-tech managers, on which 
we have measurements on two attribute variables (age and tenure). 

Some Difficulties Solved by Fitting Subset Models. We should 
mention some technical difficulties that can arise when fitting models 
to y-arrays. The first problem is practical and centers on the size of y. 
The second problem is theoretical, concerning the likelihood-ratio test 
statistics discussed in this chapter. 

The practical issue is that the y-arrays, which have g'C' cells, can 
get quite large and become difficult to work with computationally. For 
Krackhardt's data se� the y-array is of size 21 x 21 x 2 x 2, with 1724 

cells. Consider one of the attribute variables, age, categorized into just 2 

categories (young and old). The w-array for these data is smaller, of size 
2 x 2 x 2 x 2, or just 16 cells. It is wise to keep the data matrices small, 
since some computer packages for fitting log-linear models rely on the 
inversion of matrices, which can tax moderately sized computers. 

The theoretical problem in fitting models to y is also related to the size 
of the array. This problem also arose in this chapter when we discussed 
the asymptotic distributions of G' and t..G', which are very approximately 
X2 For the standard asymptotic statistical theory to apply here, g must 
increase. However, as g increases, the dimensions of the y-array grow. 
For example, adding one actor turns a g x g x C x C array into a table of 
size (g + 1 ) x (g + 1) x C x C. This implies that the number of parameters 
and the size of the table both grow as g does, which violates one of the 
basic assumptions of standard asymptotic statistical theory for the tests 
in conjunction with model (15.3). 
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Tests made on typical categorical data analyzed with log-linear models 
are appropriate for large numbers of observations classified into the 
cells of a contingency table which is fixed in size. Larger numbers of 
observations in a network data set can only be obtained by increasing 
g. Unfortunately, doing so enlarges the Y -array. As we add actors to 
JV, and rows and columns to Y, we must also estimate more parameters. 
This problem was recognized by Holland and Leinhardt (1981), Fienberg 
and Wasserman (1981a, 1981b), Haberman (1981), and Reitz (1982). 

Fortunately, this problem does not arise when modeling W. The size 
of tms contingency table depends not on g, but on S (a function of the 
attribute variables) and C (a function of the relational variable), and 
hence is fixed. Adding actors to the network increases the counts in 
the cells of this array, but not the size of the table or the number of 
parameters. Of course, the choice of attributes and the magnitUde of S 
should be made independently of the number of actors. 

For this reason, researchers have cautioned networkers about the as
sumption that G2 is asymptotically distributed as a X2 random variable 
when evaluating the fit of models to Y -arrays (see Fienberg and Wasser
man 1981a; Haberman 198 1 ;  Wong and Yu 1989). In addition, these 
contingency tables are usually quite large and sparse (that is, they con
tain many D's). We suggest that conclusions about model fit based on 
G2 statistics for V-arrays be stated cautiously. Statistical evaluations of 
model comparisons, based on IJ.G2, conditional likelihood-ratio statis
tics, are more sound because such statistics compare the fits of different 
models applied to the same data. 

We emphasize that these problems (both the computational and sta
tistical ones) do not arise when evaluating the fit of models applied to 
W (via 0> statistics), or the comparison of fits to evaluate the statistical 
significance of parameters from models fit to W (via IJ.G2 statistics). Con
sequently, we recommend the use of actor attribute variables whenever 
possible. 

15.1.4 Examples: Using Attribute Variables 

Just as we fit model (15.3) and its variants to test for the statistical 
significance of the sets of {a}'s, {/l}'s, and {(a/l)}'s to the y-arrays under 
study, we have also fit model (15.9) and its variants to the corresponding 
w-arrays. In Table 15.14, we list the goodness-of-fit statistics for the fab
ricated network of second-graders, and indicate which sets of parameters 
are statistically important. 
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Table 15.14. Goodness-ofjit statistics for the fabricated network, using 
attribute variables 

Second-graders - friendship at the beginning of the school year and age 

Model 

15.9 
15.9b 
15.9c 
15.9d 

Null hypothesis 

Ho : G([s(O] = 0 for all i and k 

Ho : PfU)] = 0 for all j and k 
Ho : (ap)" = 0 for all k and I 

G2 I>G2 I>df p-value 

32.024 
32.639 0.615 1 Not small 
32.639 0.615 1 Not small 
33.044 1.020 1 Not small 

For the fabricated network of second-graders, we have aggregated 
over the ages of the children (two categories), so that S = 2. We can 
see from the table that none of the parameters ({a}, {P}, {(ap)}) are 
statistically large. Note that there is just one parameter in each set, 
because there are just two levels for the relational variable and just two 
subsets (thus, S = C = 2, so (S - 1)(C - 1) = 1 and C(C - 1)/2 = 1). 
Prior to aggregating Over age, the popularity parameters were statistically 
important (see Table 15.8). Based on these analyses, we would choose 
a model that has just a e parameter. There appears to be no difference 
between the two age groups with respect to expansiveness, popularity, or 
reciprocity. 

We can study the hypothesis of no age effect further by comparing 
the G2 obtained by fitting PI to y (G2 = 20.630) to the G2 obtained by 
fitting the analogous model to w (G2 = 32.024). The first test statistic can 
be found in Table 15.8, and the second, in Table 15.14. The conditional 
likelihood-ratio statistic I'J.G' = 1 1.39 for this test, with I'J.df = 8, is 
not large. For this test, the null hypothesis is that (15.9) fits w as 
well as (15.3) fits y. Given the relatively small I'J.O', we cannot reject 
this hypothesis ; the simpler model described the data as well as the 
model with more parameters. This result means that the assumption 
of stochastic equivalence is reasonable - all 7-year-olds share common 
propensities for sending and receiving, as do all 8-year-olds. Rather than 
describe each individual child's behavior, we can describe the average 
behavior of a 7-year-old child and that of an 8-year-old without losing 
descriptive power. 

Note that we can use the same logic to test the importance of multiple 
actor attribute variables. For example, if this included the attribute 
variable gender, we could test for the impact of gender and age (and 
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Table 15.15. Parameter estimates for children 's friendship and age 
Subset & jJ 

1 (7-year-olds) 
2 (8-year-olds) 

-0.353 
0.353 

-0.353 
0.353 

logically, their interaction) by comparing conditional likelihood-ratio 
statistics (AG" s) as we have described in the previous section. 

Because none of the IX, p, or (IXP) parameters are statistically important 
here, we would not usually report and interpret the estimates. However, 
to illustrate how much simpler the parameter structure is (compared to 
modeling all actors via y), we list the parameter estimates in Table 15.15. 
The alpha and beta estimates suggest the 8-year-old children (s{i) = 2) 
are both more likely to nominate others «)(f'2\�21 is positive) and to 
be nominated by others (p�'}}r21 is positive) than are the 7-year-old 
children (s(i) = 1). The reciprocity parameter is positive, indicating some 
tendency for mutual ties. Tn conclusion, we note that tbis small network 
displays differential popularity tendencies, implying that the actors are 
chosen with differing rates. Aggregating the actors based on their age is 
important here - the children are not distinguishable once we put all 
the 7-year-olds and all the 8-year-olds together. 

We now look at an analysis of Krackhardt's network of high-tech 
managers (shown in Tables 15.16 and 15.17). Here, we look at both 
the advice and friendship relations, but use the tenure and age attribute 
variables. We do three sets of models: one set using tenure, one using 
age, and one using both tenure and age. 

First, we look at advice. Table 15.16 gives the goodness-of-fit statistics 
for four models for each of the three attribute variable collections, all 
fit to the advice relation. Actors differ substantially on advice seeking 
and receiving when classified by tenure, and when classified by age and 
tenure. However, actors differ only on advice seeking when classified by 
age; that is, younger actors are just as likely to receive advice as older 
actors. From these models, there also appears little tendency for the 
advice to be reciprocated. So, age and tenure interact with the advice 
relation, but in rather different ways. 

Next, we look at friendship. Table 15.11 gives the goodness-of-fit statis
tics for four models for each of the three attribute variable collections, 
all fit to the friendsbip relation. The friendship relation is quite different 
(when studied with these models) from advice. From Table 15.17, one 
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Table 15. 16. Goodness-of-fit statistics for Krackhardt's managers and the 
advice relation, with attribute variables 

Krackhardt's high-tech managers, the advice relation and tenure 

Model 

15.9 
15.9b 
15.9c 
15.9d 

Null hypothesis 

Ho : o:[s(il] = 0 for all i and k 
Ho : Pt(j)] � 0 for all j and k 
Ho : (aPlkl � 0 for all k and 1 

G2 "'G' "'dj p-value 

547.121 
564.804 17.683 I p < 0.001 
561.792 14.671 I p < 0.001 
549.809 2.688 I p � 0.101 

Krackhardt's high-tech managers, the advice relation and age 

Model 

15.9 
15.9b 
15.9c 
15.9d 

Null hypothesis 

Ho : o;[sO)] = 0 for all i and k 
Ho : p!,(j)] � 0 for all j and k 
Ho : (aph, � 0 for all k and 1 

G2 

547.265 
576.188 
549.436 
548.465 

"'G' t.dj p-value 

28.92 I p < 0.001 
2.171 I p � 0.141 
1.200 I Not small 

Krackhardt's high-tech managers, the advice relation, and age and tenure 

Model 

15.9 
15.9b 
15.9c 
15.9d 

Null hypothesis 

Ho : a[S(i») = 0 for all i and k 
Ho : PtU)] � 0 for all j and k 
Ho : (ap)kI � 0 for all k and 1 

G2 

508.541 
553.820 
537.624 
513.838 

"'G2 t.dj p-value 

45.279 3 p < 0.001 
29.083 3 p < 0.001 

5.297 I p � 0.0214 

can see that regardless of the attribute variable(s) used to classify the 
actors, the receipt of friendship ties is constant from subset to subset. But 
there is a difference in friendship nominations between the age groups. 
The younger and older actors have different numbers of friends. Their 
friendship expansiveness differs, as can be seen from the parameter es
timates from model (15.9), fit to the friendship relation, using just age 
as the actor attribute variable. One finds that: &[yo,"g,,] = 0.134 and 
&]old,,] = -0.376. Thus, younger actors are more likely to nominate 
others as friends, while older actors are considerably less likely to do 
so. Friendship nominations seem quite age-specific. Further, unlike the 
advice relation, there are large tendencies for these friendship ties to be 
reciprocated (in fact, (IXt!) = 1.360). 

15.3 Related Models for Further Aggregated Data 

We now describe several related models. The first class of models is 
similar to the models just described for dyadic data with subset-level 
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Table 15.17. Goodness-offit statistics for Krackhardt's managers and the 
friendship relation, with attribute variables 

Krackhardfs high-tech managers, the friendship relation and tenure 

Model 

15.9 
15.9b 
15.9c 
15.9d 

Null hypothesis 

Ho : a[s(I)] = 0 for all i and k 
Ho : prUl] = 0 for all j and k 
Ho : (oPlkl = 0 for all k and I 

& 
450.691 
450.936 
450.734 
465.224 

t.G' t.df p-value 

0.245 1 Not small 
0.043 1 Not small 

14.533 1 p < 0.001 

Krackhardfs high-tech managers, the friendship relation and age 

Model Null hypothesis G' t.G' Mf p-value 

15.9 447.096 
15.9b Ho : a[s(I)] = 0 for all i and k 450.985 3.889 1 p = 0.0486 
15.9c Ho : flr(J)] = 0 for all j and k 447.139 0.043 1 Not small 
15.9d Ho : (OP)kI = 0 for all k and I 461.688 14.592 1 p < 0.001 

Krackhardfs high-tech managers, the friendship relation, and age and tenure 

Model Null hypothesis & M;2 t.dt p-value 

15.9 438.390 
15.9b Ho : o['IQ] = 0 for all i and k 449.738 1 1.348 3 p = 0.010 
15.9c Ho : fll'U)] = 0 for all j and k 438.768 0.378 3 Not small 
15.9d Ho : (OP)kI = 0 for all k and I 451.885 13.495 1 P < 0.001 

parameters. It differs in that one now assumes that all actors belong to 
one and only one subset. In other words, we assume that all alphas are 
equal for all actors (or subsets), as are all betas. 

The relevant array, which we call V, is a contingency table like Y 
or W, but aggregates over all actors or over all subsets of actors. In 
a sense, we have just a single subgroup, so that S = 1. The models 
we fit to such tables inform us about the network structure as given by 
the ties, without regard to the identities of the particular actors or their 
attributes. The models in the class contain parameters which do not 
depend on the actors or on their subsets ; thus, these models focus strictly 
on the relations, not on the actors or their attributes. 

The second class of models described here takes the models for Y 
and W and modifies them by allowing for attribute information and/or 
relational data that are ordinal (for example, "big," "medium," and 
"small" corporations, or "high," "medium," and "low" frequencies of 
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communications). With these models, one can handle valued relational 
variables as well as valued attribute variables, such as size or socio
economic status. 

15.3.1 Strict Relational Analysis - The V-array 

In the same way that we aggregated individuals into a W-array so that we 
could fit models with subset-level parameters, and hence study stochastic 
equivalence, we can further aggregate W. We now want to consider 
models with neither actor-level nor subset-level parameters. 

The models that we have presented in this chapter allow researchers 
to study patterns of ties for a single relational variable among individual 
actors Cas coded by the entries of V), or among subsets Cas coded by 
the entries of W). We might wish to ignore the actors and their subsets 
altogether. Models postulated for such data focus on the relations alone, 
without consideration of who sent or received the ties, or of any attributes 
of these actors. Substantively, these models assume that all expansiveness 
(or popularity) parameters are constant across all actors or all subsets 
of actors. In other words, these parameters no longer depend on the 
actors. Thus, the a's (or {J's), measuring differential actor expansiveness 
(or popularity) are 0; that is, there are no such differential tendencies. 

We first define a new array, the V-array, with entries {Vkl}, which we 
can obtain by aggregating the entries in either Y or W :  

g g 
Vkl L L Yijki 

i=1 j=l 
S s 

L L W'Ci),U)kl. 
s(i)=l sU)=l 

(15.10) 

This array is of size C x C, and its entries give counts of the various types 
of dyads. For a dichotomous relation, the V -array is 2 x 2. For such a 
dichotomous relation, the count in the (0, 1) and (1,0) cell, for example, 
equals the number of asymmetric dyads. In general, the off-diagonal 
cells of V, such as the (k, l)th cell (k i= I) give the counts of the number 
of dyads for which actors send ties at level k and receive ties at level I, 

distinct from k. The diagonal cells, because of "double counting" when 
summing over dyads, give twice the number of dyads for which actors 
send at level k and also receive at level k. 

Most social network data sets are probably better modeled using pa
rameters that allow for individual or subset differences, but there may be 
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Table 15.18. The V-array constructed from the V-array for the 
second-graders and friendship 

l: Xji = 0 Xji = 1 

k: xij = O  
Xij = 1 

18 
4 

4 
4 

circumstances in which modeling a V -array might be appropriate. Fre
quently, the decision of whether to model individuals (using Y) or subsets 
(using W) or to aggregate over both (V) is primarily driven by theoretical 
issues. A V -array can be viewed as appropriate for statistical models with 
only one subset of actors. If stochastic equivalence is appropriate, then 
we can go from the Y - to the W -array. When considering whether to go 
from the W - to the V -array, we are simply further assuming all subsets, 
or all actors, are homogeneous with respect to the dyadic interactions on 
the relational variable under study. In other words, all alphas are equal, 
as are all betas, and are all equal to 0 (as we will see from the formal 
model given below). If this is a tenable substantive hypothesis, then such 
modeling is proper. And we can certainly study such hypotheses, by first 
fitting PI and then fitting special cases of it without the a's and without 
the /3's. 

The v-array for the fabricated network of second-graders is given in 
Table 15.18. The entries in this table do not depend on actors i and j, or 
on subsets s(i) and s(j). Instead, the g(g - I) = 30 ordered pairs of actors 
(each of the fifteen dyads is viewed from both perspectives) are classified 
only according to the strengths of the relational variable between the 
actors. The elements in this small array are the counts from the dyad 
census: there are 9 (18(2) null dyads, 2 (4(2) mutual dyads, and the 
off-diagonal entry (4) gives the number of asymmetric dyads. Note the 
table is symmetric. And also note, as mentioned above, that because the 
summation here is over all ordered pairs of actors, rather than over all 
unordered pairs of actors, dyads are counted twice; hence, the diagonal 
entries in the array are doubled dyad counts. 

A statistical model for dyadic interactions that have been organized 
into a V -array follows :  

(15.11)  

Here, k and I take all possible integer values between 0 and C - 1 .  
As noted, the a and /3 parameters of model (15.3) are set equal to O. 
And we usually assume that the e's and (a/3),s sum to 0 across their 
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respective subscripts; further, these latter parameters are symmetric : 
(a[J)kl = (a.[J),k. 

As is proper, we give the statistical model in terms of the dyadic 
variables (Yijkl). Since the model is postulated at the level of the individual 
actors in a dyad, but the table has been aggregated over individuals, the 
goodness-of-fit statistics given as output of common statistical programs 
must be adjusted (as was necessary for fitting models to W). 

Note the simplicity of this model - there are only two interesting 
parameters. The more substantively interesting parameters are the recip
rocation parameters, the {(a[J).,). The thetas are indicators of volume 
of ties sent and received at each relational strength. No parameters 
appear in the model that depend on the actors, i or j, or the sub
sets, sCi) or s(j), because we have aggregated over all these possibilities, 
and formed a table that cross-classifies only the levels of the relational 
variables. 

To illustrate, let us look at the fabricated second-grade network. Recall 
that we have already demonstrated (see Table 15.8) that the children 
do differ with respect to their popularity effects; that is, the [J's are 
statistically different from each other. Thus, strictly speaking, these 
parameters should not be all equated to each other. Nevertheless, we use 
this example for illustrative purposes. To fit model 15.11, we simply fit 
the saturated model [12] to the 2 x 2 v of Table 15.18. 

The model clearly fits "perfectly"; that is, a 2 x 2 table has a total of 
3 degrees of freedom (only the grand total of the table is fixed), and we 
have a model with three parameters, as follows : one for e, one for (a[J), 
and one for A. The parameter estimates are : e = 0.385 and (a[J) = 0.02 
(we have no interest in A, since it appears in the model simply to insure 
that the probabilities sum to unity). Clearly, there is very little tendency 
for ties to be sent, but when ties are sent, there is some tendency for 
these ties to be reciprocated. 

We have found these relational v-arrays most useful when modeling 
multirelational network data sets. In fact, the first use of such arrays 
was by Davis (1968a), who proposed methods for the analysis of two 
relations, and Galaskiewicz and Marsden (1978), who analyzed a social 
network data set containing three relations. In Chapter 16, we discuss 
statistical models for multiple relational social network data sets which 
incorporate associations or interactions for the relational variables under 
study. Such models can also be applied to the multirelational versions of 
the Y-, W-, or V-arrays. 
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15.3.2 Ordinal Relational Data 

We now consider models for relations that not only are valued, but 
have ordered categories. For example, the strength of a relation might 
be measured with C = 3 levels, coded as 0, 1, or 2, indicating "no," 
"sometimes," and "often" frequency of phone calls between actors, or 
"strangers," "acquaintances," "friends," and " best friends," which might 
be coded as 0, 1, 2, and 3. Thus, we assume that the levels of the 
relational variable are ordered, with smaller values indicating weaker 
ties, and larger values representing stronger ties. 

Log-linear models for discrete data have been extended to categori
cal variables whose categories are ordered (for example, Agresti 1984, 
1990; Goodman 1979). For social network data, relational variables 
and attribute variables can be ordinal. Here, we modify the models of 
this chapter to incorporate the possibly ordinal measurement properties 
inherent in the data. The models discussed in this section are described 
in detail in Wasserman and Iacobucci (1986). 

The statistical models (15.3) and (15.9) can be generalized to incor
porate not only ordinal relational variables, but also ordinal attribute 
variables. For example, we might classify actors into five ordered subsets 
based on their university rank: lecturer, instructor, assistant professor, 
associate professor, and professor. 

We begin by assuming that scores can be assigned to the ordered 
strengths of the relational variable. We label these scores Uk : 0, 1,2, . . .  , 
(C - 1), and center them to have a mean of zero. That is, we calculate 
the average score, u = �f:� Uk /C, and then subtract it from each of the 
Uk'S. For example, with C = 3 strengths, we might assign the Uk scores 
of Uj = 0, U2 = 1, U3 = 2, and center them to -1, 0, and 1, so that the 
centered scores have a mean of O. If we had C = 4 strengths, we might 
assign the scores Ul = 1, U2 = 2, U3 = 4, U4 = 8, and center them to 
obtain -2.75, -1.75, 0.25, 4.25. 

We use these scores to estimate a set of regression-like slope parameters. 
In model (15.3) there are (g - 1)(C - 1) expansiveness parameters. We 
change these parameters by using the ordinal information. Specifically: 

1X'(k) = 1X,(Uk - u). 

The (Uk - u)'s are the assigned, centered scores. Because the Uk'S are 
known, there are fewer parameters to estimate (assuming that C exceeds 
two categories). The IX; parameters are the "slope" parameters mentioned 
above. There are g alphas, one for each actor. The {IX,} effects sum to 
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O. Thus, instead of estimating (g - I)(C - I) independent quantities, we 
estimate only (g - I) parameters. The general expansiveness parameters 
{"" (k)} are assumed to be linearly related to the scores assigned to the 
relational strengths. 

Consider an example. Suppose the relation is frequency of interactions 
among children, which we have coded as "low," " medium:� and "high." 
In model (15.3), we would estimate (g-I)(3-1) = 2(g-l) "" (k) parameters. 
With the ordinal version of the model discussed here, we have only (g-I)  
",/s. These new "'/s do not depend on k. 

Let us focus on the regression-nature of these parameters. The dif
ference between the low category (k = 0) and the medium category 
(k = I )  is (for the ith actor) equal to ",,(U1 - uo). The difference between 
the medium category and the high category (k = 2) is "" (u, - U1)' If 
the two differences (U1 - uo) and (U2 - u,) are equal, which would be 
the case if the categories are equally spaced on the score variable, then 
"" (1) - "" (0) = "" (2) - '4(1). Thus, the effect of "going from" the medium 
category (k = 1) to the high category (k = 2) is the same as the effect 
of going from the low category to the medium category. This constancy 
is identical to the change in a response variable in a regression, with a 
linear regression slope. 

Similarly, the popularity parameters are simplified by taking the set of 
{Pj(l) } effects, for a nominal relation, and replacing it with the set of {Pj} 
effects for an ordinal relation. SpecificallY, 

In general, any parameters in models (15.3) and (15.9) can be revised 
to ordinal relational versions by replacing parameters that depend on the 
index k, with a simpler parametric structure using the known SCOres {ud. 
In addition to the alphas and betas, {B.} and {("'Phi) can be modified, 
giving rise to the following model: 

10gP(Y'jkl = I )  = Aij + B(Uk - il) + B(ul - u) + ",,(Uk - il) 
+"'j(ul - il) + Pj(Uk - il) + P,(Ut - u) 
+("'P)(Uk - il)(ul - il), (15.12) 

where, as usual, k and I take on integer values between 0 and C - 1. Note 
that there is only a single ("'P) parameter in this model. Its interpretation 
is analogous to a measure of association between sending strengths 
and receiving strengths, much like in model (15.3) for dichotomous 
data. 
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If we use attribute variables to categorize the actors into S < g subsets, . 

then we can simplify model (15.12) even further: 

log P(Yijk/ = 1) = ,,[,o),U)J + Otuk - u) + O(u/ - u) 
+a1*)J(Uk - il) + a1'U)J(u/ - il) 
+/3 1 .. jJJ (Uk - ill + /31*)J (u/ - ill 

+(a/3)(uk - li)(U/ - ill· (I5.13) 

Finally, the attribute variable(s) might also be ordered, so that we could 
assign scores to subset categories. For example, distinguishing actors 
by gender or race would result in dichotomous and discrete attribute 
variables. But such attribute variables are not ordinal. However, if we 
have measurements on some measure of socioeconomic status, we could 
form subsets on some categorization of this variable (for example, lower, 
middle, and upper class). More details and examples illustrating the 
application of these models for ordinal relational and attribute variables 
can be found in Wasserman and Iacobucci (1986). 

15,4 ONondirectional Relations 

Consider now a single, nondirectional relation. We now show how model 
(\5.3) can be modified for such a relation. As an example, we examine 
Padgett's Florentine families. 

There are (at least) two main differences between directional and 
nondirectional relations. First, the indegrees and outdegrees are equal 
for a nondirectional relation. Thus, there can be no difference between 
expansiveness and popularity parameters in a model. Second, because the 
states of the dyads for a nondirectional relation are either "on" or "off," 
there is no reciprocity. We cannot study the tendency for i to send a tie 
to j and not for j to send a tie to i since there are no asymmetric dyads. 
Thus, the models for nondirectional relations cannot contain reciprocity 
parameters. 

15.4.1 A Model 

We now present a model designed to reflect individual actor differences. 
Thus, it should be fit to a Y -array. Models for actors in subsets, which 
should be fit to a W-array, are similar: actors i and j would simply 
be replaced by subsets [s(i)l and [sUllo We first must define the correct 
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Y-array, designed to reflect the dyadic states that are possible with a 
nondirectional relation: 

Y'jk 1 if Xij = k 
o otherwise, ( 15.14) 

The Y-array is a three-dimensional array, since the X matrix is symmetric 
by definition. Our model is 

10g P(Y'jk = 1) = ;" j + Ok + Y'(k) + Yjlk)· (15.15) 

In this model, there are no a's and no {i's. Rather, they are replaced by 
y's. Each actor has a single set of Y parameters, indexed by the choosing 
strength (k). Notc that there is no (a{i) tcrm. 

This model is equivalent to [12] [13] [23], the no three-factor interaction 
model, fit to the Y-array. Log-linear model computer packages can be 
used to obtain fitted values. Various special cases of model (15.15) can 
be fit by dropping parameters. In these cases, corresponding margins of 
Y are added or deleted from the fitted log-linear model. 

15.4.2 An Example 

We fit several models to Padgett's Florentine network. The basic model 
(15.15) has goodness-of-fit statistics equal to 51.83 (for the business 
relation) and 87.97 (for the marriage relation). To study whether the 
families differ with respect to business or marriage, we fit the special case 
of the basic model without the Y parameters. Comparing the basic model 
to the model without these actor-level parameters, we found that the Y 
effects are large for both marital ties (LlG2 = 108.13 - 87.97 = 20.16) 
and business ties (LlG2 = 90.42 - 51.83 = 38.59). Degrees of freedom are 
14 for marriage and 10 for business (since several of the families have 
infinite parameters). The conditional likelihood ratio statistic for the 
marriage relation is small, while that for business is not. Hence, we can 
conclude that the families are indeed different with respect to the volume 
and patterns of their marital and business ties to others. The Pis for the 
business and marital relations are given in Table 15.19. We focus just 
on the business relation, since these j1's appear to be more statistically 
important than those for the marital relation. 

The largest negative 1'8 for business are for the families Pazzi, Salvati, 
and Tornabuoni. The families with the largest positive j1's are Medici, 
Barbadori, and Lamberteschi. As can be seen, five families have no 
business ties with the others, and hence have -00 parameter estimates. 
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Table 15.19. Parameter estimates for Padgett's Florentine families 
Business Marriage 

Family Actor Yi 'Yi 
Acciaiuoli n, -00 -1.106 
Albizzi "2 -00 0.310 
Barbadori ", 0.904 -0.265 
Bischeri n, 0.290 0.310 
Castellani ns 0.290 0.310 
Oinori n, -0.399 -1.106 
Guadagni "7 -0.399 0.779 
Lamberteschi n, 0.904 -1.106 
Medici n, 1.444 1.539 
Pazzi nlO -1.313 -1.106 
Peruzzi flll 0.904 0.310 
Pucci "" -00 -00 
Ridolfi nl3 -00 0.310 
Salvati n!4 -1.313 -0.265 
Strom filS -00 0.779 
Tornabuoni "16 -1.313 0.310 

We also modeled these relations using wealth as an attribute of each 
actor. Families with wealth less than or equal to 40,000 lira formed one 
group, and families with more formed another. Half of the families fan 
into the wealthier group. 

Aggregating families into these two wealth categories has a v;;ry large 
efIect on the analysis. After aggregation, we fit models to 2 x 2 x 2 three
dimensional y-arrays. For the analyses of the w's, the Ji's for marriage 
are not large (LlG2 = 1.21 with Lldf = 1) but they are for business 
(LlG2 = 7.59 again with Lldf = 1). These results suggest that wealth is 
quite important in distinguishing families who have business ties, but not 
for marital arrangements. That is, wealthy families enter into business 
relationships at different rates than less wealthy families, but wealth is 
not an important influence on marital ties. 

15.5 ®Recent Generalizations of Pl 
In this section, we briefly introduce some interesting developments and 
recent research on other generalizations of the Pl model. These include 
Bayesian estimation of Pl parameters as described in Wong (1987), and 
the pseudo-likelihood estimation described in Strauss and Ikeda (1988) 
designed for the Markov random graphs of Frank and Strauss (1986). 
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The Bayesian ideas offered by Wong (1987) allow a priori information 
about the a's and (J's to be used in an effort to improve their estimation. 
The Bayesian approach assumes that the a's and (J's are no longer fixed 
constants, but are random, possibly associated, variables. Wong assumes 
that these PI parameters are multivariate normal random variables, with 
some structured covariance matrix. 

A Bayesian approach can help "smooth" estimation of parameters 
when fitting models to large, sparse contingency tables. On the down 
side, the algorithm developed by Wong is slow and has problems if the 
a's and (J's are highly correlated (indicating that parameter redundancy 
and singular matrices can arise in the computation process). He focuses 
his attention on the 0: and f3 parameters, but presumably his approach 
could incorporate prior information on (,,(J) also. 

Wong compares a and {J estimates from the Bayesian approach to a 
and {J estimates using maximum likelihood (ML) estimation, as we have 
described here. Wong states that the sets of estimates (Bayesian and 
ML) are usually different, and that even the relative ordering among the 
estimated ,,'s and among the estimated (J's may differ. (In particular, 
he notes that Bayesian methods cause estimates to "shrink" toward 0, 
compared to the ML estimates, and that more shrinkage occurs for the 
more extreme values of " or (J.) Nevertheless, the correlations between 
the ML and Bayesian estimates for the example he analyzed were quite 
high. The correlation between the two sets of estimated ,,'s was 0.891, 
and the correlation for the estimated {J's was 0.966. Even so, prior 
information might change or even improve parameter estimates in other 
network data sets. 

Another development to note is the work reported in Strauss and Ikeda 
( 1990). They investigate a pseudo-likelihood estimation procedure, a gen
eralization of maximum likelihood, that uses an approximate likelihood 
function which does not assume dyadic independence (see comments in 
Iacobucci and Wasserman 1990). The theoretical foundation of Strauss 
and Ikeda's work is found in Frank and Strauss (1986). Strauss and 
Ikeda derive a pseudo-likelihood as a function of each data point (xij), 
conditional on the rest of the data. Any interdependencies in the data can 
be directly modeled by this statistical conditioning, so no assumptions 
need to be made that the data points are all independent. 

Strauss and Ikeda compared the performance of standard maximum 
likelihood estimates to their maximum pseudo-likelihood (MP) estimates 
both in a simulation study, and by analyzing the "like" relation measured 
on the monks in the monastery studied by Sampson (1967). In the 



660 Statistical Analysis of Single Relational Networks 

simulations, they looked at the performance of the estimates in five 
replicated networks containing fifteen, twenty, or thirty actors. They 
found that MP and ML estimates performed equally well, as evaluated 
by a root mean squared error measure. The estimates had greater 
standard errors for the networks with fewer actors, but this would be 
true of any procedure - better precision usually occurs with larger data 
sets. 

Under all the conditions for which both ML and MP estimates could 
be estimated, the two performed similarly. The main advantage in the 
use of MP estimation is that there are conditions under which MP 
estimates exist, but ML estimates do not. The MP approach further 
expands the applicability of Pl because it can be used to fit models that 
do not assume dyadic independence, such as those described by Frank 
and Strauss (1986). 

Strauss and Ikeda's comparisons also address the issue of how well the 
maximum likelihood estimation of Pl parameters performs even under 
conditions where the assumption of dyadic independence is known to be 
violated. The facl that the ML estimates are as good as MP estimates 
is good news. We can proceed to use the relatively simple methods 
described here without much concern that violation of the assumption of 
dyadic independence will greatly affect the results. In addition, the ML 
and MP &'s were highly correlated (in fac� almost equal) in the reported 
analysis of the Sampson data, as were the ML and MP p's. 

Another approach to dyadic independence models comes from the 
multilevel models common in medical and educational studies. Rosner's 
(1989) statistical work was motivated not by social network concerns, 
but by concerns in modeling ophthalmological data. The left and right 
eye of a person could be viewed as analogous to an actor and a partner 
in a dyad. Measures on the left or right eye (or actor or partner) 
clearly cannot be treated as independent; consequently, Rosner develops 
a logistic regression model for multilevel data, essentially a categorical 
data version of a linear model incorporating an intraclass correlation 
coefficient (see also Kraemer and Jacklin 1979). 

Still other methods have been pursued by Frank and his colleagues 
(Frank, Hallinan, and Nowicki 1985; Frank, Komanska, and Widaman 
1985; Frank, Lundquis� Wellman, and Wilson 1986; Wellman, Frank, 
Espinoza, Lundquist, and Wilson 1991). This research uses stochas
tic equivalence (or, as stated by these authors, "certain homogeneity 
assumptions") in conjunction with models for dyads and triads. All pos
sible states of a dyad (Xu' Xji) become categories of a discrete random 
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variable. All possible cross-classifications of actor attribute information 
become another variable. For example, using race and gender as attribute 
variables, one variable would have categories consisting of all pairs of 
the following subsets: white males, black males, white females, and black 
females. 

The elements in each cell of the cross-classification of these two vari
ables are the frequencies with which a specific type of actor (such as black 
females) interacts with other types of actors (such as white females) at 
the various dyadic states. Each row, then, describes a distribution of 
dyadic states for each pair of subsets of actors. The information in such 
a cross-classification is identical to that in a W -array. The similarities 
between all ,possible pairs of subsets are summarized by X2 statistics, and 
then the subsequent matrix of similarities is cluster analyzed (see Frank, 
Komanska, and Widaman 1985). The cluster analysis yields subsets that 
are distinct, and possibly separable, and subsets that are similar, and 
possibly aggregable. 

Stochastic equivalence and comparisons of within-subset to between
subset relations are also examined by Marsden (1981, 1986, 1987, and 
1989). A two-way table is created in which both the rows and columns 
represent the subsets (white males, black males, and so on). The elements 
of the matrix are densities of ties, for which several models can be 
developed. Such density matrices are like w-arrays, in that the rows and 
columns are indexed by the [s(i)]'s and [sU)]

,
s. However, the density 

matrix essentially collapses over sending and receiving strengths k and /, 
so that the directions and reciprocation of the ties are lost. 

Ties within and between subsets are also analyzed by Yamaguchi 
(1990). "Homophily" or "inbreeding" describe the expected tendencies 
for actors to have friends of the same attribute category as themselves. 
For example, this structural hypothesis would lead us to expect that 
white males would be more likely to chose each other as friends, than 
to choose men of other races or women. Yamaguchi also examines the 
links among the friends chosen by any given actor. Thus, the paper looks 
at both the ties between ni and n/s (in conjunction with the attribute 
information), and also the ties among the chosen n/s. 

Finally, Strauss and Freeman (1989) translate several classic substan
tive theories or hypotheses into statistical models that use network de
scriptors as parameters. FOI example, one model created is based on 
"small world" studies. Strauss and Freeman create a three-dimensional 
sociomatrix with elements Xijt, equaling 1 if ni passes the message to 
nj at step t (and otherwise equaling 0). Elements of matrices such as 
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this one can be studied using Markov models. A very similar model, 
focusing not on the "step" at which a message is sent but on its strength, 
was discussed by Elsas (1990) and commented upon by Iacobucci and 
Hopkins (1991). It is based on the social interaction theory and model 
of Scheiblechner (1971, 1972), and is derived from the common Rasch 
model in psychometrics (Scheiblechner 1977). 

Another model discussed by Strauss and Freeman is the random 
and biased net paradigm of Rapoport (1953, 1957, 1963, 1979) and 
Rapoport and Horvath (1961), whiCh began as a model of animal sociol
ogy (Rapoport 1949a, 1949b, 1950). This paradigm has been the subject 
of recent theory by Fararo and Skvoretz (1987). A variety of structural 
theories, such as Blau's (1977) social differentiation theory and Granovet
ter's (1973) strength-of-weak-ties principle, have been studied using the 
paradigm. Farara (1981, 1983), Fararo and Skvoretz (1984), and Skvoretz 
(1983, 1985, 1990) have done extensive work on the mathematical aspects 
of this model, particularly approximations and simulations. 

15.6 ®Singie Relations and Two Sets of Actors 

We now turn our attention to statistical models for two-mode social 
networks. We assume that we have two sets of actors, and a relation that 
is directed fram actors in one set to actors in the other. Details of these 
models can be found in Iacobucci aud Wassermau (1990), Wasserman 
and Iacobucci (1990), and Iacobucci and Hopkins ( 1992). The models 
and results presented here for one-mode networks are easily modified 
for this generalization. Because of this commonality, we will just briefly 
present these modifications. 

15.6.1 Introduction 

Define two actor sets: 5 = {nlo n" . . .  , ng}, ./It = {mlo m2, . . .  , mh}' A tie 
originates at ni and is directed toward the receiver mj. The relational 
data recorded on the ordered pair (ni, mj) is denoted by Xij. 

We can study the tendency for actors in 5 to initiate ties and actors in 
At to receive ties. But since it is not possible for the tie mj � nl to occur, 
we cannot study tendencies for actors in ./It to initiate and tendencies 
for actors in 5 to receive. Thus, for this two-mode relation, we cannot 

study reciprocity. 
With g actors in 5, and h actors in ./It, there are gh dyads to consider, 

or gh relational variables to be modeled. We create a Y-array and fit 
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various log-linear models. In this new situation, we create not a four
dimensional array, but a three-dimensional contingency table of size g x 
h x C, defined as follows: 

Y'jk I if the ordered pair < n" mj > takes on 

the value Xij = k 

o otherwise. (15.16) 

The Y -array is thus defined by three variables: the actors in ff, the 
actors in �, and the value of the tie between the two. 

15.6.2 The Basic Model 
Model (15.3) is a version of PI generalized to discrete-valued relations. 
It can be extended in a straightforward theoretical manner to two-mode 
networks. To begin, we note that only actors in ff can send ties, while 
only actors in � can receive. Thus, a specific actor will have only one 
parameter : expansiveness parameters are estimated for the actors in .At, 

while popularity parameters are estimated for the actors in .$t. 
The basic model for two-mode networks simplifies further because 

reciprocity cannot occur; thus, we do not include the {(ap)kJ} parameters 
in our models. There can be only one tie within each dyad. 

The basic model is: 

(15.17) 

We assume that the parameters in this model sum to 0 across k for each 
i or j. 

The details of obtaining maximum likelihood estimates of the param
eters of (15.3), such as the log likelihood function and the formula for 
the goodness-of-fit statistic G', are straightforward generalizations of the 
results for Pl .  We refer the interested reader to Iacobucci and Wasserman 
(1990) and Wasserman and Iacobucci (1990). 

We can simplify model (15.17) in only three ways. We can drop the 
a's, the p's, or both, from the basic model. These alternative models are 
listed below. 

a) logP(Y'jk = 1) 

b) log P(Y'jk = 1)  

c) log P ( Y'jk = 1) 

Aij + 8k + pj(k) 

Aij + 8k + a'(k) 

= Aij + Ok 

(15.18) 

When we compare the goodness-of-fit statistics for models (15.17) and 
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(15.18a), we have the conditional likelihood-ratio test statistic for the null 
hypothesis, 

Ho : "'i(k) = 0 for all i, k;  
that is, there are no differences among the actors in fi" with respect to 
their expansiveness. The alternative hypothesis is (as usual) that some 
of these parameters are not O. When comparing models (15.17) and 
(15.18b), we obtain the conditional likelihood-ratio test statistic for the 
null hypothesis 

Ho : [3jlk) = 0 for all j,k. 

If we were not able to reject either of these hypotheses, we would 
conclude that model (15. 18c) is the best-fitting model. Such a null 
model is rather uninteresting because it states the actors in % have no 
differential expansiveness and actors in At have no differential popularity 
effects. Thus, ties are just functions of the strength at which those ties 
are made, not of the actors involved. 

15.6.3 Aggregating Dyads for Two-mode Networks 

We can use actor attribute variables, now for both sets of actors, to create 
a W-array, and equate parameters for all actors belonging to a subset. 

For example, focusing on Galaskiewicz's CEOs and clubs network, 
we might classify the CEOs by the size of their firm (based perhaps on 
after-tax income for a recent year). We could also classify the clubs by 
some measure of their prestige : high; very high ; and very, very high. 

Using the notation first introduced in Chapter 3, we assume that we 
have Ql attribute variables for the actors in %, and Q2 attribute variables 
for the actors in At. From these, we categorize the actors appropriately, 
to obtain S subsets for the actors in %, and T subsets for the actors 
in At. We need two mapping functions : s(i), which maps the g actors 
{ni} in fi- to their subsets, and another function tU) to map the h actors 
{mj} in the second set At to their respective subsets. Thus, the subset 
memberships of the actors in % can be denoted by s(nd,s(n,), .. . , sing), 
and the subsets to which the actors in At belong can be denoted by 

t(mil, t(m2)" ' "  t(mh)' 
To obtain a W-array we aggregate over actors in a subset, just as we 

did in the one-mode case: 

Ws(n;)t{mj)k = E L: Yijk. 
n;Es{n;) mjEt{mj) 

(15.19) 
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Because the two sets of actors differ, we might use attribute variables for 
one set of actors, but not the other. Aggregating over actors in .;V yields : 

Ws(n;)jk = L Yijk. 
njEs(ni) 

Aggregating over actors in At yields: 

Wit(mj)k = L Y;'jk. 
mjEt(mj) 

(IS.20) 

(1S.21) 

Thus, the W-array can be of size S x T x C, if we use attribute variables 
for both sets of actors, or S x h x C, or g x T x C, if we use attributes 
for just one of the sets of actors. 

We can also aggregate completely uver actors, and postulate models 
that do not contain any actor- or subset-level parameters. Aggregating 
over all actors gives a very simple one-dimensional V -array: 

Vk � L L Y,jk ( 1S.22) 
j 

describing only the relational data, not distinguishing among the sending 
or receiving actors. Models fit to this array would contain only A and 8 
parameters. These latter parameters measure tendencies toward choices 
at the various strengths, but are independent of the natures of the sending 
and receiving actors. 

We note that the goodness-of-fit statistics for models fit to either the 
W- or V-arrays require special computations just as in the one-mode 
situation. Standard output from statistical packages is not correct for G2 
statistics, even though the fitted probabilities are correct. 

We can also consider ordinal relational variables, just as we did in the 
one-mode situation. We would model the relational data as follows: 

10gP(Y'jk � 1 )  Aij + 8(Uk - il) + ",,(Uk - il) 

+f3Auk - u), (IS.23) 

where the u's are the assigned, known scores. All theoretical and practi
cal details of modeling and testing hypotheses about two-mode networks 
carries over from the procedures described in detail for one-mode net
works. 

15.7 Computing for Log-linear Models 

Following are the computing steps necessary to fit the models described 
in this chapter and the next. Commands are listed and explained for each 
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of the follOwing statistical packages : GLIM (Baker and NeIder 1978), 
SPSSx (Norusis 1985), BMDP (Dixon 1983), and SYSTAT (Wilkinson 
1987). We highly recommend the USe of the program GLlM or SPSSx 
Other statistical packages will work similarly to these two. For example, 
BMDP and SYSTA T  are very similar to SPSSx. (SAS is a very powerful 
and flexible package, but its CATMOD procedure is rather peculiar 
and has difficulties with contingency tables that have many O's, which 
characterize y-arrays. Parameter estimates Can disappear and become 
confounded as functions of each other, and it is up to the researcher to 
disentangle them.) The y. and W-arrays used to illustrate each package 
are those data from the fabricated second-grader network. 

15.7.1 Computing Packages 

Mter the commands for these packages are presented, we describe how 
one obtains the model parameter estimates from the u-terms that are 
given on the computer printouts. Some of the packages use different 
constraints than others, and we note the differences here. 

GLIM Commands. 

$C TO FIT MODELS TO THE Y-ARRAY: 

$ECHO 

$OUTPUT 3 

$UNITS 144 

$FACTOR I 6 J 6 K 2 L 2 

$CALC I=%GL ( 6 , 24) : J=%GL(6 ,4) : K=%GL (2 ,2) : L=%GL (2 , 1 ) 

$DATA Y 

$READ 

0 0 0  0 o 0 1 0 1 0 0 0  1 0 0 0 0 0 1  0 1 0 0  0 

o 1 0 0  o 0 0 0 0 0 0  1 1 0 0 0  1 0 0  0 0 0 0  1 

1 0 0  0 0 0 0  1 o 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

1 0 0 0  1 0 0 0  1 0 0 0 0 o 0 0  o 0 1 0 1 0 0  0 

o 1 0 0  1 0 0 0 1 0 0 0  o 1 0 0 o 0 0 0 o 0 1 0 

1 0 0  0 0 0 0  1 1 0 0 0  1 0 0 0 o 1 0 0  o 0 0 0 

$C END DATA 

$YVAR Y $LINK L $ERROR P 

$FIT I*J + l*K + J*L + J*K + I*L + R*L $DISPLAY HOAR 

$FIT I*J + J*R + I*L + K*L $DISPLAY HOAR 

$FIT I*J + l*R + J*L + R*L $DISPLAY HOAR 
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$FIT I*J + I*K + J*L + J*K + I*L $DISPLAY MDAR 

$STOP 

$C TO FIT MODELS TO THE W-ARRAY : 

$ECHO 

$OUTPUT 3 

$UNITS 16 

$FACTOR R 2 S 2 K 2 L 2 

$CALC R=%GL (2 , 8) : S=%GL(2 ,4) : K=%GL(2,2) : L=%GL ( 2 , 1) 

$DATA W 

$READ 

6 0 0 0 5 1 1 2 5 1 1 2 2 2 2 0 

$C END DATA 

$YVAR W $ERROR P $LINK L 

$FIT R*S + R*K + S*L + S*K + R*L + K*L $DISPLAY MDAR 

$FIT R*S + S*K + R*L + K*L $DISPLAY MDAR 

$FIT R*S + R*K + S*L + K*L $DISPLAY MDAR 

$FIT R*S + R*K + S*L + S*K + R*L $DISPLAY MDAR 

$STOP 

An explanation of the commands follows. "ECHO" gets the com
mands entered onto the log of the computational session for review later. 
"OUTPUT 3" tells GLIM to write all results to a file called TAPE3 
(input and output instructions will vary with computer site). "UNITS 
x" tells GLIM the contingency table has x cells. "FACTOR" gives the 
variable name for each dimension of the table as well as the nnmber 
of levels the discrete variable takes. "CALC" forms the factors needed 
for modeling and tells GLIM which data point goes in which cell of the 
table. The commands: 

CALC I=%GL(G, G*C*C) : J=%GL(G, C*C) : K=%GL(C,C) : L=%GL(C , l ) 

are used when reading in the y- or w-array with the last subscript 
changing fastest. (Compare the y-arrays and the w-arrays shown earlier.) 

"DATA z " tells GLIM you are about to enter some data and you want 
that variable named z. "READ" then initiates the procedure and the 
data follow. There mnst be x numbers - the same number as in the units 
statement. "C" always denotes a comment ignored by GLIM. "YVAR 
q" tells GLIM the frequencies to be modeled are stored in the variable 
called q. "ERROR P" and "LINK L" are the commands signifying that 
GLIM should fit log-linear models. (Other error distributions and link 
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functions give GLIM great flexibility.) "FIT" specifies the model. The 
first of the four models gives the full PI model and the remaining three 
models will provide significance tests for alpha, beta, and reciprocity 
parameters, respectively. "STOP" ends the GLIM session. 

SPSSX Commands, The data file is called "MY DATA A" and 
it contains the relations as follows: 

0000000001111 . .  . 
Column of Data File : 1234567890123 . .  . 

Variable :  i j r s k I  

1 2 2 2  1 0 

2 1 2 2 0  1 

1 3 2 1 0 0  

3 1 1 2 0 0  

1 4 2  1 0 0  

4 1 1 2 0 0 

1 5 2  2 1 0 

5 1 2 2 0 1  

1 6 2 1 0 0  

6 1 1 2 0 0  

2 3 2  1 1 1 
3 2 1 2 1 1  

2 4 2 1 0 0  

4 2 1 2 0 0 

2 5 2 2 0  0 

5 2 2 2 0 0  

2 6 2 1 1 1  

6 2 1 2 1 1  

3 4 1  1 0 0  

4 3 1  1 0 0  

3 5 1 2 0 0  

5 3 2 1 0 0  

3 6 1  1 0 0  

6 3 1  1 0 0  

4 5 1 2 1 0 

5 4 2  1 0 1 

4 6 1  1 0 0  
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6 4 1 1 0 0  

5 6 2  1 1 ° 
6 5 1 2 0  1 

669 

To fit models to a y-array, use the following program file (called "RUN
JOB SPSSX A") :  

TITLE 'MY ANALYSIS' 

FILE HANDLE Al I NAME= 'MY DATA A '  

DATA LIST FILE=Al 

II 1 J 3 R 5 S 7 K 9 L 11 

HILOGLINEAR I J ( 1 , 6) K L ( 0 , 1) 

/PRINT = ALL ASSOCIATION 

IDESIGN I*J I*K J*L J*K I*L K*L 

IDESIGN I*J J*K I*L K*L 

IDESIGN I*J I*K J*L K*L 

IDESIGN I*J I*K J*L J*K I*L 

LOGLINEAR I J ( 1 , 6 ) K L ( 0 , 1 )  

/PRINT = ESTIM 

IDESIGN I J K L I BY J I BY K J BY L J BY K 

I BY L K BY L 

To fit models to a w-array, use these commands: 

TITLE 'MY W ANALYSIS' 

FILE HANDLE A2 / NAME = ' MY DATA A '  

DATA LIST FILE=A2 

II 1 J 3 R 5 S 7 K 9 L 11 

HILOGLINEAR R S ( 1 , 2) K L (0 , 1) 

IPRINT = ALL ASSOCIATION 

IDESIGN R*S R*K S*L S*K R*L K*L 

IDESIGN R*S S*K R*L K*L 

IDESIGN R*S R*K S*L K*L 

/DESIGN R*S R*K S*L S*K R*L 

LOGLINEAR R S ( 1 , 2) K L ( 0 , 1) 

IPRINT = ESTIM 

IDESIGN R S K L R BY S R BY K S BY L S BY K 

R BY L K BY L 

The commands "TITLE," "FILE HANDLE," and "DATA LIST" ini
tiate SPSSx and read in the data file. "HILOGLINEAR" generates 
hierarchical log-linear models and the fitting procedures. It is a fast 
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procedure, both for typing in compact model statements, and in terms 
of computational running time. However, it does not give estimated 
u-terms. "LOGLINEAR" is a slower and more cumbersome procedure, 
but it will calculate estimated u-terms for small networks. 

BMDP Commands. To fit models to a y-array (contained in a 

data file, like that needed for SPSSx) :  

IPROBLEM 

IINPUT 

IVARIABLE 

ITABLE 

IFIT 

IPRINT 

lEND 

TITLE IS ' MY ANALYSIS' . 

VARIABLES ARE 6 .  

CASES ARE 30 . 

FORMAT IS ' ( 1 1 , 512) ' .  

TABLE IS 6 , 6 , 2 , 2. 

NAMES ARE I , J , R, S , K , L .  

INDICES ARE L , K , J , I .  

MODEL IS I J , IK , JL , JK , IL,KL. 

MODEL IS IJ, JK , IL , KL . 

MODEL IS I J , IK , JL,  KL. 

MODEL IS I J , I K , JL , JK , IL .  

EXPECTED . LAMBDA. 

To fit models to a w-array, replace i's and j's with r's and s's in the 
statements "TABLE" and "FIT," and replace the 6's with 2's on the fifth 
line. 

BMDP outputs its fitted values in a somewhat awkward form. Rather 
than listing the fitted values as a column vector with the subscripts ijkl 
changing in the "last is fast" standard manner, BMDP creates L columns 
and then strings the subscripts kji in column vector format where the 
first subscript changes fastest. 

SYSTAT Commands. To fit models to a y-array, enter data in a 

file called "MYDAT" which resembles the input to SPSSx given above. 
Then, commands entered on a personal computer follow: 

SYSTAT 

TABLES 

USE MY. OAT 

TABULATE I*J*K*L 

MODEL I*J + I*K + J*L + J*K + I*L + K*L IFITTED , RESIDUALS 

MODEL I*J + J*K + I*L + K*L IFITTED , RESIDUALS 

K*L IFITTED , RESIDUALS 
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MODEL I*J + I_K + J-L + J*K + I*L /FITTEO , RESIDUALS 

QUIT 

QUIT 
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To fit models to a w-array, replace ;'s and j's with r's and s's. Unfortu
nately SYSTA T does not calculate estimates of u-terms. 

15.7.2 From Printouts to Parameters 

The values found in the printouts can be translated in simple ways to 
obtain estimates of the parameters of the models. We demonstrate here 
[or a and (afJ) u[ Ph and nule that the translation for fJ is analogous to 
that for cx. 

The table that follows contains some of the u-terms that SPSSx pro
duces from fitting Pl to the fabricated network of second-graders. 

K :  0 1 

I=1 *-0 . 707_ 0 . 707 

I=2 *-0. 408* 0 . 408 

I=3 * 0 .. 237* -0 . 237 

I=4 *-0. 098- 0 . 098 

I=5 * 0 . 488- -0 . 488 

I=6 0 . 488 -0 . 488 

Having named the actors variable "I" and the relation sent variable "K," 
the u-terms corresponding to the I K interaction are nsed to derive the 
ai(k). The key is to look at the subscripts. Becanse the I K margin is 
identical to the JL margin, the JL u-terms are also identical to the IK 
u-terms. (Similarly, just as the IL margin is equal to the JK margin, so 
are the JK and I L u-terms equal.) 

We have notated several of the values in the table above with asterisks 
to indicate those values that SPSSx actually prints. We filled in the 
remainder of the table by subtracting the estimates in a given row from 
0, since u-terms have the property that they sum to ° across all indices 
(or in all directions). 

The IK u-terms are translated to ai(k)'S by two simple steps. First, 
make all entries in the first column O. Second, for dichotomous relations, 
multiply all the entries in the second column by 2 (Wasserman and 
Weaver 1985). These simple steps will result in the alpha estimates we 
reported earlier. 
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When C, the number of levels of the relational variable, is greater than 
two, the translation is as follows, First, for each row, subtract the value 
in the first column from every column (this will result in the first column 
equaling 0 for all rows, upon completion, and the remaining columns will 
also have been altered), Second, center Columns 2 through C. 

For the reciprocity parameter, SPSSx calculated the estimated value 
as 0.769. The u-terms for this KL interaction can be written in a 2 x 2 
table, as follows : 

L=O L=1 

K=O 0 . 769 

K=1 -0 . 769 

-0. 769 

0 . 769 

To obtain the estimate of the model parameter (aP), place O's in the 
first row and column, and then multiply the value 0.769 in the (2, 2) cell 
by 4. This translation yields the parameter estimate for the reciprocity 
parameter reported earlier. 

For valued relations (C > 2), take the following steps. First, for all 
cells (k, 1) where k or 1 exceeds 2, subtract the value in the first column in 
row k, and subtract the value in the first row in column 1, and add back 
the value in the (1, 1) (upper leftmost) cell. After all cells for which k or 
I exceed 2 have been modified, simply change all the values in the first 
row and column to O. 

The translation is slightly different for users of GLIM. The estimated u
terms that are produced for the IK interaction are those in the following 
table: 

K=O 

1=1 0 

1=2 0 

1=3 0 

1=4 0 

1=5 0 

1=6 0 

K=1 

o 

-0 . 597 

- 1 . 888 

-1 . 217 

-2 . 391 

-2 . 391 

Notice that GLIM uses a constraint that the first row and the first 
column of any set of u-terms is defined to be O. We maintain the 
first column of O's, in accordance with standard model constraints, and 
we simply adjust the remaining columns. Thus, the second column 
in the table above needs to be "recentered." We compute the mean: 
« 0) + (-0.597) + (-1.888) + (-1.217) + (-2.391) + (-2.391))/6 = -1 .414, 
and subtract this value (-1.414) from each element in the second column, 
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to obtain the following estimates (which are the estimated a's reported 
earlier) : 

K=O K=1 

I=1 0 ( 0 - 1 . 414) 1 . 414 

I=2 0 (-0 . 597 - 1 .  414) 0 . 817 

1=3 0 (-1 . 888 - 1 . 414) -0 .474 

I=4 0 (- 1 . 2 17 - 1 .  414) 0 . 197 

I=5 0 (-2 . 391 - 1 . 414) -0 . 977 

I=6 0 (-2 . 391 - 1 . 414) -0 . 977 

When the relational variable is valued, the translation to obtain P's is 
the same as that to obtain a's. The first column remains 0, and all the 
remaining columns are recentered. 

Finally, we note that the constraints GLIM uses are exactly those 
we use for the (ap) parameters, whether the relation is dichotomous or 
valued. That is, GLIM will print the following estimated u-terms for the 
KL interaction: 

L=O L=1 

K=O 0 0 

K=1 0 3 . 077 

Clearly, no further adjustment is required. 
The standard errors of the model parameter estimates are also derived 

from slight adjustments of the standard errors of the u-terms. Drawing 
from Wasserman and Weaver (1985), the standard errors of the model 
parameter estimates for dichotomous relations are computed as follows: 

SE[&'(I)] = 2SE[U13(11)] 

S E [.8}(1)] = 2S E [U23(}1)] 

SE[(aPhd = 4SE[U34(1I)] 

15.8 Summary 

In this chapter, we began by presenting a model for one-mode network 
data that included effects for the expansiveness of sending actors, the 
popularity of receiving actors, and the reciprocity of the actors. We 
discussed models for dichotomous relations, and extended the models to 
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include general discrete, and ordinal data. We discussed how to model 
individual actors, and then showed how to model subsets of actors. Thus, 
we can focus on the dyadic interactions in a network, or we can model 
both the ties and the actor attributes. We also showed how we might 
model the patterns in the relational data without considering the actors at 
all. We briefly described some of the current research on extending these 
modeling procedures. We demonstrated most of these methods on several 
examples to give the reader a better understanding of the practice and 
interpretation of the models and methods. We also described analogous 
models and methods for two-mode networks. 

In the next chapter, we extend these models to multiple relations 
measured on a network. These multivariate models will allow testing 
somewhat different hypotheses about network structure. For example, 
many researchers have been interested in the problem of how one mea
sures the similarity between network representations (Hubert and Arabie 
1985; Hubert and Baker 1978; Katz and Powell 1953; Schultz and Hubert 
1976; Wasserman 1987). The conformity between two sociomatrices can 
be measured using a "symmetric" index (like a measure of association), 
which would answer questions such as, "How similar are these two social 
networks?" For example, we would expect the relations such as "like" 
and "dislike" to be negatiVely associated, but relations such as "like" 
and "respect" to be positively associated. Alternatively, conformity can 
be measured in an "asymmetric" way, such as with regression models, to 
address such questions as, "How well can we predict the structure in one 
network knowing the structure in another?" 



16 
Stochastic Blockmode1s and 
Goodness-of-Fit Indices 

As we noted in Chapter 10, the standard mathematical representation of 
a positional analysis frequently uses blockmodels to describe and study 
the equivalence classes (or positions) determined by a set of measured 
relations. Recall that a blockmodel consists of a partition of the actors 
in JV into positions and a statement of how the positions relate to each 
other. The adequacy of this construct can be studied with the methods 
presented in this chapter. We have also noted that these representations 
of equivalences can also be found by using hierarchical clustering and 
multidimensional scaling. 

A researcher must determine how well a blockmodel, or another math
ematical representation of the positions among the actors, "fits" a given 
network data set. Such tasks are usually called goodness-of-fit problems 
in statistics, and we will present several goodness-of-fit indices here, all 
of which are designed to measure the fit of a blockmodel to a given 
network data set. 

There have been two main approaches to this goodness-of-fit task in the 
literature. The first uses a standard data analytic technique of comparing 
the observed data set (in this case, the R sociomatrices Xl, X2, . . .  , XR) to 
the predicted data set, which is based on the blockmodel to be evaluated. 
A number of measures for this comparison have been presented in the 
literature; here, we discuss several of them. Unfortunately, there is little 
consensus or agreement on such statistics. The second approach is more 
statistical and model-based. One can first assume that one of the dyadic 
interaction models, described in the preceding chapter, is operating, and 
then postulate a stochastic blockmodel. This strategy then allows one to 
conduct likelihood-based, statistical tests for goodness-of-fit. Here, we 
will discuss these two approaches. 

675 
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The primary difference between these two approaches lies at the center 
of positional analyses. The definitions of equivalence and the algo
rithms commonly used to find a blockmodel make no use of statistical 
theory. Positional analyses are not statistical methods. This limitation 
prevents standard, parametric (that is, based on a specific parameter
ized family of probability distributions) statistical tests and measures 
from being used to determine directly how well a blockmodel fits a 
data set. (Some researchers commonly use blockmodel representations 
of network data to summarize statistically other aspects of a network 
data set; however, unless the blockmodel representation is independent 
of these other aspects, any statistical tests will not have accurate er
ror rates. Specifically, it is not proper to use relational data to find 
a blockmodel representation, and then test this same representation on 
that data set.) If statistical tests are desired in a network analysis, we 
recommend the use of statistical methods from the beginning of the 
analysis. Such methods, as described in this chapter, can be used to find 
partitions of actors, and lead to proper statistical tests and measures of 
goodness-of-fit. 

Yet another approach centers on the evaluation of a particular po
sitional analysis technique using standard data sets. Such evaluative 
strategies are recommended by Everett and Borgatti ( 1990), who suggest 
several such examples. The idea here is to choose methods based on how 
they perform in practice. We, too, advocate such an approach, but until 
such data sets become standardized and their use routinized, a more 
quantitative evaluative approach is needed. 

There is a compromise between parametric statistical models and the 
positional analyses described in earlier chapters. Nonparametric tests 
can be used to test specific hypotheses. Some methodologists, such as 
Hubert and Schultz (1976), Hubert and Baker ( 1978), Arabie, Boorman, 
and Leavitt (1978), Baker and Hubert (1981), Panning (1982a), and 
Noma and Smith (1985a), propose the use of the common nonparametric 
randomization test in which all possible ways of placing g objects (or 
actors) into B cells (or blockmodel positions) are considered. For each 
"way" or permutation of the data, an index can be computed, comparing 
the particular permutation to the blockmodel "prediction." An index is 
then computed, measuring how close each permutation of the data is to 
the prediction (or in general, a "hypothesis" matrix), thus generating an 
entire distribution of indices (called the permutation distribution). One 
of these permutations is the observed blockmodel or partition, actually 
derived from the relational data. 
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A permutatiou test of how well the predicted blockmodel or hypothesis 
fits the data is conducted simply by determining the fraction of the 
permutations that fit worse than the one actually observed (that is, 
the fraction of permutations that have indices indicating fits that are 
worse). The p-value for the test is this fraction, which is easily read 
from the permutation distribution as the tail probability beyond the 
index calculated for the observed blockmodel. We will illustrate this 
common type of nonparametric test in this chapter. This approach to 
data analysis, sometimes referred to as combinatorial data analysis (see 
Hubert and Schultz 1976; Hubert 1983, 1985, 1987; and Hubert and 
Arabie 1989), is quite similar to the approach to "testing" or evaluating 
b10ckmodels advocated by White, Boorman, and Breiger (1976) and 
White (1977), which is implemented by the BLOCKER algorithm of 
Heil and White (1976) (as mentioned in Chapter 9). Further, since 
permutation tests are nonparametric (that is, they make no assumptions 
about underlying distributions for the data), they can be used in a very 
wide range of network data analysis situations. Network researchers 
such as Laumann, Verbrugge, and Pappi ( 1974), Laumann, Marsden, 
and Galaskiewicz (1977), and Krackhardt (1987b, 1988) have questioned 
the use of standard significance tests for the comparison of networks (see 
also Faust and Romney 1985b). Permutation tests are a nice response 
to these concerns. We comment on, and illustrate this approach in this 
chapter. 

The second approach, as mentioned, is based on statistical theory for 
social network data. This idea uses a statistical or stochastic blockmodel 
to represent mathematically the equivalence classes defined on the ac
tors. A stochastic blockmodel is a direct generalization of the Pl class of 
probability models for social networks described in detail in the previous 
chapter. This approach was introduced by Holland, Laskey, and Lein
hardt (1983) and Wasserman and Anderson (1987), and generalized by 
Breiger (1981b), Frank, Hallinan, and Nowicki (1985), Frank, Komanska, 
and Widaman (1985), and Wang and Wong (1987). 

Stochastic blockmodels use a different definition of equivalence. Specif
ically, they are based on stochastic equivalence. In brief, one first aSsumes 
a random directed graph distribution, such as Ph and then focuses on 
the actor parameters. Two actors are stochastically equivalent, if we can 
interchange their parameters, without changing any of the probabilities 
of the distribution. Clearly, this approach is useful if a researcher is will
ing to assume that his or her data have been generated by a stochastic 
process ; further, the task is simplified if he or she is willing to adopt 
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PI for this stochastic mechanism. As we have mentioned, it is rela
tively easy to assess how well a stochastic blockmodel "fits" a data set, 
since goodness-of-fit statistics are a natural by-product of the statistical 
modeling process. We discuss this approach in a later section of this 
chapter. 

We begin with a very brief review of structural equivalence and block
models, and then introduce several goodness-of-fit indices for the fit of 
a blockmodel to a network data set. These goodness-of-fit indices are 
not based on PI but, rather, simply compare the fit of data to a postu
lated positional representation. After this, we will introduce stochastic 
equivalence and stochastic blockmodels, and describe a class of statistical 
tests (and associated test or goodness-of-fit statistics) for null hypotheses 
concerning the partitioning of actors into stochastic equivalence classes. 
This methodology will be illustrated on the countries trade network. 

16.1 Evaluating Blockmodels 

We now consider how to evaluate blockmodel representations without 
using any statistical models ; this restriction will be relaxed later in this 
chapter. We assume that we have a collection of R dichotomous relations. 
This restriction to dichotomous data will be relaxed later in this section. 
We are not interested here in compounding any of these simple relations. 
We define any two actors i and j to be structurally equivalent by first 
considering all other actors k, not equal to i or j, within the set of actors. 
If i and j have the same ties to and from all the other actors, for all 
R relations, then actors i and j are said to be structurally equivalent. 
Mathematically, 

Definition 16.1 Actors i and j are structurally equivalent if i ::. k 

if and only if j ::. k. and k ::. i if and only if k ::. j. for all actors. 
k = 1,2, . . . , g. distinct from i and j. and relations. r = 1, 2, . . .  , R. 

This definition of equivalence generates a collection of equivalence 
classes among the g actors in the network. We can partition the actors 
into classes exhaustively and mutually exclusively; that is, there is one 
and only one class for each actor, and all actors are classified We have 
labeled these classes �b ([42, . . .  , &lB. It is customary in the blockmodeling 
literature to refer to these classes as pOSitions. 

Researchers usually assume some form of approximate structural 
equivalence in order to partition actors into positions or classes of similar 
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actors. Thus, actors within a specific position are usually approximately 
structurally equivalent, such that they relate to and are related to by 
many, but not alL of the other actors outside the position in the same 
ways. 

We can consider the pattern of these relations by using a reduced 
graph, with just B "nodal positions," representing the positions, rather 
than the actors. This reduced graph is then used as a solution for the 
representation of relations among approximately structurally equivalent 
actors within the positions. With perfect structural equivalence, if all 
actors in i?$k relate to all actors in i?$/, then there is a line in the 
reduced graph from nodal position i?$k to nodal position i?$l. The reduced 
graph generates a single sociomatrix, defined on B nodal positions, 
for each of the measured R relations. The sociomatrix for a specific 
relation is referred to as an image matrix, and is of size B x B. We 
call the entire set of image matrices (one per relation), along with 
a description (or a mapping function) of which actors are assigned to 
which position, a blockmodd. A blockmodel is one way of representing the 
structural equivalences of actors and ties among and between structurally 
equivalent positions or classes (see Boorman and Levitt 1983a, 1983b). It 
is important to remember that a blockmodel is an ideal, since the actors 
rarely are exactly structurally equivalent. 

When approximate definitions or relaxations of structural equivalence 
are used to identify positions, a rule for deciding whether a tie exists 
between positions must be used. With such rules, it is still possible 
to find image matrices and blockmodels. The approximate nature of 
many positional analyses is the source of the problem tackled in this 
chapter. If structural equivalence was always perfect, blockmodels would 
fit perfectly, and there would be no need for measures of fit. 

16.1.1 Goodness-ol-Fit Statistics for Blockmodels 

Consider a specific blockmodel, consisting of a collection of R image 
matrices. The collection of image matrices is a B x B x R matrix, 
labeled B, whose entries (sometimes called blocks or bonds, and denoted 
by {bkl,}) tell how actors in one position tend to relate to actors in other 
positions on the various relations. This blockmodel B presents all the 
ties among positions of approximately eqnivalent actors. The quantity 
bkl, equals 0 if there is not (or 1 if there is) a linkage (in the reduced 
graph, representing the blockmodel) from position i?$k to position i?$l on 
relation &t,. A blockmodel also contains a mapping function defined 
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on the actors (which we call ¢(e» which tells which position each actor 
belongs to. We will use this mapping function, as well as B, in this 
section. 

As we have mentioned, one can view this blockmodel as an idealization, 
or an optimal model, in which actors in a specific position are predicted 
to be perfectly structurally equivalent. The truth, in practice, is lhat actors 
in a position are only approximately structurally equivalent. Actual data 
rarely enable us to find exact structural equivalences. Nonetheless, we 
usually like to see how close to the ideal the actors actually are; in other 
words, how approximate are our approximate structural equivalences. 
If the optimal model holds, then all actors in a position are exactly 
structurally equivalent actors and will behave in exactly the same way. 
The purpose of this chapter is to present methods for such studies. 

Suppose we permute the original sociomatrices, so that the order of the 
actors matches the assignment of actors to positions, and then consider 
the submatrices that arise due to the partitioning of the g actors into B 
positions. All of the actors with the same value of the mapping function 
1> will be placed into the same actor subset (that is, assigned to the same 
position). The first gl rows and columns of the permuted matrix will 
contain aU the actors with 1>(i) = 1, the next gz rows and columns will 
contain all the actors with 1>(i) = 2, and so forth. Each submatrix, which, 
in general, will be of dimension gk x g{, will have a density measured 
on a scale between 0 and 1, which equals the proportion of ties that 
actually are present between actors. If all actors are perfectly structurally 
equivalent, this density will be either 0 or 1, as specified (or predicted) 
by the blockmodel (which always has an image matrix full of only O's 
and l's). The entire set of densities can then be compared to the blocks, 
or entries in the image matrices, which are only O's or l's, to determine 
how well a blockmodel fits (that is, how close to optimal the blockmodel 
really is). 

If all the densities are O's and I's, the blockmodel fits perfectly, since 
the actors within the positions are exactly structurally equivalent. In 
this instance, all blockmodel criteria (including fat fits, lean fits, and 
o:-blockmodels) yield exactly the same B. But rarely is this the case. 
To evaluate the fit of a blockmodel, we need methods and measures to 
compare the image matrices with the matrices of densities. 

Alternatively, one can compare the original sociomatrices, which gen
erate the image matrices, to their "predictions" under the blockmodel. 
Let us assume that actor i is in position 1iJk and actor j is in position 1iJ,. 
The predicted value for the tie (on f{,) from actor i to actor j is equal to 
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the link in the reduced graph from position iJiJk to position !!iJ,• If this link 
is present, the predicted value is unity, then all the structurally equivalent 
actors in iJiJk are predicted to interact with all the structurally equivalent 
actors in position iJiJ,; otherwise, if the arc is not present, the predicted 
value is O. In this section, we discuss how to do these comparisons in 
order to evaluate how well a blockmodel fits a specific network data set. 

Comparing Observed Densities to a Target BlockmodeI. The el
ements in the observed sociomatrices are usually aggregated across posi
tions to yield the densities of ties within each of the blocks. The density 
of ties within block bk/, (for k i= I) is defined as 

(16.1) 

for k = 1,2, . . .  , B, 1 =  1, 2, . . . , B, and r = 1,2, . . .  , R. If k = I, so that we 
are considering the densities of ties from a position to itself, we calculate 

A L:iE@k L::jE.1Jk Xijr 
Llkkr = 

gk(gk - 1) , 
(16.2) 

since an actor is not allowed to choose itself (this is true in general; but 
see Chapter 10 for extensions). The most basic goodness-of-fit index for 
a blockmodel simply compares these densities, which can be viewed as 
elements of a B x B x R matrix, tl, to the blocks, or elements of the 
blockmodel B. The matrix tl is the density table discussed in Chapters 9 
and 10. Clearly the comparison of these two matrices, B alld tl, ignores 
which actors are in which blocks; indeed, all that matters here is how 
well the image matrix (without the mapping function) models the overall 
behavior of the approximately structurally equivalent actors in the B 
positions (as reflected by the densities). Only when all the densities are 0 
or 1, can a blockmodel fit perfectly. 

Thus, one measure of how well a blockmodel fits a data set can be 
based on the differences between the elements of d, and the elements 
of B. If the blockmodel is constructed using the lean fit criterion, then 
a bk/, = 0 only when the corresponding density dk/, = O. Thus, any 
submatrices with l's become oneblocks. Lean fits are somtimes called 
"zeroblock" fits, since only zeroblocks are fit perfectly. A "oneblock" fit 
is the opposite of a lean fit: bk/, = 1 only when the corresponding density 
dk/, = 1. If the blockmodcl is a fat fit, then the fit is a combination of 
a zeroblock and a oneblock fit:  a bk/, = 0 only when the corresponding 
density dkl, = 0, and a bkl, = 1 only when the corresponding density 
dkl, = 1. Clearly, fat fits are perfect structural equivalence fits. They fit 
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exactly only when all actors are exactly structurally equivalent. We note 
that for a lean fit, bk/, = 1 does not imply that the corresponding density 
Ilkl' is actually 1 ;  in fact, the density only needs to be greater than O. 
And for a one block fit, bkl, = 0 does not imply that the corresponding 
density Ilkl' = 0; the density just needs to be less than unity. These very 
strict definitions usually force most researchers to construct blockmode1s 

using the more realistic a-fit criterion. Regardless of the criterion chosen, 
it is rare for densities to be only O's and 1's, so that the b's, which, by 
definition, can only be O's and 1's, will rarely equal the Il's. 

A very simple goodness-of-fit index is the sum of the absolute differ
ences between the elements of !J. and the elements of B. Specifically, we 
calculate 

R B B 

ObI = 2: 2: � )bkl' - Ilkl,\ ' 
r=l k=l 1=1 

(16.3) 

This index, which varies from 0 to B x B x R = RB2 (the number 
of entries in B), attaiuing the maximum if the fitted blockmodel is 
completely reversed (O's instead of l's and l's instead of O's) from the 
observed densities, is a crude indicator of fit. The smaller it is, the better 
the fit. 

Another measure originated with Carrington, Reil, and Berkowitz 
(1979), and Carrington and Reil (1981). Their index is constructed using 
a maximum chi-squared argument, and by considering the worst possible 
fitting blockmodel for a particular data set. Such a fit would have l's 
where O's belong, and vice versa. Such a fit arises when the blockmodel 
is constructed from a "reverse" a-fit criterion. The worst possible a-fit 
arises when the observed density for a given block is exactly equal to a, 
since a slight change in the density necessitates that the "fitted" block 
value be changed from a 0 to a 1, or vice versa. The "goodness-of-fit" 
for a particular block then depends simply on how close Ilkl' is to a. A 
comparison of the densities to this "worst possible fit" will generate the 
largest possible goodness-of-fit index. 

We first derive the Carrington-Reil-Berkowitz index for a single rela
tion. Define gk as the number of actors partitioned/assigned to position 

iJBko and gkl as the number of possible choices that can be made by actors 
in f!4k of actors in f!4/. We have 

if k i'd 
if k = l. 

(16.4) 
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We must also define a quantity, which varies from block to block, and 
depends on whether the block is a zeroblock (that is, if the density of 
the block is less than the prespecified a). This quantity, tkl, is used in the 
formula for the goodness-of-fit measure, and is defined as: { I if t.kl < a  tkl = l-:;ct h 

. 
• ot erWIse. 

(16.5) 

Summing across blocks, and using the Carrington-Heil-Berkowitz maxi
mum chi-squared statistic reasoning, yields their index 

bb2 = t t { [(t.kl - a)'gktl } 
k�I I�I [(atklj2g(g - 1)] 

. (16.6) 

This index is a bit difficult to interpret; a simpler version appears below. 
Note, however, that tkl is multiplied by a, so that the product of the 
two equals a when the density of a block is less than or equal to a, and 
(1 - a), when the density exceeds iX. These two values are those that lead 
to the "worst-possible" fit, as mentioned above, and are the weights one 
needs to apply to the numerator quantity, t.kl - '" in order to calculate 
how well a blockmodel fits a data set. Carrington, Hei!, and Berkowitz 
(1979) label this index b. We call it 0, our generic label for goodness-of-fit 
indices. 

The index can be modified if the diagonal of the sociomatrix is not 
undefined, or if other entries in the sociomatrix are undefined, Or struc
turally zero. The index Ob' can be interpreted as a weighted sum of 
squared deviations from the worst possible fit, normalized using the 
largest possible deviations (the weights are, as mentioned, iXtkd. The 
index also distinguishes between the two possible types of blocks in an 
image matrix in its calculation. 

Fortunately, there is a considerably easier formula for bb2' If we define 

then 

Okl gklt.kl = number of I's in the (k, l)th block 

o� gkla = expected number of l's in the (k,l)th block 

o _ I � � { [(Okl - °kl)'] } b' - [g(g _ 1 )a] t:t B. [okl(tkl)'] , (16.7) 

which compares the observed to the expected number of l's across all 
blocks. This formula looks very much like a chi-squared statistic for 
testing goodness-of-fit of the observed counts in the cells to the expected 
counts. 
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It is easy to extend this index to multiple relations. We subscript 0 
and t, with a third subscript, r, which takes on values indicating which 
relation is being considered. If a single a is used for all image matrices 
across all relations, then we define Ikl' as 

so that 

if i'!.kl, < a 
otherwise 

(16.8) 

(16.9) 

One CQuld, however, use a different CI. for each relation, such as the 
densities for the sociomatrices associated with each relation. This gen
erates a blockmodel termed a ll-fit blockmodel by Carrington, Heil, and 
Berkowitz (1979). In this instance, we have aI , a2, . . .  , aR, and we define 

if Aklr < Ct., 
otherwise 

(16.10) 

and 0kl, = gkla, as the expected number of l's in the (k, /)th block for the 
rth relation. Then, the mUltiple relation generalization of equation (16.7) 
allowing for unequal a's is 

Db2 = � t 1 t t { [(Okl' - OkIY] } R ,�I [g(g - l)a,] k�1 I�I [okl,(lkl,)'] . (16. 1 1 )  

Evaluating Dbl and Db2 i s  difficult. There is no statistical theory or 
distribution for the indices. One conld use a permutation test, permuting 
the actors to arrive at a different assignment of actors to positions, and 
hence, an entire collection of A matrices. There will be one A, and hence 
one Dbl and Db2, for every possible permutation of actors to positions. We 
have found that permutation tests are quite useful. Some of these tests 
are implemented in UCINET. However, the indices routinely calculated 
by UCINET are based not on the i'!.'s, but on the original sociomatrix 
entries. This package does not directly calculate many of the measures 
discussed in this chapter. 

The methodology just discussed examines blocks, and the properties 
of blocks, and ignores the ties between the actors. As mentioned, it is 
also not statistical in nature. We now turn to the second approach to 
blockmodel goodness-of-fit, comparing the actual observed data to the 
ties between the individual actors, as predicted by a blockmodel. This 
second approach is quite amenable to permutation tests. 
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Comparing Observed Relational Linkages to a Target Block
model. Take the observed sociomatrices, with entries Xij" and use the 
mapping function for the blockmodel under consideration to arrive at 
the target, or "predicted," collection of ties for each pair of actors on each 
relation. The blockmodel classifies actor i into position !?6¢(i)' and actor 
j into position Bi1¢(j), and the image matrix tdl� whether tie1:i are present 
among and between positions. So, the "target" matrix is a hypothesized 
sociomatrix in which all actors in a position have indentical ties to and 
from actors in other positions. Thus, the predicted value for Xij, is 

(t) b xijr = ¢(i)¢(j)r, (16.12) 

indicating whether the actors in the same position as i (!?6<1U) are predicted 
by the blockmodel to have ties to the actors in the same position as j 
(!?6<1(j) . We can view the x(t)'s as elements of a target array, to which 
we compare the x's, the actual sociomatrix entries. The superscript (t) 
indicates that the matrix (or its entries) is the "target" matrix, calculated 
from the blockmodel. This target matrix is actually a hypothesis matrix, 
which is to be compared to the observed sociomatrix, and subsequently 
evaluated. We should note that this methodology is quite flexible, and can 
be used to compare X to any "hypothesis" matrix, even if the target or 
hypothesis matrix X(t) is not generated from any particular blockrnodel. 

A number of goodness-of-fit indices exist for quantifying how close the 
observed x is to the target xit). Each index measures the similarity (or 
dissimilarity) of the target and the actual relational data. The index of 
choice depends on the advantages and disadvantages of each. We should 
note that there is no parametric statistical theory for any of them, but all 
can be evaluated using a nonparametric, randomization test approach. 

For example, we can calculate the sum of the absolute differences 
between the entries of the observed and target matrices: 

R g g 
.5x1 = LL 2>ij, -xg�l. 

r=1 j=l j=l 
(16.13) 

The value of .5x1 is the number of entries in the observed sociomatrix x 
that are not indentical to their predicted values in the target sociomatrix 
X(I). It is thus a measure of dissimilarity between the two matrices. This 
measure oxt. comparing a sociomatrix to a target matrix, is a simple 
function of the measure .5bl: 

.5x1 = R x g x (g - 1).5b1. 
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A second index for comparing a sociomatrix to a target matrix is 
the match coefficient, used iu UCINET IV. This quantity, which we will 
denote by Ox2, is closely related to Oxl . The match coefficient is the 
proportion of ties in x that are identical to x(t). Specifically, 

"R "g "g I (t) I 
, _ 1 6r=1 wi=l L...Jj=l xijr - xUr 
Ux2 - - . 

R x g x (g - I) 
(16.14) 

This index is a similarity measure, so that large values indicate a closer 
fit between the observed data and the predicted target. 

Yet another index is the matrix correlation, calculated using all the 
elements in x and all the elements in x(t) (excluding diagonal elements if 
necessary) : 

(16.15) 

where the x" s and the x(t).,s are mean deviations; that is, they equal 
the differences of the x's from their overall mean, and the x(t),s from 
their overall mean, respectively. We note that all of these o's can include 
diagonal entries in their sums, if such entries are defined. 

This matrix correlation index Ox3, since all the data values are dichoto
mous, can be calculated more simply, as demonstrated by Hubert and 
Baker (1978) for R=1. Specifically, we define 

0",,'" number of entries that equal I in both x and x(t) 
Ox = number of entries in x that equal I 

ox'" = number of entries in x(t) that equal 1 

Zx number of entries in x that equal 0 

Zx'" number of entries in x(t) that equal O. 

Then, one can calculate 

'x3 _- g(g - 1)0;0;(1) - OXOX(I)
. u (16.16) 

,JOXOX(I)ZxZX(O 

The index, Ox3, used by many researchers over the years (see Arabie, 
Boorman, and Levitt 1978) was labeled reX, X(I» by Hubert and Baker. 
As noted above, one can calculate bx3 for any target or hypothesis matrix, 
and use it to evaluate the "hypothesis" that generated that particular x(n. 

Panning (1982a) and Noma and Smith (1985a) recommend the use of 
the squared "multiple correlation coefficient R2 for comparisons of x and 
x(t). These authors argue for the use of R2 as a goodness-of-fit measure 
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to evaluate the fit of a blockmodel to data, and show how to Use the 
statistic to find a "best-filting" blockmodel. They note that the predicted 
value for a specific submatrix from the original sociomatrices is either 
a ° or a I, and that the sum of squares of deviations of the entries in 
the submatrix from this predicted value can be used as a measure of fit 
From the sums of squares for all submatrices or blocks, one can calculate 
both a within-block sum of squares and a sum of squares deviation from 
the grand mean (analogous to within-subjects and total sums of squares 
in a one-way analysis of variance). The index R2 is simply the ratio of 
these two sums of squares, subtracted from unity. The within-block or 
numerator sum of squares is the "total unexplained sum of squares," and 
the measure increases as this quantity becomes small, relative to the total 
(or denominator) sum of squares. Illustrations of the use of this index 
can be found in Panning (1982a, 1982b), and Noma and Smith (1985a). 
Calculations are detailed by Panning (1982a). 

The utility of this index rests on an argument that blockmodeling is 
actually a form of an analysis of variance, in which the "independent" 
variables are the block densities, and the "dependent" variables are the 
observed entries within the sociomatrices. Hence, an "optimal" blocking 
should maximize the percent of explained variance, and lead a researcher 
to focus on R2, the statistic that has this property. Panning (1982a) gives 
a strategy for finding blockmodels that have maximal R2'S. We note that 
one can generate a permutation distribution for this index (see Noma 
and Smith 1985a) simply by considering all possible permutations of the 
actors to positions, and calculating R2 for each permutation. This leads 
to a valid, nonparametric statistical test for the goodness of an observed 
fit The index is also easily used for multiple relation network data sets. 

However, as several authors have noted, neither Ox3 and R2 is well
suited for dichotomous data, and thus, not recommended. Carrington, 
Heil, and Berkowitz (1979) cominent on the suitability of the use of 
correlation coefficients to compare two binary matrices. Fausl and Rom
ney (1985a) also comment on the use of correlation coefficients used to 
compare ties. The main problem with Ox3 and R2 is that correlation 
coefficients are "designed" for continuous variables, where they measure 
the linear association between a pair of variables. This certainly is not 
the situation here. 

Hubert and Baker (1978) show that for R - I, the expected value of 
Ox3 is 0, where the distribution is taken over all possible permutation 
assignments of the actors into the prespecified number of positions, B, 
and compute the variance of this index. These two results lead nicely to 
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a permutation test which yields the significance level (or p-value) of the 
observed Oxl' A good illustration of this approach is given by Baker and 
Hubert (1981). The advantages of this approach are discussed by Arabie, 
Boorman, and Levitt (1978). 

One (large) disadvantage of this index is that these results of Hubert 
and Baker have not been extended to multiple relations, R > 1 .  Further, 
as noted by Arabie, Boorman, and Levitt (1978), lean fits and their filled
in oneblocks are usually a "poor assumption" about underlying social 
structure. Thus, indices built around them may not be very accurate. 

Other measures of association, comparing x to x(t), can be found 
in Katz and Powell (1953), Hubert and Baker (1978), Zegers and ten 
Berge (1985), and Wasserman (1987). Some of them are implemented in 
UCINET. Carrington, Heil, and Berkowitz's (1979) measure, Oh2, also falls 
into this category, since it can be written as a function of the observed 
data, rather than the observed densities (compare equations (16.6) and 
( 16.7)). For R = 1 ,  one can view this problem as a birelational network 
analysis, where the two relations are the observed and the target. In 
this setting, multivariate statistical models are appropriate; Wasserman 
(1987) shows how to compare an observed to a target sociomatrix using 
dyadic interaction statistical models. 

Zegers and ten Berge (1985) suggest a coefficient oj identity, defined as 

2 L�=l L:r=l L:J=l XiJrX�;� 
bx4 = "R "g "g 2 (t)2 ' 

0r=1 L..... i=l �j=l [Xjjr + Xijr ] 
(16.17) 

where the x's and the x(t)'s are not mean deviations (unlike the calculation 
for matrix correlation, equation (16.15)). This index is designed for 
variables measured on absolute scales (see Suppes and Zinnes 1963; 
Krantz, Luce, Suppes, and Tversky 1971). Data measured on an absolute 
scale do not remain invariant under any type of transformation, which 
is certainly true for dichotomous relational data. The bx4 index measures 
how identical the two matrices are. Once again, there is no parametric 
statistical theory for this index. 

16.1.2 Structurally Based Blockmodels and Permutation Tests 

It should not be surprising to find that ties predicted by a blockmodel 
are extremely similar to the observed ties. After all, blockmodels are 
constructed from the ties in the first place. In an exploratory study, 
the researcher often seeks the "best" blockmodel of a given data set 
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In such a case, if a permutation test shows that there are one or more 
assignments of actors to positions that yield a better match between the 
observed data and the target blockmodel, then the researcher might be 
interested in studying these better assignments of actors to positions. 
This strategy of assigning actors to positions in order to optimize an 
objective function (such as maximizing OX2 or Ox3), is a promising way 
to construct blockmodels. This direct construction of blockmodels has 
received considerable attention recently (Arabie, Hubert, and Schleuter
mann 1990; Batagelj, Ferligoj, and Doreian 1992; Batagelj, Doreian, and 
Ferligoj 1992). 

Permutation tests can also be used to compare ties to entries of 
target matrices postulated by some theoretical stnlctures. There are a 
variety of blockmodel image matrices for some theoretically important 
structures, such as cohesive subgroups, transitivity, and center-periphery. 
We illustrate a test of such theoretical structures shortly. 

16.1.3 An Example 

Turn now to the countries trades data set, and consider the evaluation 
of the blockmodels for these data first presented in Chapter 9. We 
used three of the relations (manufactured goods, raw or crude materials 
excluding fuel, and diplomatic exchange) to construct a blockmodel. 
The blockmodel had B = 6 positions, and the density tables (one for 
each relation) are given in Table 10.4. We note that this blockmodel is 
based on structural equivalence and correlation coefficients, using both 
rows and columns of the three sociomatrices. The densities of the three 
sociomatrices are 0.562, 0.556, and 0.668, respectively. The blockmodels 
are ",-blockmodels, with these unique densities for each relation. The 
image matrices are given in Figure 10.5. 

Comparing Densities to Blockmodels. For the countries trade 
network, we calculated the indices designed to compare observed density 
tables to blockmodels. The values of these indices are given in Table 16.1. 
As can be seen, the blockmodels fit the observed density matrices mod
erately well, and about the same overall. The fits are not spectacular, 
however. 

Comparing Ties to Target Sociomatrices, We also calculated the 
indices designed to compare the actual ties to the target sociomatrices 
based on blockmodels. The values of the three ax indices designed for 



690 Stochastic Blockmodels and Guodness-oj-Fit Indices 

Table \6.1. Comparison of density matrices to target blockmodels -

countries trade example 

Index 
Relation 0" Ob2 

Manufactured goods 5.055 0.575 

Crude materials 6.986 0.433 

Diplomatic ties 6.766 0.490 

All three relations 18.807 0.499 

this purpose are given in Table 16.2. All of these goodness-of-fit indices 
indicate that the sociomatrices are rather close to their target model 

matrices. 
We evaluated the match coefficient 0" (equation (16.14)) and the 

matrix correlation index Ox3 (equation (16.15)) using permutation tests 
to compare the actual ties coded in the sociomatrices x to the target 

sociomatrices xl'). Calculations were done using UCINET. We tested two 
null hypotheses for each of the three relations studied: 

HOI: 0x2 = 0 

and 

H02 : Ox3 = 0 

versus alternative hypotheses that these indices are not zero. For these 
tests, we obtained 1000 permutations of the rows (and simultaneously, 

the columns) of the sociomatrix. Table \6.2 reports the calculated values 

of the match coefficient and the matrix correlation for the example. We 
also report the fraction of permutations out of 1000 in which the value 
of Ox, or Ox3 was greater than the actual, observed value of the index. 
These fractions, given in parentheses below the values of the indices, are 

nonparametric p-values for their respective null hypotheses. 
These permutation tests indicate that the ties predicted by the block

model image matrices (including the assignment of actors to positions, 
and the statements specifying the presence or absence of ties between 

positions) are closer to the observed values of the relation than to any 

other assignment of actors to positions. So, for the countries trade exam
ple, the hlockmodel image matrices are good representations of the ties 
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Table 16.2. Comparison oj ties to target sociomatrices - countries trade 
example 

Index 
Relation (jxl Qx2 Ox3 3" 

Manufactured goods 86 0.844 0.687 0.858 
(0.000) (0.000) 

Crude materials 1 1 1  0.799 0.593 0.819 
(0.000) (0.000) 

Diplomatic ties 1 12 0.797 0.581 0.838 
(0.000) (0.000) 

among countries. Clearly, the indices are not 0, and there are no "null" 
associations between data and model fits. 

Other Analyses and Tests. One can evaluate how well a specific 
theoretical structure represents a given set of network data by construct
ing a target sociomatrix, x(t), from the hypothesized theoretical structure. 

Constructing the target sociomatrix, x(t), requires several steps. The 
first step is to partition actors into positions. This partition could be 
the result of a positional analysis in which approximately equivalent 
actors are assigned to the same position (for example, using hierarchical 
clustering or CONCOR). The second step is to specify, for each pair 
of positions, whether a tie is present or absent. For some structures, 
such as cohesive subgroups, this decision is straightforward, since in a 
cohesive subgroup structure, ties are hypothesized only within, and not 
between, positions. However, for other structures, such as a hierarchy, 
or a center-periphery structure, the hypothesized presence or absence of 
a tie between positions depends on where the positions are "located" 
in the structure. For example, in a hierarchy, ties are directed from 
"lower" positions to "higher" positions. Thus, the order of positions in 
the blockmodel is important. One way to arrive at an ordering is to 
consider theoretically important attributes of actors in the positions. For 
example, one could hypothesize that ties of advice in a blockmodel of 
an organization form a transitive system in which ties are directed from 
each position to all positions whose members have, on average, longer 
tenure in the organization. Thus, the positions would be ordered by the 
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average tenure of members. Finally, the target sociomatrix is constructed, 
as usual, using equation (16.12). 

Let us now turn to our example to illustrate the evaluation of theo
retical structures. Numerous authors have hypothesized that the world 
political and economic system is a center-periphery structure, in which 
more developed nations occupy central pu�itioIlS, and less-developed na
tions occupy peripheral positions. In the countries trade network, we 
have already ordered the positions from most central, 881, to least cen
tral, 886, based on the three image matrices presented in Figure 10.5. 
This ordering also appears to correspond well to the attributes of the 
positions, presented in Table 10.2. 

A permutation test can be used to compare the target sociomatrix 
based on a center-periphery structure with the observed ties for the 
three studied relations in the countries trade example. The theoretical 
blockmodel image for a center-periphery structure was constructed with 
B = 6 positions, with oneblocks in the upper left triangle of the image 
matrix. The target sociomatrix for this image matrix was then compared 
to each of the three relations. For the manufactured goods relation, the 
matrix correlation Ox3 = 0.536, and the match coefficient Ox, = 0.772; 
these values are the largest out of 1000 permutations. For the crude 
materials relation, 03 = 0.513, and 0, = 0.759; both are largest out of 
1000 permutations. Finally, for the diplomatic ties relation, 03 = 0.532, 
and 0, = 0.792; both are the largest out of 1000 permutations. So, 
this assignment of countries to positions, and this ordering of positions, 
matches a center-periphery structure quite well. 

The countries trade example seems to be consistent with a center
periphery structure, as confirmed by the permutation tests. The ordering 
of poountries. Core positions (for example 88[, 88" and 883) have lower 
rates of population growth, higher secondary school enrollment, and 
higher energy consumption per capita, whereas peripheral positions (for 
example, 884, 885, and 886) have higher rates of population growth, lower 
rates of secondary school enrollment, and lower energy consumption per 
capita. 

16.2 Stochastic Blockmodels 

We now turn to a discussion of goodness-of-fit indices which are based on 
specific, parametric statistical models. This is a rather different approach 
to assessing the fit of a network data set to a particular partition of actors 
to positions. This statistical approach, based on the statistical models 
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described in Chapter 15, has associated with it a natural goodness-of-fit 
index that follows directly from the models under consideration. As 
should be clear from the first section of this chapter, there is little 
unanimity on the choice of goodness-of-fit statistics for blockmodels, 
primarily because the statistics in use are not fit statistics for particular 
models. In fact, the statistics we have described could be applied in a 
wide variety of situations, not just blockmodeling social network data. 
The statistic discussed here has the advantage that it is appropriate for 
social network data, being modeled with PI and its relatives. It is also 
the obvious statistic to use in this situation, unlike those described in 
the previous section, whose choice is somewhat arbitrary. Thus, it has 
statistical properties (such as an asymptotic distribution), and is optimal 
(in the sense that it describes the fit of the models to the data better 
than any other statistic). This approach to evaluation was introduced by 
Fienberg and Wasserman (1981a), and developed by Holland, Laskey, 
and Leinhardt (1983), and Wasserman and Anderson (1987), primarily 
to provide a solution to the problem of which goodness-of-fit statistic 
to use. Breiger (1981b) comments on the use of stochastic blockmodels, 
and Wang and Wong (1987) offer a generalization of the PI class of 
models that includes blocking parameters (see also Frank, Hallinan, and 
Nowicki 1985, and Frank, Komanska, and Widaman 1985). 

As pointed out by Holland, Laskey, and Leinhardt (1983), rela
tional/positional analyses and blockmodels suffer from both the lack 
of an explicit model for data variability and formal goodness-of-fit tests. 
The stochastic models described in the previous chapters, while lack
ing methodology for incorporating roles and positions into an analysis, 
are clearly based On explicit formulations and have standard tests of 
fit. 

In this section, we will describe a stochastic blockmodel, a model 
for social network data obtained by assuming a stochastic model for the 
relational data and then allowing the actors to be partitioned into subsets 
or blocks. We first assume that the partition is known a priori; that is, 
unlike with the blockmodels of Chapter 10, we do not use the relational 
data to partition the actors. Rather, the partitioning is accomplished 
using attribute information on the actors. Attribute variables can greatly 
reduce the number of parameters in a model (thereby providing more 
parsimony) through the modeling of a W-, rather than a Y -array. These 
stochastic blockmodels will be discussed for valued and multirelational 
data sets, and will be illustrated (as was done with the measures in the 
first part of this chapter) by using the countries trade network. 
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Wasserman and Anderson (1987) also describe stochastic a posteriori 
blockmodels, which are not based on exogenous actor attribute informa
tion. These posterior partitions are more difficult to find and evaluate 
statistically, but are highly desirable because of their similarity to rela
tional analysis, which is also based on posterior partitions (found from 
the relations, rather than the attribute variables). These a posleriori 
stochastic blockmodels are very similar to the positional analyses of 
Chapters 9 and 10, since they use the relational data to obtain the po
sitions; unfortunately, this "data dredging" does not allow for proper, 
significance tests of the fit of actors to the derived positions. Contrasting 
the a posteriori models to the a priori models described here, one can 
see that the use of a priori positions, independent of the relational data, 
leads to legitimate p-values for the desired significance tests. 

The goal of such blockmodels centers on finding a good mapping 
of actors to positions, using the available relational data. Of the sev
eral methods for finding stochastic a posteriori blockmodels discussed 
by Wasserman and Anderson, correspondence analysis (see Wasserman, 
Faust, and Galaskiewicz 1990; Wasserman and Faust 1989; as well as 
Noma and Smith 1985b, and Barnett 1990) seems most useful. We use 
this and other techniques in this chapter to obtain a posteriori mapping 
functions, and hence stochastic goodness-of-fit indices for the countries 
trade data. 

We begin with a formal definition of a stochastic blockmodel, and then, 
following Wasserman and Anderson ( 1987), show how this concept gives 
us stochastic equivalence of actors. A very special case of these definitions 
arises when we couple a stochastic blockmodel with an assumption that 
PI is operating. As We will show, this stochastic blockmodel can be 
viewed as a special caSe of Pl . We will also describe Wang and Wong's 
(1987) formulation, which gives a more general PI blockmodel. Such 
definitions and assumptions will then give us a natural goodness-of-fit 
index for stochastic blockmodels. 

16.1.1 Definition of a Stochastic Blockmodel 

We start with X" X2, . . .  , XR, as a collection of random variables 
consisting of measurements on R relational variables for a set of g actors. 
We put all of these R random matrices into a giant super-sociomatrix 

X (which is sometimes caned the adjacency matrix for a multigraph), 
and define the probability distribution for X as p(X) = Pr(X =x). This 
distribution simply gives the probabilities that the various relational 
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linkages between actors across all relations are equal to the specified 
values given as entries in the sociomatrices comprising x. We must 
also define Xij as the vector of random variables associated with the R 
relation ties from actor i to actor j: Xij = (Xijl, Xij2, . . .  , XijR). We use 
the dyad as the basic modeling unit. So, we pair Xij with Xji to form 
the collection of random dyads Dij : Dij = (X'j, Xj,), i < j. 

A stochastic blockmodel is based on the probability distribution for 
X, as well as the mapping function which assigns the g actors to the 
positions:?O" :?O2, . . .  , :?OB. The difference between a stochastic blockmodel 
and a blockmodel is the assumption of a probability distribution for all 
the ties. Specifically, 

Definition 16.2 Let p(x) be the probability Junction Jor a stochas
tic multigraph (which is represented by the super-sociomatrix X). Further, 
we suppose that :?O = {:?OJ, :?O2, . . .  , :?OB} is a mutually exclusive and exhaus
tive partition oj the g actors into B positions, as specified by the mapping 
fonction <p. Then, with respect to :?O, p(x) is a stochastic blockmodel if the 
Jollowing two conditions are satisfied: 

(i) The random dyadic variables Dij are all statistically independent 
oj each other. 

(ii) For any actors i f= j and i' f= j, if i and i' belong to the same 
position, then the random dyadic variables Dij and D" j have the 
same probability distribution. 

This definition states that a stochastic blockmodel consists of a prob
ability distribution (an illustration of which will be given shortly), and a 
mapping of the actors to blocks. If the blockmodel is stochastic, the ties, 
which are assumed to be random variables, must meet several probabilis
tic conditions. First of all, sticking with one of the basic assumptions 
of the stochastic models described in this part of the book, the dyads 
are independent of each other. Secondly, if two actors are in the same 
position, then ties that they send and/or receive are governed by the 
same probability distribution. This latter assumption implies that if we 
calculate any probability using p(x), the probability is unchanged when 
we substitute actors belonging to a specific position for one another. 
As we point out shortly, this fact leads us to a definition of "stochas
tic equivalence," which generalizes the -important concept of structural 
equivalence. 

Holland, Laskey, and Leinhardt (1983) refer to stochastic blockmodels 
defined above as pair-dependent stochastic blockmodels, because of their 
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focus on the dyad, rather than on individual ties Xi}, Without this focus, 

there is a major problem. One canuot model tendencies toward reci

procity, which can be a driving force in social structures. Without using 

the dyad as a modeling unit, one cannot model structural tendencies that 

occur at the level of the dyad. If we assume that the entire collection of 

random variables. {Xi}} is statistically independent (rather than the dyadic 

random variables), there is no way to determine whether reciprocity is 

an important property for a specific set of actors. Reciprocity can only 

be studied by looking at individual dyads, and a stochastic blockmodel 

that assumes that the ties in a dyad are statistically independent is not 

of much use. 
We do note that this focus on ties rather than dyads makes stochas

tic blockmodels analogous to standard blockmodels, which implicitly 

assumes independence at the level of individual actors, rather than at 

the level of dyads. Stochastic equivalence and pair-dependent stochastic 

blockmodels fortunately assume dependence at the dyadic level, which 

thus allows a researcher to look at dyadic effects such as reciprocity. 

16.2.2 Definition of Stochastic Equivalence 

The definition of a stochastic blockmodel implies that actors within a 

specific position are "exchangeable" or "substitutable" with respect to 

the probability distribution pix). We formally define this exchangeability 

as stochastic equivalence: 

Definition 16.3 Given a stochastic "multigraph," represented by the 

collection of random matrices X, actors i and i' are stochastically equiva

lent if and only if the probability oj any event concerning X is unchanged 

by an interchanging of actors i and i'. 

Stochastic equivalence is an important concept for stochastic social net

work models, and we have already used it in Chapter 15. The definition 

given here is stated quite formally, and in generality, so that it applies to 

any distribution pix), rather than just PI (which is a special case that we 

discuss below). 

It should be clear that if we assume that X is stochastic (as is re

quired for a stochastic blockmodel), then structurally equivalent actors 

are stochastically equivalent, but (as pointed out by Wasserman and An

derson 1987)'not vice versa. Stochastic eqnivalence is more general than 

the structural version; and, in a probabilistic sense, it is considerably 
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f£ 
weaker. If actors i and i' are structurally equivalent, and i � j, then by 

definition, i' .:!:i j, for all r; however, if actors i and i' are just stochasti
cally equivalent, then all that is required is that i and i' have the same 
probability of relating to j on the rth relation. This means that empiri
cally, the relational linkages need not be identical for two actors to be 
stochastically equivalent. As we have mentioned throughout, structural 
equivalence is rare ; one usually must adopt some approximation to it. 
And, stochastic equivalence appears to be a natural, substantively based 
alternative, which (unlike structural equivalence) is likely to hold exactly 
for a set of actors. 

A blockmodel, based on structural equivalence, is deterministic, since 
it requires that relational linkages be either present (if actors in one 
position relate to actors in another) or absent (if actors in one position 
do not relate to actors in another). Viewed in this way, a blockmodel is 
a very special case of a stochastic blockmodel, in which all probabilities 
(specified by pix)) are forced to be either 0 or 1. The flexibility of 
stochastic blockmodels (these probabilities can be anywhere between 0 
and I !) makes them especially attractivc. 

We note, as we will discuss later in this chapter, that one can obtain 
a measure of how stochastically equivalent two actors actually are. For 
some p{x)'s, stochastic equivalence is manifested as functions of the pa
rameters. And if the actor-level parameters for two actors are statistically 
identical, the two actors are stochastically equivalent. It remains a task 
simply to evaluate the statistical equality of these actor-level parameters. 

The easiest way to understand the implications of a stochastic block
model and stochastic equivalence is to consider particular pix) probability 
functions. This is our next topic. 

16.2.3 Application to Special Probability Functions 

We now describe two particular stochastic blockmodel probability dis
tributions. Both assume that either PI is operating if R = 1, or one of 
the multirelational versions of Ph if R > 1. The first model does not 
contain actor parameters and, as described by Fienberg and Wasserman 
(1981a) and Wasserman and Anderson ( 1987), equates actor parameters 
across all actors within a position. Thus, there are no individual actor 
parameters (only position parameters) in this model. The second model 
takes PI and then adds special blockmodel parameters, as postulated 
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by Wang and Wong (1987), and keeps individual actor parameters. We 
discuss each of these stochastic blockmodels iu detail. 

A very important issue here is how to find the function which maps 
actors to positions. There are (at least) two approaches. The first is to 
assume that the function is known in advance, and depends on exogenous 
actor characteristics, such as age, gender, size, location, and so Oll. The 
second approach is a posteriori, and tries to find the mapping function 
using relational data. We comment on both of these. 

Stochastic Blockmodels Based on PI without Actor Parameters. 
First assume that we have R = 1 relations, and that this relation is 
dichotomous. Referring to the basic model of Chapter 15, PI, choose the 
following probability distribution for pix): 

Pr« Xij, Xj,) = (m, n)) = exp{A.'j + ma, + m{lj 

+Mj + n{l, 

+(m + n)8 + mn(a{l)}. (16.18) 

This model, which is simply an equivalent statement of PI (see equation 
(15.2)), assumes that the dyads are statistically independent, so that the 
full pix) is found by multiplying equations (16.18) over all m dyads. 
A stochastic blockmodel based on (16.18) will come equipped with a 
function mapping the actors into the B positions of !!B. 

The two conditions for a stochastic blockmodel are that the dyads be 
statistically independent (which, as we have noted, holds here) and that 
actors be "eXChangeable" or stochastically equivalent if they belong to 
the same position (that is, the probability distribution remains unchanged 
if we exchange actors). Let us focus on this second condition. Notice 
that there are two sets of parameters in (16.18) that depend on the g 

actors: {a,} for expansiveness, and {{lj} for popUlarity. Clearly, if all a's 
are constant for actors within a particular position, as well as all /3'8, 
then the exchangeability condition is fulfilled. Hence, if we assume pix) 
= PI, and require that, for all actors i and i' within position !!Bk, 

{I, {I" 
then we get a stochastic blockmodel. Wasserman and Anderson (1987) 
refer to actors which have equal PI model parameters as stochastic actor
equivalent. If this equality holds, and we assume Ph then clearly, actors 
within a particular position are stochastically equivalent. 
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Note that with equality of model parameters for all actors within a 
position, each position has its own a and its own {J. No longer are 
there any individual actor parameters (but see below for a stochastic 
blockmodel that allows for both position and actor parameters). The 
number of a's (as well as the number of {J's) is reduced from g to B. 
That is, 

if actors j and i' belong to position i!ih, for k = 1, 2, . . .  ,B.  Parameters 
are now associated with positions, rather than individual actors. Of 
substantive interest is how likely it is that an actor in one position relates 
to actors and is related to by actors in the same and other positions. 
Also of interest here is whether a partition into positions, based on one 
or more actor attribute variables, actually describes the relational data. 
In other words, are parameters really constant within a position? We 
will be able to answer this question with the models discussed below. 

The big question is how to find such mapping functions that place 
actors into positions. Frequently, the functions arise from actor attribute 
variables, as we have demonstrated in Chapter 15. For example, the 
six second-grade children have been categorized into B = 2 positions 
based on their age, and stochastic blockmodels fit to these positions were 
discussed in the previous chapter. For other examples from the literature, 
Wasserman and Iacobucci (1986) analyzed the frequency of toy-offerings 
among a set of ninety children who were partitioned into positions based 
on their gender, and Galaskiewicz, Wasserman, Rauschenbach, Bielefeld, 
and Mullaney (1985) studied patterns of corporate board interlocking 
by partitioning firms into positions based on attributes of the firms such 
as size, number of employees, and information on the chief executive 
officers (such as club memberships). 

We note that sometimes these functions can be found directly from 
the relational data. Such a posteriori stochastic blockmodels will be 
discussed in a later section. 

To fit stochastic blockmodels, one works with a w-array, which is 
calculated by aggregating the y-array over all actors within positions. 
Details and examples are given in Chapter 15, including the statistical 
justification for this aggregation. 

Extensions of stochastic blockmodels to more than one relation and 
to valued relations are straightforward. One must have equality of all 



700 Stochastic Blockmodels and Goodness-oj-Fit Indices 

parameters for all actors within a specific position. For example, if we 
have a set of a's for each relation, then the R expansiveness parameters 
for actor i would have to equal the R expansiveness parameters for actor 
i', for all pairs of actors i and i' within the same position. One first 
postulates an appropriate statistical dyadic interaction model and then 
adopts a mapping function for the actors to the positions. 

OStochastic Blockmodels Based on PI with Actor Parameters. 
Another approach to the development of a stochastic blockmodel based 
on PI comes from Wasserman and Galaskiewicz (1984) and Wang and 
Wong (1987). These authors note that PI completely ignores possible 

+ a priori partitioning of actors into positions. As we have noted, 
the densities of the blocks (arising from the positions) may differ quite 
a bit. PI has a tendency to underestimate the probabilities of rela
tional linkages in blocks with large densities, and overestimate the prob
abilities of relational linkages in blocks with small densities. Wang 
and Wong argue that one should add "blocking" parameters to PI, 
thus adjusting fitted probabilities for possible position effects. Breiger's 
(1981b) statements that blocks are internally homogeneous (which is syn
onymous with stating that actors within positions are stochastically 
equivalent) can also be used theoretically to justify the addition of 
blocking parameters to PI (see Breiger 1981c, Goodman 1981, Mars
den 1985, and Fienberg, Meyer, and Wasserman 1985). This approach 
has the advantage that the models have both individual actor param
eters as well as blocking parameters, but the disadvantage that more 
parameters are estimated, and consequently, less parsimonious fits are 
required. 

The Wang and Wong (1987) stochastic blockmodel takes PI and adds 
blocking parameters. These parameters reflect the tendencies for ac
tors in position gak to choose actors in position ga,. We work with 
a single, dichotomous relation. Specifically, we define the indicator 
quantity 

djjkl = 1 if actor i E gak and if actor j E gal 

o otherwise. ( 16.19) 

There will be B x B of these indicator variables for each pair of actors, 
but all but one of them will be zero. The one that is unity indicates 
which submatrix of X contains the tie from i to j. We now take equation 
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(16.18), and add a set of blocking parameters {(k,} : 

Pr((Xij,Xji) = (m,n» = exp{Aij +mai +m[iJ 
+naj + n[ii 
+(m + n)8 + mn(a[i) 
+dijkICkl}. 

701 

( 16.20) 

One wiIl have a single C parameter in the probability model for each 
dyad. 

There are B2 CS, and to estimate them all, we require these parameters 
to have 0 row and column sums: 

B 
LCkl = 0 for alI I 
k=l 

o for all k. 

Thus, there are (B - 1 )2 independent blocking parameters (or degrees of 
freedom for this effect). The equation (16.20), coupled with the constraints 
given above, and the usual assumption of dyadic independence, give us 
a second p(x) based on Pl. This p(x), unlike the first, contains both 
actor and blocking parameters. We note that the Cs can be either 
positive (indicating increases in tendencies for ties to form, as is the case 
with oneblocks) or negative (indicating decreases in tendencies for ties 
to form, implying that ties are more likely to disappear, as is the case 
with zeroblocks). Thus, there is no need to incorporate directly into the 
stochastic blockmodel information about which blocks are predominately 
l's, and which blocks are mostly O's. 

Wang and Wong (1987) fit such a model to a classroom of g = 

27 students and a friendship relation (see Hansell 1984). The fit of 
PI does not take into account a very strong gender effect apparent 
in this data set. Wang and Wong recommend that actors be parti
tioned into B = 2 positions based on gender (boys tended to choose 
boys, and girls to choose girls), and then modeled with a stochastic 
blockmodel based on PI containing both actor and a single blocking 
parameter. There is just one blocking parameter here, since there is 
only a single degree of freedom for the effect. That is, Wang and 
Wong had a single Cbb, indicating the tendency for boys to choose 
boys. By constraint, Cbg = 1 - Cbb, and Cgb = 1 - Cbb, so that the 
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tendency for boys to choose girls was equal to the tendency for girls 
to choose boys. Lastly, again by constraint, egg = ebb, so that one 
should interpret the single \ parameter, (bb, as reflecting the tendency for 
within-gender choices, and 1 - (bb as the tendency for between-gender 
choices. 

As mentioned, one problem with this stochastic blockmodel is the 
large number of blocking parameters that appear in model (16.20) if B 
is at all large. One Can fit as many as (B - 1 )2 blocking parameters, 
which may be too many. There are a variety of ways to reduce this 
number. As noted by Wang and Wong (1987), special cases can be 
obtained by a priori equating various ('S. One possibility is to estimate 
just a single blocking effect, letting (kl = S, for all k and 1. Or, one 
can just fit B parameters, one for each diagonal block : (k/ = 0, for all 
k j I, and 'kk unconstrained, for all k. This constraint implies that 
there are tendencies for actors to have ties to the actors within their 
respective positions, but no "additional" tendencies for actors to have 
ties to actors in other positions. Clearly, many other possibilities exist. 
Many of these fits will improve upon Pl' The important task is to choose 
the structure of the blocking parameters before looking at the data; 
otherwise, the error rates for the associated hypothesis tests will not be 
accurate. 

To fit these stochastic blockmodels to data requires a special algo
rithm. Standard computing packages cannot be used. The maxi
mum likelihood equations for the parameters in equation (16.20) can 
be easily written down (see Wang and Wong 1987, page 12), and 
can be solved using generalized iterative proportional scaling, as de
scribed by Darroch and Ratcliff (1972). The generalized iterative scal
ing algorithm is described in the appendix to Wang and Wong (1987), 
and proceeds in cycles of five steps (one step for each set of param
eters). Special cases, obtained by setting sets of parameters to 0, 
can be fitted simply by omitting the associated step in the algorithm. 
Thus, one can test, for example, whether all the {J's are 0, by fit
ting the full model and then comparing its fit to a model without 
these {J's. Such a model comparison determines whether actors are 
equal in their popUlarity. Wang and Wong give various submode1s, 
all special cases of tbeir basic stocbastic blockmodel, differing by the 
assumptions made about the block structure parameters. Of primary 
interest to us are the likelihood-ratio statistics, which, as we discuss 
shortly, can be used to evaluate the goodness-of-fit of a stochastic block
model. 
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16.2.4 Goodness-of-Fit Indices for Stochastic Blockmodels 

As discussed earlier in this chapter, there is a large literature on indices 
designed to measure how well a blockmodel fits a given network data 
set. But most of these measures are lacking because they are not based 
on statistical models, and they do not have convenient and well-known 
distributions. One solution to this problem, discussed by Wasserman and 
Anderson (1987), begins with the assumption that one has a stochastic 
blockmodel, consisting of a p(x) and a mapping of actors to B positions. 
The measure that arises naturally from this assumption is a statistically 
based goodness-of-fit index. The statistic is not costly to compute, nor 
ad hoc, nor designed for other contexts. 

The proposal here is to use the likelihood-ratio statistic G2 for the fit 
of the assumed stochastic blockmodel p(x) as a goodness-of-fit index for 
the stochastic blockmodel. We note that this theory should be applied 
only to a priori stochastic blockmodels, because the "data mucking" 
that must be done to fit their a posteriori counterparts invalidates the 
use of statistical theory. Nonetheless, evaluating a posteriori stochastic 
blockmodels can be done using this index, but no statistical interpretation 
should be attached to it. 

To calculate the index, we let XB 
= {x�,} be the predicted values for 

the ties linking actor i to actor j on the rth relation contained in X, the 
observed stochastic multigraph, based on the fit of some assumed p(x). 
Details on how to calculate such fitted arrays are given in Chapter 15, and 
involve the use of w-arrays (see also Fienberg, Meyer, and Wasserman 
1985, and Iacobucci and Wasserman 1987) or the generalized iterative 
scaling algorithm, as discussed by Fienberg, Meyer, and Wasserman 
(1985) and Wang and Wong (1987). 

Remember that this p(x) is coupled with a mapping of actors to 
positions, usually done a priori, so that the fit depends crucially on 
how stochastically equivalent the actors within the positions actually are. 
Thus, the magnitude of the likelihood-ratio statistic reflects how well the 
mapping function actually describes the possible equivalences among the 
actors. The statistic is computed as follows: 

R g g 

G1 = 2 L L L xij, log (Xij,/Xij,) . 
r=l 1=1 j=l 

(16.21) 

The subscript B indicates that the statistic is calculated for a specific 
stochastic blockmodel. The associated degrees of freedom equals the 
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difference between the number of independent cells in X, and the number 
of independent estimated parameters of p{x). 

We will let Gi be the likelihood-ratio statistic calculated using fitted 
values derived from PI; that is. the subscript g indicates that the statistic 
is calculated assuming that each actor is mapped to a unique position: 
B = g. In this case, the asymptotic distribution of G� is not known; 
however, it should be close to a chi-squared distribution. Fortunately, 
when judging the fit of a stochastic blockmodel, G7, depends only on 
B, the number of positions, and not on g; thus, it indeed does have an 
asymptotic x2 distribution. 

We note that one does not have to evaluate G2 using its theoretical 

distribution; that is, it is a nice statistic for studying goodness-of-fit, even 
if its asymptotic distribution is unknown. In such cases, permutation 
tests can be used to generate p-values for particular hypotheses. 

An important question is how large c2 will be if actors are perfectly 
stochastically equivalent. A glance at equation (16.21) indicates that the 
index equals 0 when all the Xij,'S equal their fitted values; that is, when 
the stochastic blockmodel fits perfectly. Such perfect fits arise when 
actors are perfectly stochastically equivalent, as defined earlier. 

There are many advantages to the use of G2B. First, as just mentioned, 
its asymptotic distribution should be close to the chi-squared distribution, 
although the determination of the exact degrees of freedom is not simple 
(see Fienberg and Wasserman 1981a, Haberman 1981, Wong and Yu 
1989, Iacobucci and Wasserman 1990, as well as comments in Chapter 
15). This distribution theory can be used to test the importance of the 
actor attribute variables used to obtain the mapping of the actors into 
the positions, as discussed and illustrated in Chapter 15. 

Secondly, it is easy to compute, given the fitted values arising from 
the p{x) in question. When statistical packages such as SPSS, BMDP, 

or SYSTAT are used to fit PI to individual actors (that is, to a y-array), 
G� = G; = G2/2, where G2 is the likelihood-ratio statistic given in the 
output. This adjustment is needed because each dyad is included in c2 
twice, rather than just once as in equation (16.21) (see Fienberg and 
Wasserman 1981a). When a stochastic blockmodel is fit to partitioned 
actors (that is, to a w-array), the correction to the value given as output 

from these programs is more complex, but the goodness-of-fit index 
(16.21) is easy to compute given the data and fitted values. 

It is also computationally easy to determine if a special case of p{x) 
fits the data better; that is, is there a p{x), obtained by setting some of 
the parameters in the original stochastic blockmodel to 0, that is a more 
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parsimonious fit? One can simply subtract the G2B statistics for the two 
predictions. The difference in the statistics is a conditional likelihood
ratio statistic and is indeed asymptotically distributed as a chi-squared 
random variable, with degrees of freedom equal to the difference in 
degrees of freedom for the two G2B,S (see Fienberg 1980). Specifically, 
differences between likelihood-ratio statistics, say !l.G2 = G11 - 012, where 
stochastic blockmodel gj I is a special case of stochastic blockmodel 
gj2, are conditional likelihood-ratio statistics, and are asymptotically 
distributed as chi-squared random variables. 

These limiting distributions are a much better approximation when this 
difference in degrees of freedom is not a function of g, the number of 
actors. This is true for hypotheses comparing two stochastic blockmodeIs 
that have a fixed number of positions, since differences will depend on 
the numbers of positions, rather than on g. 

The lack-of-fit of a stochastic blockmodel as measured by' G1 is de
composable into two parts ; namely, 

G1 = 2 L L LYijkJ iog(Y�kdYCkl) 
i<j k 1 

+2 L L LYijkl log(YijkdY�kl) 
i<j k I 

= GIB,g) + Gi, (16.22) 

where Y&kl are the fitted values from Pl. The quantity Gi reflects the lack 
of fit of PI to the observed ties among individual actors, and the quantity 
G[B,g) reflects the lack-of-fit due to the assignment of actors to positions. 
The latter quantity is particularly useful for assessing how closely actors 
adhere to the definition of stochastic equivalence. 

If one is interested in studying whether two specific actors are stochas
tically equivalent, rather than how closely the entire set of actors adheres 
to the definition of stochastic equivalence, one need only compare the 
fitted actor-level parameters. These estimated parameters should be equal 
for any two actors who are stochastically equivalent. 

In addition to these advantages, the G2 statistic has all the desirable 
characteristics mentioned by Carrington, Heil, and Berkowitz (1979). 
Specifically, the index uses all of the information imposed by a given 
blocking without sacrificing parsimony, it is sensitive to the nature of the 
data, and has a high degree of known precision (due to its asymptotic 
distribution). Comparisons of stochastic blockmodels with the same 
number of positions can be based on the statistic. If one desires to 
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compare two stochastic blockmodels with differing number of positions 
(and one of the p(x)'s is not a special case of the other), then one 
can compare G"s normalized by their degrees of freedom: G'! df This 
normalization is commonly used in categorical data analysis, and its 
evaluation is equivalent to that of a statistic divided by its mean. It 
equals the number of means from the mean that the statistic is. Clearly, 
G' is the logical measure to examine when working with categorical data, 
and much is known about its properties. We will now demonstrate its 
use on the examples discllssed in this chapter. 

16.1.5 QStochastic a posteriori Blockmodels 

A major component of a stochastic blockmodel is the function", that 
assigns actors to positions. A number of strategies exists for generating 
partitions of actors. Recall that actors assigned to the Same position 
should be stochastically equivalent. There are two main strategies: a 
priori, as we have described earlier in this chapter, and a posteriori, 
using the actual relational data. 

Consider now specific strategies for generating potential mapping func
tions and evaluation of these functions. The conditional likelihood-ratio 
statistic GfB.g) is proposed as an index that measures how closely actors 
adhere to the definition of stochastic equivalence for a given partition. 

We first consider how to generate partitions. The assignment of actors 
to positions can be based on exogenous attribute information about the 
actors or on relational data. Examples of exogenous characteristics are 
age, gender, and income. This approach is straightforward and has been 
used by many, as discussed earlier in this chapter. 

As an alternative to a priori classifications, Wasserman and Anderson 
(1987) explored ways of discovering a posteriori partitions based on rela
tional data, a characteristic of "deterministic" blockmodeling procedures. 
The discovery of partitions based on relational data is a more difficult 
task than generating partitions based on attribute data. Techniques for 
identifying partitions a posteriori are reviewed here. 

One possible strategy is to examine all possible partitions. Even with 
increases in computing power, such an approach is not practical, and 
certainly not efficient. For fixed B, the number of possible partitions 
for even moderately sized sets of actors is extremely large. Furthermore, 
researchers will typically want to examine partitions for different values 
of B. 
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Spatial Approacbes: Parameter Plots. Another approach is to 
seek a spatial representation of the actors that reflects the ties between 
them. In such a representation, actors who are (approximately) stochas
tically equivalent should be close to each other, and those who are not 
equivalent should be far apart. When p(x) = PI, actors who are stochas
tically equivalent have the same a's and P's, and the task of finding 

equivalent actors reduces to that of finding subsets of actors with (ap
proximately) equivalent parameters. For the simple case of one binary 
relation, Wasserman and Anderson (1987) found that plots of p, versus 
&, from fitting PI to the y-array were extremely useful. A set of potential 
partitions for different numbers of positions can be suggested by visually 
examining such plots. 

Other possible graphical approaches are explored by Wasserman and 
Anderson (1987), and· discussed by Wasserman, Faust, and Galaskiewicz 
( 1990) and Wasserman and Faust (1989). These researchers plotted row 
versus column scores from the correspondence analysis of a sociomatrix. 
Correspondence analysis is a technique that seeks to scale simultaneously 
the rows and columns of a table such that rows that are similar have sim
ilar scores, and columns that are similar have similar scores (Greenacre 
1984). Other possible graphical approaches are biplots (Gabriel 1982; 
Gabriel and Zamir 1979) and the RC-association model (Goodman 1985, 
1986), both of which are related to correspondence analysis and also yield 
row and column scores (see Faust and Wasserman 1993). All of these 
methods can be applied to sociomatrices. The application, potential use
fulness, and limitations of these methods are interesting, but will not be 
explored further here. 

Cluster Analysis. Another approach, which is complementary to 
graphical methods for discovering equivalent actors, is cluster analysis. 
We used cluster analysis to find blockmodels. Since stochastic equiv
alence is operationally defined as equality of PI parameters, estimated 
parameters can be used in cluster analytic methods to find "optimal" 
partitions of actors. While cluster analysis can be used in addition to 
the parameter plots mentioned above, clustering techniques can also be 
used in more complex cases where the examination of parameter plots 
is difficult. For example, if there are more than two sets of parameters 
corresponding to individuals, as might be the case with multiple relations, 
the dimensionality of the parameter space equals the number of different 
sets of parameters. At most, three sets of parameters can be visually 
examined at any one time. Cluster analysis is not so limited. We discuss 
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the advantages and the complementary nature of cluster analysis and the 

visual inspection of parameter plots later in this chapter. 

Numerous cluster analytic methods exist that are potentially useful, but 

only two are mentioned here for use with a posteriori stochastic block

models. A promising method is Hartigan'S (1975) K-means technique, 

which seeks to split objects into a fixed number of sets by maximizing lhe 

variation between sets relative to the variation within sets. This method 

requires an "objects by variables" matrix, which for our purposes corre

sponds to the "actors by estimated parameters" matrix. The parameters 

do not need to be rescaled or standardized. For different numbers of 

positions, the K-means technique will not necessarily yield nested sets of 
partitions. 

If a nested set of partitions is desired, then a hierarchical cluster 

analysis method could be used. These methods successively join together 

objects and subsets until there is only one large cluster. The various meth

ods differ with respect to the criterion used to join individuals/subsets 

at each stage. These methods operate on square symmetric matrices of 
(dis)similarities, so for our purposes, (dis)similarities between actors in 
the parameter space need to be computed. A logical choice for dissim

ilarities is the Euclidean distance between actors i and j, as given by 

PI: 

which corresponds to the distances that are examined in parameter plots. 

Hierarchical methods may not be as useful as K-means cluster analysis, 

because the goal of a K-means analysis more closely resembles that of 

finding subsets of actors with equivalent parameters. 

16.2.6 Measures of Stochastic Equivalence 

Regardless of whether a mapping function is based on exogenous char

acteristics of the actors or on relational data, an index that measures the 

degree to which actors adhere to the definition of stochastic equivalence 

is needed. When partitions are based on exogenous information, an 

assessment of whether actors within positions are actually (or approxi
mately) stochastically equivalent is desirable. When partitions are based 

on relational data, a means of identifying "optimal" or "good" mappings 

is essential. "Optimal" and "good" are defined in terms of stochastic 

equivalence. 
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As mentioned earlier in this chapter, the conditional likelihood ratio 
statistic GfB,g) is a natnral index to evaluate the degree to which actors 
within positions adhere to the definition of stochastic equivalence. As 
was seen from the decomposition in equation (16.22), GfB,g) reflects 
the lack-of-fit due to the assignment of actors to positions. If the 
partition is based on exogenous information, then statistical tests are 
possible. Since GtB.g) is a difference between likelihood-ratio statistics, it 
is an asymptotic chi-squared random variable and can be used to test 
statistically whether actors assigned to positions by a particular mapping 
function are consistent with the definition of stochastic eqnivalence. If 
actors can be assigned to blocks without "significantly" reducing the fit 
of the model, then actors and the relations(s) are consistent with the 
definition of stochastic equivalence. 

Even when a partition is not based on exogenous information, the 
statistic afB,g) can be used to assess which of a number of different 
mapping functions for various numbers of blocks is the best in terms of 
producing partitions of actors which more closely adhere to the definition 
of stochastic equivalence. Remember that GtB,g) reflects lack-of-fit. For 
fixed B, the mapping function that yields the smallest GfB,g) is the "best" 
one. For fixed B, the difference between the GfB,g/S from two different 
partitions is hard to evaluate, because one model is not a special case of 
the other. However, the difference does indicate which partition is better 
and reflects the degree to which the actors within positions in one model 
are "more" stochastically equivalent than those in the other model. 

For different magnitudes of B, the number of positions, mapping func
tions can be compared by computing and then studying the differences 
between GtB,g)'S. When one partition is nested within the other, these 
differences are more meaningful, and have degrees of freedom equal to 
the difference in the number of estimated stochastic blockmodel param
eters. We will let GfB-l,B) = GtB-" g) - GfB,g)' a quantity that will always 
be nonzero, where the stochastic blockmodel with B - 1  positions is a 
special case of the one with B positions, obtained by aggregating two of 
the positions into one. But remember it is still not proper to use these 
statistics for parametric hypothesis tests. 

16_2.7 Stochastic Blockmodel Representations 

Given a probability distribution p(x) and a mapping function 4>(e) for 
a stochastic blockmodel, the positions and ties between positions need 
to be represented. These representations are used to interpret the model 
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substantively, which is an important but relatively neglected aspect of 
blockmodeling (as mentioned in Chapter 10). In positional analyses 
using blockmodels, density tables, image matrices, and reduced graphs 
are three common ways in which the relations between positions are 
represented. Density tables and reduced graphs are useful in stochastic 
blockmodel analyses, but as we discuss below, image matrices are not 
necessary. 

Of substantive interest are the empirical probabilities or relative fre
quencies that actors relate to and are related to by other actors. A density 
table (or matrix) contains these observed relative frequencies. Each row 
and column of the table corresponds to a position. The observed proba
bilities are 

Ilkl = { (WkIIO + Wklll)/(gkgl) if k of [ 
(WkklO + Wkkll)/[gk(gk - 1)] if k = I, (16.23) 

where <I>(iJ = k and <l>Ul = l. The counts gk and gl are the number 
of actors in positions iJIIk and iJlllo respectively. The w's are the counts 
that are contained in the w matrix: wwo is the frequency of actors in 
position iJIIk who relate to but are not related to by the actors in position 
iJIIl, and Wk/l l is the frequency of actors in iJIIk who relate to and are 
related to by those in ph Note that even though the diagonal entries 
of the sociomatrix Xii = 0, this is not the case for data aggregated over 
positions. When cP(i) = cP(j) = k, Ilkk is the relative frequency of actors 
in iJIIk who relate to each other. 

Rather than an observed density matrix, a matrix of expected or 
predicted probabilities can be computed based on the stochastic block
model. The predicted probabilities are computed by replacing the ob
served frequencies in equation (16.23) by the predicted frequencies from 
the stochastic blockmodel. The predicted frequencies, "'kIlO and "'kIll, are 
the fitted values computed from fitting the appropriate log-linear model 
to the w-array. Since the predicted probabilities for actors in the same 

position are equal, these predictions can also be computed as follows 

Pr(xU = 1) = Pr(YijlO = 1) + Pr(Yijll = 1), 

where i of j; actors i and j are in positions iJIIk and iJlllo respectively; 
further, 

and 
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for k f I .  In addition, 

Pr(YijlO = 1) = WkkIO/(gk(gk - 1)) 

and 

Pr(Yijll = 1) = Wkkll/(gk(gk - 1)) 

for k = I .  Remember that the y-array is the matrix, constructed from the 
sociomatrix, to which PI is actually fit. 

Alternatively, Pr(Yijmn = 1) can be computed from equation (16.18); 
that is, 

Pr(Yijmn = 1) = exp{1ij + mark] + na[l] + mj3[� + nj3[kl 
+(m + n)O + mnp}. 

While the predicted and observed density matrices can be compared to see 
how closely the model reproduces the observed probabilities, the predicted 
probabilities should be used in substantive interpretations of the model. 
The predicted density table contains the stochastic blockmodel-based 
probabilities of ties between actors in the same and different positions. 

In "standard" blockmodels, image matrices are often used to represent 
the ties between positions. Similar to density tables, image matrices 
have rows and columns that correspond to positions and the entries 
carry information regarding ties between positions. The entries in image 
matrices are l's and O's and indicate whether or not a tie exists. In a 
stochastic blockmodel, ties between actors exist with certain probabilities, 
which can be anywhere in the range of 0 to 1 ;  therefore, an image matrix 
is not needed for representing the ties between positions in a stochastic 
blockmodel analysis. 

A third way of representing ties between the positions of a blockmodel 
is a reduced graph. Reduced graphs consist of nodes that correspond 
to positions, and arcs, representing positional relationships. In a block
model, arrows represent the existence of a tie. Reduced graphs for such 
blockmodels are pictorial representations of image matrices. 

In a stochastic blockmodel, a reduced graph is based on the predicted 
density table. In this case, arcs are only drawn for the ties with large 
predicted probabilities, and the predicted probabilities are written on or 
next to the arrows to convey the probabilistic information. Reduced 
graphs based on predicted density tables are pictorial summaries of most 
of the information in the corresponding density tables. The tables contain 
more information, but the reduced graphs provide a visual summary of 
the information in the tables. 
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Table 16.3. Fit statistics /or PI and special cases 

Model Margins fit G2 I!.G2 

(i) B. (a,), {/lj},p [12] [13] [14] [23][24] [34] 245.18 
(ii) B, {a,}, (fij) [12] [13] [14] [23] [24] 252.56 7.38 

(iii) B, {a,},p [12] [13] [24][34] 298.35 53.17 
(iv) e, {fij}, p [12][14] [23][34] 667.20 422.02 

16.2.8 The Example Continued 

I!.df 

1 
18 
23 

Consider now the countries trade data, and the ties defined by trad. 
basic manufactured goods. 

We fit Ph as shown in equation (16.18), to this relation from 
countries trade network. The models and fit statistics are reporte( 
Table 16.3. The first column lists the parameters included in the me 
and the second column lists the margins (that is, the log-linear model 
the y-array that were fit for each of the models. The first mode� m( 
(i), is the "full" PI model, and models (iiHiv) are special cases of it. . 
special cases were fit to see if a simpler model could be used to repre, 
the ties. 

As we have noted, the G2's associated with models (i)-(iv) are 
asymptotic chi-squared random variables, so we cannot attach p-va 
to the hypotheses they quantify. Since the ilG2,s for models (ii)--(iv) 
all large relative to their degrees of freedom, the reciprocity paramet. 
(deleted in model (ii)), the set of "popularity" parameters {/ij) (dell 
in model (iii)), and the set of "expansiveness" parameters {ail (del( 
in model (iv)) shonld all be included in the model. Therefore, 
"best-fitting" model must contain all parameters. All of the stach, 
blockmodels fit will assume p(x)= model (i) = PI. Thus, the c;2 
model (i) will become Gi. This statistic will be the lower bound for 
fit of all of the stochastic blockmodels (that is, all blockmodels will t 
G1 :2: Gi = 245.18). 

Consider now whether the countries are stochastically equivalent. 
will look for stochastic equivalence of the countries based on PI an< 
parameters. The next step in constructing a stochastic blockmodel i 
choose or find a mapping function. We consider an a posteriori appro: 
and obtain estimates of the model parameters. From these, we shoul( 
able to generate mapping functions. The maximum likelihood estim 
of the parameters of PI were computed from the fitted values y 
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The estimated e equals -0.668 and the estimated reciprocity parameter 
Ii eqnals 2.03. The latter indicates that trade between countries tends 
to be reciprocated. We will not only find a mapping function using a 
parameters plot, but will also consider cluster analysis as a tool 

Rather than giving the eSlimated �'s and P's, we have plotted them in 
a parameter plot, shown in Figure 16.1. The points represent countries. 
Since Syria and Liberia did not export manufactured goods to any 
other country in the network, and since the United States, Japan, and 
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Switzerland exported goods to all of the other countries, the &;'s for these 
countries equal -00 and +00, respectively. 

Thus, we lose 5 degrees of freedom here, because we can estimate 
only 19 rather than 24 ,,'s. To represent the countries with &, = ±oo, 
these countries were placed at the extreme ends of the horizontal axis. 
Overall, the countries show more variation with respect to their exporting 
behavior (&) than they do with respect to their importing behavior (P), 
even when disregarding the five countries with &, = ±oo. 

Figure 16.1 greatly facilitates the search for equivalent countries and 
allows us to find plausible mapping functions. Countries that have similar 
import and export patterns have similar &'s and p's. For example, Spain 
and the United Kingdom (as well as China and Finland) have nearly 
identical rows and columns in the sociomatrix, and their estimated pa
rameters are approximately equal. The points corresponding to Spain 
and the UK, as well as those for China and Finland, are indistinguish
able, which indicates that these countries are stochastically equivalent. 
The close proximity of Ethiopia, Ecuador, and Honduras suggests that 
these countries can be placed in the same position without significantly 
decreasing the goodness-of-fit of the stochastic blockmodel. Various 
possible mapping of countries to blocks for different values of B were 
generated by visually examining Figure 16.1. Some of these mappings 
are reported in the top half of Table 1 6.4. 

Other mappings for B = 2 to B = 10 positions were generated by 
performing K-means cluster analyses of the countries using the distances 
obtained from the &. and p. (A large value, 9, was substituted for 00.) The 
clusters, which are listed in the lower half of Table 16.4, are nested (which 
is a fortunate coincidence). The cluster analyses confirmed many of the 
aspects seen in Figure 16.1. The partitions for B = 5, 6, and 8 from the 
cluster analyses were also identified as possible partitions from the visual 
examination of Figure 16.1. The duplicate partitions are reported only 
once in Table 16.4, under the K-means section. The major differences 
between the partitions generated from the figure and those from the 
cluster analyses involve Yugoslavia. Based on Figure 16.1, Yugoslavia 
was generally assigned to the same position as Spain and the UK, but in 
the cluster analyses, it was assigned to the cluster containing Indonesia, 
New Zealand, Pakistan, and Thailand. 
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Table 16.4. Fit statistics for PI stochastic blockmodels 

B GtB,24) di(B.24) G[8,8_1) 
Partitions from visual inspection 

{Jap,Swi,US} {Bra,Cze} {Chi,Fin,Yug} {Spa,UK} {Arg,Isr} 

{Alg} {Egy,lnd,NZ,Pak,Tai} {Ecu,Eth,Hon} {Mad} {Lib,Syr} 10 19.02 28 

{Jap,Swi,US} {Bra,Cze} {Chi,Fin,Yug} {Spa,UK} {Arg,Isr} 

{Alg} {Egy,Ind,NZ,Pak,Tai} {ECll,Eth,Hon,Mad} {Lib,Syr} 9 23.45 30 4.43 

{Jap,Swi,US} {Bra,Cze} {Chi,Fin,Yug} {Spa,UK} {Arg,Isr} 

{Alg,Egy,Ind,NZ,Pak,Tai} {ECll,Eth,Hon,Mad} {Lib,Syr} 8 39.89 32 16.44 

{Jap,Swi,US} {Bra,Cze} {Chi,Fin,Spa,UK} {Arg,Isr} 

{Alg,Egy,lnd,NZ,Pak,Tai,Yug} {Ecu,Eth,Hon,Mad} {Lib,Syr} 7 52.48 34 

{Jap,Swi,US} {Bra,Chi,Cze,Fin,Spa,UK} {Arg,Egy,Isr} 

{AIg,Ind,NZ,Pak,Tai,Yug} {Ecu,Eth,Hon,Mad} {Lib,Syr} 6 62.02 36 

Partitions from K -means cluster analysis 

{Jap,Swi,US} {Bra,Cze} {Chi,Fin,Spa,UK} {Arg,Isr} {Alg} 

{Egy,Ind,NZ,Pak,Tai} {Yug} {Ecu,Eth,Hon} {Mad} {Lib,Syr} 10 19.16 28 

{Jap,Swi,US} {Bra,Cze} {Chi,Fin,Spa,UK} {Arg,Isr} {Alg} 

{Egy,Ind,NZ,Pak.Tai} {Yug} {Ecu,Eth,Hon,Mad} {Lib,Syr} 9 23.68 30 4.52 

{Jap,Swi,US} {Bra,Cze} {Chi,Fin,Spa,UK} {Arg,Isr} {AIg} 

{Egy,Ind,NZ,Pak,Tai,Yug} {Ecu,Eth,Hon,Mad} {Lib,Syr} 8 32.39 32 8.71 

{Jap,Swi,US} {Bra,Cze} {Chi,Fin,Spa,UK} {Alg} {Lib,Syr} 

{Arg,Isr,Egy,Ind,NZ,Pak,Tai,Yug} {Ecu,Eth,Hon,Mad} 7 44.65 34 12.26 

{Jap,Swi,US} {Bra,Cze} {Chi,Fin,Spa,UK} {Lib,Syr} 

{Arg,Isr,Egy,Ind,NZ,Pak,Tai,Yug} {AIg,Ecu,Eth,Hon,Mad} 6 53.68 36 8.03 

{Jap,8wi,US} {Bra,Cze,Chi,Fin,Spa,UK} {Lib,Syr} 

{Arg,Isr,Egy,Ind,NZ,Pak,Tai,Yug} {AIg,Ecu,Eth,Hon,Mad} 5 64.09 38 10.41 

{Jap,Swi,US} {Alg,Ecu,Eth,Hon,Mad} {Lib,Syr} 

{Bra,Cze,Chi,Fin,Spa,UK,Arg,Isr,Egy,lnd,NZ,Pak.Tai,Yug} 4 135.68 40 71.59 

{J ap,Swi, US} {Alg,Ecu,Eth,Hon,Mad,Lib,Syr} 

{Bra,Cze,Chi,Fin,Spa,UK,Arg,Isr,Egy,Ind,NZ,Pak.Tai,Yug} 3 143.88 42 8.20 

{Bra,Cze,Chi,Fin,Spa,UK,Arg,Isr,Egy,Ind,NZ,Pak, 

Tai,Yug,Jap,Swi,US} {AIg,Ecu,Eth,Hon,Mad,Lib,Syr} 2 191.35 44 47.47 
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Fit statistics for the various stochastic blockmodels are also given in 
Table 16.4. The first column shows the actual mapping of actors onto 
positions and the second indicates the number of positions. The third and 
fourth columns contain the conditional likelihood-ratio statistics G[B,24) 
and their degrees of freedom df(B,24), respectively. The last column con
tains the conditional likelihood-ratio statistics GfB.B-l) for nested models 
in which the more restrictive model has one less position. There are 2 
degrees of freedom associated with each G(B.B-l)' since two parameters 
are eliminated when we go from B positions down to B - 1. 

When the number of positions is fixed at 8,9, or 10, the models in 
the upper and lower halves of Table 16.4 have approximately the same 
fit statistics; however, when B = 6 or 7, the models in the lower half 
fit noticeably better than those in the upper half. The K-means cluster 
analyses produced partitions at least as good as those generated from 
the parameter plot in Figure 16.1. Since the partitions in the lower 
half of Table 16.4 tend to have better fit statistics, are all nested, and 
cover a larger range of models for different numbers of blocks, the 
models in the top half were eliminated from further consideration. When 
the statistics G[B,'4) for different numbers of positions are compared 
to the appropriate chi-squared distributions, the statistics for B � 7 
are not statistically "important" (p-values > .10). The statistic G[6.24) 
is marginally important (p-value = 0.029), and the statistic G[S.24) is 
statistically "important" (p-value = 0.005). These fit statistics suggest 
that the 7- and possibly the 6-position blockmodels are the simplest ones 
that provide an adequate fit. Since the applicability of asymptotic theory 
in this example is questionable, other criteria must also be considered. 

The fit statistics G[B.B_l) indicate the decrease in fit from reducing 
the number of positions from B to (B - 1) where two positions from 
the more general model are combined into one position in the more 
restrictive model. For models with 5 to 9 positions, the values for these 
statistics are relatively constant and range Irom 4.52 to 12.26. A large 
decrease in the fit occurs at B = 4 where G[4,S) = 71.59. Given this fact, 
models with B s; 4 were eliminated from further consideration. Since 
the 7 position model contains a position with just one country (that 
is, Algeria) and the 6 position model provides a reasonably good fit 
to the data, the 7-position model was also eliminated. The 5- and 6-
position stochastic blockmodels dilTer in that Brazil and Czechoslovakia 
form a separate position in the 6-position model, but they are included 
in the cluster with China, Finland, Spain, and the United Kingdom in 
the 5-position blockmodel. The representation of each of these models 
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Table 16.5. Predicted density matrix 

@! @, @, @4 @, 
@! 1.000 1.000 1.000 1.000 1.000 
@, 0.994 0.983 0.956 0.804 0.868 
@, 0.904 0.770 0.576 0.192 0.276 
@4 0.295 0.119 0.041 0.010 0.017 
@, 0.000 0.000 0.000 0.000 0.000 

was examined. The 5-position model was chosen, because the basic 
substantive interpretation is the same as the 6-position model, except for 
one minor difference, noted later. Based on a balance of parsimony and 
goodness-of-fit, our favorite solution is the 5-position blockmodel from 
the K-means cluster analysis. A substantive interpretation of this model 
follows. 

The countries were mapped onto positions for this B = 5 position 
stochastic blockmodel as follows : 

• i!ih :  Japan, Switzerland, United States 
• i!iJ2 : Brazil, China, Czechoslovakia, Finland, Spain, United King

dom 
• i!iJ3 : Argentina, Egypt, Indonesia, Israel, New Zealand, Pakistan, 

Thailand, Yugoslavia 
• £314: Algeria, Ecuador, Ethiopia, Honduras, Madagascar 
• i!iJ5 : Liberia, Syria 

The estimated values for the overall choice effect and the reciprocity 
parameter are -0.803 and 2.133, respectively, which are similar to those 
from Pl. The estimated values for ark] and plk] correspond to the open 
circles labeled i!iJ, - i!iJ5 in Figure 16.1. The positions differ mostly with 
respect to exports (&lk]), but show some slight differences with respect to 
imports (Plk]). To represent explictly and to substantively interpret the 
ties between the positions, the predicted density matrix was computed 
and a reduced graph based on this matrix was drawn. 

The predicted probabilities are given in Table 16.5. The countries in 
i!iJ, exported goods to all of the other countries (that is, the entries in the 
first row of Table 16.5 all equal 1.00), and the countries in i!iJ5 did not 
export any goods to any of the other countries (that is, the entries in the 
last row all equal 0.0). The ties exhibit a "center-periphery" pattern; that 
is, the larger probabilities are in the upper left triangle, while the smaller 
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1.0 

Fig. 16.2. Reduced graph based on predicted probabilities > 0.30 

probabilities are in the lower right triangle. Countries in the positions 
PlI" PlI2, PlI3 have large probabilities of exporting and importing goods 
from each other. The countries in positions PlI, and PlI2 export goods to 
countries in PlI4 and PlIs with large probabilities, but the countries in PlI3 
export to PlI4 and PlIs with small probabilities. Thus it appears that while 
PlI, and PlI2 are similar, they are different from PlI3. 

As noted earler, the predicted density matrices for both the 5 and 6 
position blockmodels were examined. The basic difference between the 5 
and 6 position blockmodels was that in the B = 6 model, the predicted 
probability that countries in the cluster {China, Finland, Spain, United 
Kingdom} imported goods from PlI3 was 0.88, while the same probability 
for the countries in the cluster {Brazil, Czechoslovakia} was only 0.51. 
In the 5 position model, the corresponding predicted probability for 
the combined positions is 0.77, which is intermediate between these two 
values. 

Figure 16_2 is the reduced graph based on Table 16.5. It is a pictorial 
representation of the probabilities that basic manufactured goods are 
exported/imported between countries in the five positions. The nodes 
(positions) are labeled PlI, - PlIs, and arcs are draw from one position to 
another position for probabilities greater than 0.30. The central-periphery 
pattern is well-illustrated in this figure. The positions PlI, and PlI2 export 
to countries in all of the other positions, but differ with respect to 
probabilities. Countries in PlI4 and PlIs appear quite similar with respect 
to importing, but referring to Table 16.5, we see that countries in PlI4 
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export goods to countries in other positions with small probabilities, 
while those in iJiJ, do not export to any of the other countries. 

16.3 Summary: Generalizations and Extensions 

To summarize lhis chapter and this part of the book, we want to mention 
some ways to extend the models presented here to other types of network 
data. Perhaps the most important of these extensions are those that 
allow one to analyze multiple relational networks and networks that are 
measured over time. We very briefly discuss these extensions here. 

16.3.1 Statistical Analysis of Multiple Relational Networks 

There is a wide variety of models for network data consisting of mea
surements on two or more relations. These models are quite general, 
and are capable of describing the associations among the relations, the 
dependence of the relations on the actors themselves, and (if measured) 
the associations among attribute variables and the relations. Most of the 
models can be fit using standard categorical data analysis techniques, es
pecially those found in the computer package GLIM (Baker and Neider 
1978; Payne 1985; and the appendix to Wasserman and Iacobucci 1986). 
These techniques are identical to those illustrated in the last chapter on 
simpler network data sets involving just one relation (although individ
ual software, such as Weaver and Wasserman 1986, exists for some of 
these models). Other, more complicated models, need generalized itera
tive proportional fitting algorithms (Darroch and Ratcliff 1972) to find 
parameter estimates. Examples of the use of such models and many 
details ahout model fitting can he found in Wasserman and Galaskiewicz 
(1984), Wasserman and Weaver (1985), and Galaskiewicz, Wasserman, 
Rauschenbach, Bielefeld, and Mullaney (1985). 

The first extensive models of multiple relations can be found in the 
work of Davis (1968a), and Galaskiewicz and Marsden (1978), who 
studied resource flows between organizations in a midwestern community. 
Galaskiewicz (1979) describes these data (see ,Andrews and Herzberg 
1985, for the data) at length. 

Another famous (actually, very famous) example is a multirelational 
data set based on Sampson's (1968) network of monks living ill acloister 
in upstate New York. These data have been analyzed by many network 
methodologists ; in fact, an entire issue of Social Networks has been 
devoted to alternative methods applied primarily to these data (Faust 



720 Stochastic Blockmodels and Goodness-of-Fit Indices 

1988; Reitz 1988; Krackhardt 1988; and especially, Pattison 1988; also 
see the references in these papers). 

Other important multiple relational analyses were proposed by Katz 
and Powell (1953) and Hubert and Baker (1978). Basic approaches 
to multiple relational analyses are given by Gottman (19798, 1979b), 
Gottman and Ringland (1981), Budescu (1984), Wampold (1984), and 
Iacobucci and Wasserman (1988). The first extension of these dyadic 
interaction models to multiple relations came in Fienberg and Wasserman 
(1980) and Fienberg, Meyer, and Wasserman (1981). Their models extend 
Holland and Leinhardt's PI by focusing on the associations among the 
relations rather than on the similarities and differences among individual 
actor attributes. The most important work on statistical models for 
multiple relations can be found in Fienberg, Meyer, and Wasserman 
(1985) (see Fienberg 1985). Fienberg, Meyer, and Wasserman (1985) 
presented models that could include both actor and subset parameters, 
as well as interactions that measure the interrelatedness of the different 
relations. Novel applications of these models can be found in Wasserman 
(1987), Iacobucci and Wasserman (1987, 1988), and Wasserman and 
Iacobucci (1988, 1989). 

Good multiple relational models must be designed to answer substan
tive questions such as 

• How similar are the relations? How well do they "conform" or 
resemble each other? 

• Which relation exhibits the strongest "reciprocity"? 
• Are there any "multiplex" patterns (flows of different relations 

in the same direction)? 
• Are there any patterns of "exchange" in which a flow in one 

direction for one relation is reciprocated by a flow in the opposite 
direction for a different relation? 

• Are there any higher-order interactions, involving three or more 
flows for two or more relations? 

Sometimes, one also seeks answers to questions concerning whether 
relational tendencies vary in strength or direction from actor to actor (or 
subset to subset). The primary concern of these studies is the individual 
actor. Examples of substantive questions that multiple relational models 
can also answer include 

• Which actors have the most prestige or popularity? 
• Which actors are involved in many relations, and which in few? 
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• Do actors enter into mntual interactions at different rates? 
• Do any of the relational associations vary in strength across the 

actors or actor subsets? 

The models mentioned here are designed to answer such questions. 

16.3.2 Statistical Analysis of Longitudinal Relations 

We now mention models for statistical analysis of relations that are 
measured longitudinally, or over time. That is, we assume that one is 
interested in a small number of simple relations, defined for a constant 
set (or sets) of actors, that are observed at more than one point in 
time. 

There are many models that are designed for the analysis of such 
data. Some of these models make stochastic assumptions about the 
"sending" behaviors of the actors over time, while others assume that 
these behaviors are deterministic ; that is, governed by a set of equations 
that do not incorporate any probabilistic assumptions. In deterministic 
models, the effect of any change in the system can be predicted with 
certainty (subject to a known starting point for the system). Differential 
equations are frequently the "driving forces" of such deterministic models. 
In the social and behavioral sciences, and to a lesser extent in the 
natural sciences, the effect of changes in a system usually cannot be 
forecast with certainty, primarily because of the unpredictable nature 
of the objects (often people) being modeled, or design limitations on 
the measurements. This unoertainty is more effectively modeled through 
the use of probability distributions on random variables (as we have 
described throughout this part of the book) instead of the "controlling" 
mathematical variables of a system of differential equations. 

There are (at least) two approaches to stochastic models ofiongitudinal 
networks. The first allows a researcher to study the associations among 
the relational time measurements, and even permits one to determine 
which aspects of previous social structure best predict the present struc
ture of a set of actors. Much of this research comes from Wasserman 
and Iacobucci (1988) and Iacobucci ( 1989). Some of these models can be 
fit using logistic regression (Haberman 1978, 1979; Agresti 1984, 1990; 
Cox and Snell 1989; Hosmer and Lemeshow 1989; and see Wellman, 
Mosher, Rottenberg, and Espinosa 1987; Hallinan and Williams 1989; 
and Galaskiewicz and Wasserman 1989, 1990, for illustrative applications 
of these models). 
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The sccond approach is older, and posits a variety of models designed 

lor the study of networks as stochastic processes, evolving either in dis
crete or continuous time. These models, some of which are described 
by Holland and Leinhardt (1977b, 1977c), Hallinan (1978), Wasserman 
(1978, 1979, 1980), Runger and Wasserman (1979), Galaskiewicz and 
Wasserman (1981), and Mayer (1984), can be used to study how sim
ple network characteristics, such as the dyad census and the indegrees, 
change over time. Most of them are Markov in nature, in either dis
crete or continuous time. The details of modeling social and behavioral 
science processes longitudinally with Markov models when only discrete 
observations on the process are available (as is usually the case with 
network data) bave been spelled out in detail by Singer and Spilerman 
(1974, 1976, 1977, 1978). 

The study of longitudinal social network data is not new; many re
searchers gathered such data, but adequate models for their analysis 
were not available until the late 1950's. The earliest models, which as
sumed that changes in network structure occurred at discrete time points 
(as opposed to a continuously changing process), appeared about the 
same time as the classic (and revolutionary) work of Bush and Mosteller 
(1955), Blumen, Kogan, and McCarthy (1955), and Kemeny and Snell 
(1960, 1962) on the use of discrete-time stochastic processes in the social 
and behavioral sciences (see also Coleman 1964, 1981). Early models 
were presented by Katz and Proctor (1959), Rainio (1966), S0rensen and 
Hallinan (1976), and especially Holland and Leinhardt (1977b, 1977c). 
Many of these models were reviewed by Wasserman (1978), and the 
framework presented by Holland and Leinhardt generalized by Wasser
man (1979, 1980). Applications are numerous; in particular, extensive 
longitudinal analyses of the friendship data of Taba (1955), the fraternity 
data of Nordlie (1958) and Newcomb (1961), and the monastery data of 
Sampson (1968) can be found in the literature. 

Other researchers have studied social networks evolving or disintegrat
ing over time, but have not employed sophisticated statistical models. 
For example, Tutzauer (1985) uses graph theoretic notions to study how 
a network changes over time, specifically degenerating into a number of 
disconnected components. de Sola Pool and Kochen (1978) give a wide
ranging overview of network analysis, including a detailed study of the 
number of acquaintances that arise over time in a large network. They 
also propose mathematical models for this number, using the binomial 
distribution and Monte Carlo simulations of this acquaintance process. 
Such studies are common when studying the small world problem (see 
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Hunter and Shotland 1974; Lundberg 1975; and especially Milgram 
1967, and Travers and Milgram 1969). 

Doreian (1979a) examines the Davis, Gardner, and Gardner (1941) 
data set, which gives the social events attended by g= 18 women in the 
Southern United States. The 14 events are arranged as rows of an actors 
x events attendance matrix (see Breiger 1974) chronologically, so that 
one could analyze this matrix using first the first column, theu the first 
two, then the first three columns, and so forth, in order to give these data 
a longitudinal perspective. Doreian's analysis is the first longitudinal 
analysis of these data, and gives a dynamic perspective to these data 
not present in the analyses of Homans (1950), Breiger, Boorman, and 
Arabie (1975), White, Boorman, and Breiger (1976), Bonacich (1978), 
and Doreian (1979b). Doreian (see also Doreian 1988a) uses the graph 
theoretic method of q-connectivity (Atkin 1974, 1976, 1977) to analyze 
the sociomatrices that can be generated from these data. 

An entirely different approach to longitudinal network analysis can be 
found in the work of Delany (1988). Delany models the allocation of 
scarce resources, especially jobs among individual actors, using computer 
simulations. 

Research on the diffusion of innovations among the actors in a small, 
closed set has frequently utilized stochastic models to study how such 
innovations percolate through network structures. Rogers (1979) gives 
a thorough overview of such models and studies. Rapoport (1953) and 
Coleman, Katz, and Menzel (1957) have made important contributions 
to such modeling, and we refer the interested reader to reviews of this 
research in Kemeny and Snell (1962), Bartholomew (1967), and Coleman 
(1964). 
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17 
Future Directions 

We conclude this book by speculating a bit about the future of social 

network methodology. The following comments include observations 

about gaps in current network methods and "hot" trends that we think 

are likely to continue. We also include some wishful thinking about the 

directions in which we would like to see network methodology develop. 

17.1 Statistical Models 
We believe that statistical models will be a major focus for continued 

development and expansion of network methods. Clearly scientific un

derstanding is advanced when we can test propositions about network 

properties rather than simply relying on descriptive statements. Great 

steps have been made in statistical models for dyads (including PI and 

its relatives for valued relations, multiple relations, and for networks in

cluding actor attributes). We expect that further development of Markov 

graph models, logistic regressions, and so on will make statistical models 

more useful. Such models avoid the assumptions of dyadic independence, 
and thus promise to be more "realistic" than models of social networks 

that assume dyadic independence. 

These future developments make use of very important research by 

Frank and Strauss (1986) and Strauss and Ikeda (1990) on Markov 

random graphs. Specifically, one can postulate statistical models for 

social networks which do not assume dyads are independent ; in fact, 

the dependence structure of these models can be qui te complicated. 
However, fitting them exactly is quite tedious computationally, unless 

one relies on the approximations descrihed by Strauss and Ikeda, which 

allow one to calculate approximate maximum likelihood estimates of 
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model parameters using logistic regression. These models, because of 
their generality and realism, have tremendous potential, which has yet to 
be realized. 

We also expect that many of the currently descriptive methods (central
ities, cohesive subgroups, positions, and relational algebras) will develop 
statistical counterparts. For example, current centrality analyses result 
in the assignment of a centrality score to each actor (for example, actor 
degree, closeness, or betweenness centrality) but provide no assessment 
of whether the value is statistically large (Faust and Wasserman 1992). 
Thus, one cannot answer such questions as, "Is actor i more central 
than actor j?" with a specifiable degree of certainty. Similarly, graph 
centralization methods calculate indices of how centralized a network lS, 
but do not answer the question of whether or not a network is more 
centralized than one would expect given the density, distribution of actor 
indegrees and outdegrees, or the diameter of the graph. 

In the same vein, a cohesive subgroup analysis results in a list of 
subsets of actors who meet a particular subgroup definition (for example 
a clique, n-clique, or k-plex) but provide no assessment of whether the 
subgroup is statistically more cohesive than would be expected by chance. 
An exception to the above statement is Alba's (1973) model for evaluating 
whether or not a given cohesive subgroup is more cohesive than expected 
given the number of nodes and lines in a graph. However, this model 
is (prObably) not appropriate for assessing cohesive subgroups based 
on other definitions (for example, whether or not n-clique members are 
relatively closer to each other in a graph theoretic sense than they are to 
non-members). 

Positional analysis ideas and techniques (such as structural equivalence, 
regular equivalence, and so on) result in the assignment of each actor 
to an equivalence class based on a particular equivalence definition, 
but there is no assessment of the appropriateness of the assignments. 
Goodness-of-fit statistics for structural equivalence blockmodels allow 
one to assess, a posteriori, whether a hypothesized model provides an 
adequate representation of the data (Arabie, Boorman, and Levitt 1978; 
Carrington, Heil, and Berkowitz 1979/80; Hubert and Baker 1978). 
Stochastic a priori blockmodels allow one to evaluate a partition of 
actors into classes specified ahead of time (Anderson, Wasserman, and 
Faust 1992; Fienberg and Wasserman 1981a; Holland, Laskey, and 
Leinhardt 1983; Wasserman and Anderson 1987). However, similar 
stochastic models do not exist for other equivalences, such as regular 
equivalences and ego algebra equivalence. 
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Algebraic models are primarily descriptive, but statistical versions of 
relational algebras and of local role algebras are beginning to be devel
oped (Pattison and Wasserman 1993). Statistical versions of algebraic 
models should allow one to assess the fit of a given algebra, and to 
study statistically the associations among primitive and compound rela
tions. The equivalences and inclusions among a set of relations measured 
on a specific network is one of the most important issues in multirela
tional studies, and a statistical approach to this problem should be quite 
welcome. 

Such statistical approaches should be developed, and should become 
an integral part of any social network analysis. 

17.2 Generalizing to New Kinds of Data 

Another direction for future development is the extension of current 
methods to a wider range of network data. For the most part, social 
network methods have been developed to study one-mode networks with 
a single, usually dichotomous and nondirectional relation. Methods 
designed for these limited data can then (sometimes) be generalized to 
directional, valued, or multirelational networks, and less frequently to 
two-mode networks. By and large, it is rare for methods to be developed 
initially and explicitly for valued · relations, two-mode networks, and 
especially multiple and longitudinal relations and ego-centered networks. 

Centrality and prestige measures are well understood for dichotomous, 
nondirectional relations and for dichotomous, directional relations. Re
cently, centrality measures have been proposed for valued relations (Free
man, Borgatti, and White 1991). However, centrality and centralization 
measures for multiple relations have not been developed, nor have mea
sures of centrality and centralization for two-mode networks. 

There are some cohesive subgroup models for valued relations (Dor
eian 1969; Peay 1974; Freeman 1992b; Sailer and Gaulin 1984) and for 
directional relations (Peay 1975b). Some models can potentially be ex
panded to study cohesive subgroups in two-mode networks. For example, 
Alba and Kadushin's (1976) research on intersecting social circles, Free
man and White's (1993) description of Galois lattices, and Bonacich's 
(1972a) work on overlapping subgroups can be extended to two-mode 
networks. However, cohesive subgroup ideas have not been developed 
for multiple relations. 

The definitions of equivalences (including structural, automorphic, reg
ular, ego algebra, and so on) are well-understood for dichotomous, di-
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rcctional and nondirectional relations and for multi relational networks. 
It is not always obvious how to both define and measure equivalences 
for valued relations. Borgatti and Everett (1992b) discuss how to extend 

regular equivalence to two-mode networks. 
These examples suggest that considerable work still must be done to 

extend current network methods to a wider range of kinds of network 
data. However, we do not expect that the most fruitful developments 
in descriptive techniques will be the continued addition of yet another 
centrality measure or yet another subgroup definition or yet another 
definition of equivalence. Rather, we expect that careful assessment of the 
usefulness of current methods in substantive and theoretical applications 

will be helpful in determining when, and under what conditions, each 
method is useful (perhaps in conjunction with statistical assumptions). 
Considerable work also needs to be done on measurement properties 
(such as sampling variability) of the current measures. 

17.2.1 Multiple Relations 
One area where there is clear need for continued work is developing 

methods to study multiple relations. Many standard network analysis 
procedures do not (currently) extend well to multiple relations (for ex
ample, centralities and cohesive subgroups). Some methods have been 
developed specifically for multiple relations. For example, relational alge
bras are defined for multiple relations (Boorman and White 1976; Boyd 
1990; Pattison 1993) as are some statistical models (Fienberg, Meyer, and 
Wasserman 1985; Wasserman 1987; Wasserman, Faust, and Galaskie
wicz 1990). However, good measures of the association between relations, 

or of multi relational properties (such as multiplexity and exchange), have 
yet to be developed. Developments in the merger of relational algebras 
with statistical methods pmmise to make major advances in this area. 

17.2.2 Dynamic and Longitudinal Network Models 

Network analysis and network models have often been criticized for 
being static. Although much work has been done on longitudinal mod
els, applications of this methodology are sorely lacking. Models are 
quite complicated, and often require continuous records of network 
changes, which are often hard to collect. Wasserman (1978) reviews some 
older approaches, while newer methods are discussed by Wasserman and 
Iacobucci (1988), Iacobucci (1989, 1990), and Holland and Leinhardt 
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(1981). Good, easy-to-use methods for longitudinal network data would 
be an important addition to the literature. 

17.2.3 Ego-centered Networks 

An active area of current research in social network methodology is 
development of methods for measuring and analyzing properties of local 
or ego-centered networks. Although ego-centered networks are limited, 
this approach is likely to remain popular because of the relative ease of 
collecting ego-centered as compared to collecting full network data. In 
addition, the standardization of questionnaire formats for collecting ego
centered networks (as used in the General Social Survey, Burt, Marsden, 
and Rossi 1985) will make this form of data collection more widespread. 

The applications of ego-centered networks are huge - from transmis
sion of disease (Morris 1989, 1990, 1993) to studies of social support 
(Wellman 1979, 1988b, 1992b, 1993) to discussion networks (Marsden 
1987, 1988) and many others. Due to the popularity of this paradigm, 
we expect such networks to become increasingly important. 

When theoretical propositions are stated at the level of the individ
ual, ego-centered networks might be appropriate for estimating network 
properties, without the cost of collecting full network data. Yet work 
needs to be done on how to measure important properties of the structure 
of ego-centered networks (Walker 1991), as well as on global models for 
entire populations (Pattison and Wasserman 1993). 

17.3 Data Collection 

The quality of generalizations about social networks is limited in part 
by the quality of the data on which 'the generalizations are based. AI
tbough some work has been done on the measurement error of network 
data (Holland and Leinhardt 1973) and the "accuracy" of network data 
collected through verbal reports (Bernard, Killwoth, Kronenfeld, and 
Sailer 1985; Freeman and Romney 1987; Freeman, Romney, and Free
man 1987; Romney and Faust 1982) considerably less is known about 
the reliability and validity of network data (Marsden 1990b). We need 
a better understanding of the properties of different questions that are 
used to elicit network members from respondents, and of the influence 
of different question response formats (for example ratings versus full 
rank orders). More work needs to be done on developing procedures for 
collecting observational network data. 
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17.4 Sampling 

Collecting network data on entire networks. where information is gath
ered on all actors, and ties are measured for all pairs of actors. requires 
a great deal of time and effort, especially when networks are large. It is 
thus important to be able to estimate network properties (such as net
work size, density, actor centralities, network centralization, tendencies 
for reciprocity or transitivity, and presence of subgroups) from sam
ples. First steps have been taken by Erickson (Erickson and Nosanchuk 
1983; Erickson, Nosanchuk, and Lee 1981), Granovetter (1977a), and the 
important work of Frank (1971, 1978b, 1981, 1988). 

Considerable work remains in developing good techniques for net
work sampling and good measures of sampling variability for network 
concepts, especially for ego-centered and very large networks. 

We also expect tbat techniques designed to sample networks will be
come quite useful for estimating "non-network" phenomena. For exam
ple, Bernard, Johnsen, and Killworth (1989), Klovdahl (1985, 1989), and 
recent unpublished research by Frank and Snijders have used network 
sampling methods to estimate the size of small populations (such as 
the number of fatalities in the Mexico City earthquake, the number of 
HIV-positives in a community, or the number of heroin users in a city). 

17.5 General Propositions about Structure 

One area of network analysis that needs more work is development of 
general propositions about the structure of social networks based on 
replication across a large number of networks. One can think of any 
number of such propositions that cannot be adequately tested without a 
large sample of networks. For example: Are relations of authority more 
(or less) likely to be transitive than relations of affection? Are communi
ties better characterized as collections of non-overlapping subgroups or 
as center-periphery structures? Are more centralized organizations more 
efficient? Such propositions are stated at the level of the network, and 
cannot be tested by simply studying single communities or networks as 
"case studies," or using samples of ego-centered networks. 

The now classic series of studies by Davis, Holland, and Leinhardt 
investigated hypothesized properties of networks, such as balance, clus
terability, and transitivity to see whether or not these properties tended to 
hold in a sample of 384 soeiomatrices (Davis 1979; Davis and Leinhardt 
1972; Holland and Leinhardt 1979). More recent examples of studies in-
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corporating replication across a number of independent networks include 
Bernard, Killworth and Sailer's research on informant accuracy (reviewed 
in Bernard, Killworth, Kronenfeld, and Sailer 1985) and Freeman's work 
of appropriate models of the notion of social group (Freeman 1992a). 
These studies test general propositions about networks using the net
work as the unit of analysis. Ideally, we should have a well-documented 

bank of network data sets, akin to the sample of sociomatrices compiled 
by Davis, Holland, and Leinhardt, on which to test hypotheses abont 
networks. 

17.6 Computer Technology 

Major expansion in the use of network methods will likely result from 
continued advances in computer technology and software. In the last 
decade several fairly general purpose, widely available network analysis 
programs have been developed (STRUCTURE, GRADAP, UCINET, for 
example). This is quite an advance over the numerous special-purpose 
routines of earlier years ! Greater availability of software for fitting a 
range of statistical models (inclnding Pl and its relatives, correspondence 
analysis, social influence models, and Bernoulli graphs), and models for 
local role algebras and Galois lattices, for example, will lead to greater 
use of this sophisticated methodology. 

It is quite unfortunate that adequate statistical models are not included 
in any of the major social network analysis computer packages. Such 
inadequacies weaken the available packages. 

In addition, more sophisticated graphics capabilities should make ex
ploratory studies using visual displays of networks more fruitful. One 
.should be able to display actor attributes and nodal or subgroup proper
ties (such as expansiveness, centrality, or clique membership) along with 
the graph. 

17.7 Networks and Standard Social and Behavioral Science 

One area where a great deal of work remains is integrating network 
concepts and measures into more general social and behavioral science 
research. Although network is a catch phrase in many disciplines (from 
"networking" to "network corporations") the precise (and correct) use 

of network measures has not fully diffused to these areas. In part the 
usual institutional and intellectual barriers between disciplines inhibit 
diffusion. In addition, the (mis)perception of the technical sophistication 
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required to use network ideas may dissuade potential users. Again, we 
expect the greater availability of network analysis software, and greater 
ease of interface with standard statistical analysis software (such as SAS, 
SPSS, and SYSTAT) will make network ideas more easily exportable to 
the wider community. 

In addition) if and when greater consensus develops among network 
researchers about key network properties and measures, it should be 
easier to communicate appropriate use of network methods to non
network specialists. We hope that this book will help in this regard. 

In conclusion, we are excited about the future prospects for social 
network methods, and look forward to incorporating these advances into 
the second edition of this book. 



Appendix A 
Computer Programs 

This appendix lists and briefly describes the major computer programs 
that are available for social network analysis. We include a brief de
scription of each program's capabilities and the address of the program's 
distributor. Programs are continuously being revised and updated, so the 
reader should consult the sources listed for the most current information. 
Also, new programs are constantly being developed. 

Connections (the newsletter of the International Network for Social 
Network Analysis - INSNA) and Social Networks are good sources 
of information about new software for social network analysis. For 
information about membership in INSNA, contact 

Stephen Borgatti 
Department of Sociology 
University of South Carolina 
Columbia, SC 29208 
USA 

A.I GRADAP 

GRADAP: Graph Definition and Analysis Package (Sprenger and Stok
man 1989) was developed through collaboration of researchers from the 
Universities of Amsterdam, Groningen, Nijmegen, and Twente (Sprenger 
and Stokman 1989). GRADAP explicitly analyzes network data repre
sented as graphs, and includes a wide range of cohesive subgroup and 
centrality methods, and models for the distribution of in- and outdegrees. 
GRADAP runs on any DOS machine and is available from:  
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icc ProGAMMA 
Kraneweg 8 
9718 JP Groningen 
THE NETHERLANDS 

A.2 KrackPlot 

KrackPlot (Krackhardt, Lundberg, and O'Rourke 1993) draws and prints 
sociograms, with options for including node labels and specifying coordi
nates for points. KrackPlot runs on any DOS machine and is distribnted 
by: 

Stephen Borgatti 
Analytic Technologies 
306 S. Walker st. 
Columbia, SC 29205 
USA 

A.3 NEGOPY and FATCAT 

NEGOPY Network Analysis Program (Richards 1989a) analyzes sub
¥OlIps and individual roles in communication networks. FATCAT 
(Richards 1989b) allows one to analyze actor attributes along with net
work data. Although many early versions of NEGOPY were available 
for mainframe computers, the current version is available for the DOS 
machines. FATCAT is also available for DOS machines. Both NEGOPY 
and FATCAT are available from: 

William D. Richards 
Department of Communication 
Simon Fraser Universily 
Burnaby, BC V5K lEI 
CANADA 

A.4 SNAPS 

SNAPS (Social Network Analysis Procedures) for GAUSS (Friedkin 
1989) is a collection of network analysis subroutines for use with the DOS 
software package GAUSS. SNAPS includes subroutines for calculating 
many graph theoretic properties of graphs and nodes, and for litting 
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social influence models. SNAPS runs on DOS machines equipped with 
math coprocessors and is distributed by: 

APTECH Systems Inc. 
26250 196th Place S.E. 
Kent, WA 98042 
USA 

A.5 STRUCTURE 

STRUCTURE (Burt 1989, 1991) contains programs for structural equiv
alence, cohesive subgroups, centrality, and models of contagion and 
autonomy. The basic edition of STRUCTURE runs on DOS machines. 
A virtual memory version runs on 80386-87 or higher DOS computers. 
For information about STRUCTURE contact : 

Ronald Burt 
Department of Sociology 
University of Chicago 
Chicago, IL 60637 
USA 

A.6 UCINET 

UCINET (Borgatti, Everett, and Freeman 1991) contains network anal
ysis programs for centrality, cohesive subgroup, and position and role 
methods, along with a basic PI model and programs for multidhnensional 
scaling and hierarchical clustering. UCINET runs on DOS machines and 
is available from: 

Stephen Borgatti 
Analytic Technologies 
306 S. Walker St. 
Columbia, SC 29205 
USA 
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Data 

Following are the data sets analyzed in the book. Descriptions of these 
data sets can be found in Chapter 2. 

B.1 Krackhardt's High-tech Managers 

The three relations measured for Krackhardt's high-tech managers are 
advice (Table B.l), friendship (Table B.2), and reports to (Table B.3). 

Table B.4 lists four actor attribute variables for the 21 high-tech 
managers. The attributes are age (in years), tenure (length of time 
employed by the company, in years), level in the corporate hierarchy 
(coded 1,2,3), and department of the company (coded 1,2,3,4). 

»'2 Padgett's Florentine Families 

The two relations measured for Padgett's Florentine Families are business 
(Table B.5) and marriage (Table B.6). 

Table B.7 gives attribute variables for the families. Wealth is net 
wealth, measured in 1427, and is coded in thousands of lira. Number of 
Priorates is the number of seats ou the Civic Council held between 1282. 
and 1344. And Number of Ties is the number of business or marriage 
ties in the total network data set containing 116  families. 

B.3 Freeman's EIES Network 

The three relations measured for Freeman's EIES network are acquain
tanceship at time 1, January 1978, the start of the study (Table B.8); 
acquaintanceship at time 2, September 1978, the end of the study (Table 
B.9); and number of messages sent (Table B.I0). The acquaintanceship 
relations are valued with the scale: 4 = close personal friend; 3 = friend; 
2 = person I've met; 1 = person I've heard of, but not met; and 0 
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= unknown name or no reply. The set of 32 researchers included here 
are those that completed the study. The researchers analyzed here are 
numbered as follows in S. Freeman and L. Freenian (1979): 01, 02, 03, 
06, 08, 10, 11,  13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 32, 33, 35, 36, 
37, 38, 39, 40, 41, 42, 43, 44, 45. 

Table B.Il gives attribute variables for the researchers. The attributes 
are numbers of citations in 1978, discipline (coded as 1,2,3), and the 
discipline itself. 

B.4 Countries Trade Data 

The five relations measured for the countries trade network are trade of 
basic manufactured goods from the row country to the column country 
(Table B.12); food and live animals (Table B.13); crude materials, ex
cluding food (Table B.14); minerals, fuels, and otber petroleum products 
(Table B.15); and exchange of diplomats (Table B.16). The country codes 
can be found in Table B.12. 

There are four attribute variables for the countries trade network, 
as shown in Table B.17. The attributes are average annual population 
growth between 1970 and 1981, average GNP growth rate per capita 
between 1970 and 1981, secondary school enrollment ratio in 1980, 
and energy consumption per capita in 1980 (measured in kilo coal 
equivalents). 

B.5 Galaskiewicz's CEO and Clubs Network 

Table B.18 gives the affiliation network of the chief executive officers of 
26 corporations and their memberships/affiliations with 15  clubs, cultural 
boards, and corporate boards of directors. The set of 26 corporations 
were chosen from the complete set of 98 CEOs, and the set of 15 clubs 
were chosen from the complete set of 34 clubs. The cmporations analyzed 
here are numbered as follows in Galaskiewicz (1985): 6, 7, 13, 14, 17, 
18, 20, 21, 25, 26, 27, 28, 29, 32, 33, 35, 36, 42, 44, 46, 47, 48, 51, 52, 
54, 55. The clubs are numbered as follows: 1, 2, 3, 4, 5, 7, 14, 15, 16, 
17, 20, 28, 29, 30, 31. Clubs 1 and 2 are country clubs; clubs 3, 4, and 
5, are metropolitan clubs; clubs 7, 14, 15, 16, 17, and 20 are boards 
of FORTUNE 50/50 firms; and clubs 28, 29, 30, and 31 are boards of 
cultural and religious organizations. 

The co-membership matrix for CEOs and the event overlap matrix for 
clubs can be found in Chapter 8. 
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Table B.1. Advice relation between managers of Krackhardt's high-tech 
company 

Manager 

1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1  
2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
3 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1  
4 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1  
5 1 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1  
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
7 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1  
8 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1  
9 1 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 1  

10 1 1 1 1 1 0 0 1 0 0  1 0 1 0 1 1 1 1 1 1  0 
11 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
12 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  1 
13 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0  
14 0 1 0 0  0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0  1 
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 
16 1 1 0 0 0 0 0 0 0  1 0 0 0 0 0 0 0  1 0 0 0  
17 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
18 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0  1 1 1 
19 1 1 1 0 1 0 1 0 0 1 1 0 0  1 1 0 0  1 0 1 0 
20 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 1  
21 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 0 1 0 
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Table B.2. Friendship relation between managers of Krackhardt's 
high-tech company 

Manager 

1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0  
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1  
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0  
4 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0  
5 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1  
6 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

10 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0  
1 1  1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 
12 1 0 0 1 0 0 0 0 0 0  0 0 0 0 0 0 1 0 0 0 1 
13 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  
14 0 0  0 0 0 0 1 0 0 0 0 0 0 0  1 0 0 0 0 0 0  
15 1 0 1 0 1 1 0 0  1 0  1 0 0  1 0 0 0 0  1 0 0 
16 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
17 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1  
18 0 1 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  
19 1 1 1 0 1 0 0 0 0 0  1 1 0 1 1 0 0 0 0 1 0 
20 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0  
21 0 1 0 0 0 0 0 0 00 0 1 0 0 0 0 1 1 0 0 0 
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Table B.3. "Reports to" relation between managers of Krackhardt's 
high-tech company 

Manager 

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  

10 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 1 0 0 0  
1 1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
14 0 0 0 0 0 0  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
16 0 1 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
18  0 0 0 0 0 0 1 0 0 0  0 0 0 0 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
21  0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
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Table B.4. Attributes for Krackhardt's high-tech managers 

Manager Age Tenure Level Dept. 

1 33 9.333 3 4 
2 42 19.583 2 4 
3 40 12.750 3 2 
4 33 7.500 3 4 
5 32 3.333 3 2 
6 59 28.000 3 1 
7 55 30.000 1 0 
8 34 1 1.333 3 1 
9 62 5.417 3 2 

10 37 9.250 3 3 
1 1  46 27.000 3 3 
12 34 8.917 3 1 
1 3  48 0.250 3 2 
14 43 10.417 2 2 
15 40 8.417 3 2 
16 27 4.667 3 4 
1 7  30 12.417 3 1 
18 33 9.083 2 3 
1 9  32 4.833 3 2 
20 38 1 1 .667 3 2 
21 36 12.500 2 1 

Table B.5. Business relation between Florentine families 

Family 

Acciaiuoli 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Albizzi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Barbadori 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0  
Bischeri 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0  

Castellani 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0  
Ginori 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0  

Guadagoi 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0  
Lamberteschi 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0  

11edici 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 
Pazzi 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  

Peruzzi 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0  
Pucci 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Ridolfi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Salviati 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
Strozzi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tornabuooi 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
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Table B.6. Marital relation between Florentine families 

Family 

Acciaiuoli 
Albizzi 

Barbadori 
Bischeri 

Castellani 
Ginori 

Guadagni 
Lamberteschi 

Medici 
Pazzi 

Peruzzi 
Pucci 

Ridolfi 
Salviati 
Strozzi 

Tornahuoni 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0  
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 0 0 0 1 0 0 0  I 0 
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0  
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
1 1 1 0 0 0 0 0 0 0 0 0  I I  0 I 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1  
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0  
0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0  
0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0  

Table B.7. Attributes for Padgett's Florentine families 

Family Wealth Number of priorates Number of ties 

Acciaiuoli 10 53 2 
Albizzi 36 65 3 

Rarbadori 55 14 
Bischeri 44 12 9 

Castellani 20 22 18 
Ginori 32 9 

Guadagni 8 21 14 
Lamberteschi 42 0 14 

Medici 103 53 54 
Pazzi 48 7 

Peruzzi 49 42 32 
Pucci 3 0 I 

Ridolfi 27 38 4 
Salviati 10 35 5 
Strozzi 146 74 29 

Tornabuoni 48 7 
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Table B.8. Acquaintanceship at time 1 between Freeman's EIES 
researchers 

745 

Researcher 

1 0 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2 4 2  
2 4 0 2 0 1 0 3 3 4 1 3 0 2 2 2 3 2 0 1 2 3 2 0 2 0 0 2 1 2 3 4 4  
3 3 1 0 4 1 0 0 2 0 2 4 4 0 4 1 2 2 2 1 2 2 2 4 2 0 2 0 1 1 1 0 0 
4 2 0 2 0 2 0 0 2 2 2 2 2 2 2 2 1 0 0 4 2 2 2 2 2 2 0 2 2 2 0 2 0  
5 3 0 0 2 0 0 0 2 3 2 2 1 0 2 1 2 2 0 1 2 2 2 0 2 1 0 1 2 2 0 2 2  
6 3 0 0 0 0 0 0 2 0 0 0 0 0 2 0 1 0 0 2 0 1 0 0 0 0 0 2 0 2 0 2 0  
7 3 2 1 0 0 0 0 2 2 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0  
8 2 2 2 2 2 0 0 0 1 0 2 0 2 2 2 2 2 0 1 2 2 1 1 2 2 0 2 0 2 2 0 0  
9 3 4 0 0 2 0 0 2 0 0 1 0 2 1 0 0 0 0 0 0 1 3 0 0 0 0 3 0 0 0 0 4  

W 2 1 3 3 2 0 1 2 2 0 2 3 0 1 2 2 2 0 2 3 2 2 4 2 2 0 0 2 2 2 0 0 
1 1  1 3 2 1 1 0 0 3 1 1 0 0 0 2 1 2 2 0 1 2 2 2 1 2 2 0 2 1 1 0 1 0  
U 1 0 1 2 0 0 0 1 0 3 0 0 0 2 0 1 0 0 2 2 2 2 0 0 2 0 0 0 2 2 0 0 
13 3 3 1 2 1 0 3 3 2 1 1 0 0 1 1 1 0 0 2 1 1 1 1 0 0 2 4 2 2 2 3 3  
14 3 2 4 2  3 0 0  3 2 1 2 3  1 0 3 4 3 2 3 3 3 4 3 3 3 2 1 2 4  3 2 0 
15 3 2 2 3 1 0 1 2 2 2 2 1 0 3 0 2 2 0 2 1 2 1 2 2 2 0 0 0 3 0 2 0  
N 2 2 2 1 3 0 0 3 1 0 2 0 0 3 2 0 3 0 1 2 4 3 0 3 2 0 0 0 2 0 0 0  
17 3 2 3 0 2 0 0 3 2 1 2 0 0 3  2 2  0 0  1 3 3 3 0 2 0 0 0  1 1 0 2  0 
18 4 1 2 0 0 0 0 0 0 0 2 0 0 2 1 0 0 0 1 0 0 0 0 1 0 2 2 1 2 2 4 0  
W 2 0 2 4 1 0 0 2 0 2 0 2 0 2 2 1 0 0 0 1 2 3 2 2 2 2 0 2 2 1 2 0  
W 2 2 2 2 2 0 0 2 0 3 2 2 0 3 1 2 2 0 2 0 3 4 2 3 3 0 0 2 3 1 0 0 
21  3 3 2 2 2 0 0 3 1 2 3 2 0 2 3 4 3 0 2 2 0 3 2 2 3 0 1 2 2 1 0 1 
n 2 2 2 3 0 0 0 2 3 2 2 0 0 3 0 3 2 0 3 3 3 0 0 4 2 0 0 2 4 0 0 0  
n 2 0 4 3 0 0 0 0 0 4 0 1 0 2 1 1 0 0 2 2 2 1 0 1 2 0 0 1 2 0 0 0  
24 2 2  2 2 2 0 0 3 2 2  2 2 0  3 2 3 2 0 3 3 3 4  2 0 3  0 2 2 4 0 0 0  
� 2 2 2 2 1 0 0 2 0 3 2 2 0 3 2 3 0 0 2 4 3 3 3 4 0 0 0 1 0 0 0 0  
26 4 1 2 1 1 0 1 1 0  1 1 1 2 2  1 1 0 3  2 1 1 2 1 2 1 0 0 2 2 0 3  0 
27 2 2 1 2 1 0 0 2 2  1 1 0 4 1 1 1 1 0 1 1 1 0 0 0 0 0 0  0 0 2 0 0 
� 3 2 0 3 0 0 0 0 0 1 1 0 1 2 2 2 0 0 3 2 2 3 0 2 1 2 1 0 2 0 2 0  
� 2 2 2 2 2 0 0 2 0 2 0 2 0 3 2 2 0 2 2 2 2 4 2 3 0 2 2 2 0 2 2 0  
� 3 4 1 0 0 0 0 4 0 2 0 0 2 2 0 2 2 2 2 2 2 2 0 0 0 0 2 1 2 0 0 2  
3 1  4 4 2 2 2 2 1 2 2 0 2 0 2 2 2 1 2 3 2 0 1 2 2 2 0 2 2 2 2 2 0 0  
U 3 3 0 1 2 0 0 3 4 0 1 0 2 1 0 1 0 0 1 1 1 0 0 0 0 0 2 0 0 3 3 0  
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Table B.9. Acquaintanceship at time 2 between Freeman's EIES 
researchers 

Researcher 

I 0 4 2 2 2 2 2 3 3 2 3 2 3 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 3 2 4 3  
2 4 0 2 2 1 2 2 3 4 2 3 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 4  
3 3 1 0 4 1 0 0 2 0 2 4 4 0 4 1 2 2 2 1 2 2 2 4 2 0 2 0 1 1 1 0 0  
4 2 2 2 0 2 2 0 2 2 3 2 2 1 2 2 2 0 2 4 2 2 2 2 2 2 2 2 2 2 2 2 0  
5 3 0 0 2 0 0 0 2 3 2 2 1 0 2 1 2 2 0 1 2 2 2 0 2 1 0 1 2 2 0 2 2  
6 4 2 0 0 0 0 0 3 0 2 2 0 0 2 2 2 0 0 2 0 2 0 0 3 0 2 2 2 3 0 4 2  
7 3 2 1 0 0 0 0 2 2 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0  
8 3 2 2 2 2 2 1 0 1 2 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 1 2 2 2 4  
9 3 4 0 0 2 0 0 2 0 0 2 0 2 1 0 1 2 0 0 0 2 2 0 0 0 0 3 0 1 0 2 4  

10 3 0 2 3 2 0 1 2 1 0 2 3 2 1 2 2 2 2 2 4 2 2 4 2 2 0 2 2 3 2 2 1  
11 3 2 2 2 2 2 0 4 2 2 0 0 2 2 2 2 2 2 2 2 2 2 1 2 2 0 2 2 2 0 3 3  
12 2 0 1 2 0 0 1 1 0 3 0 0 0 2 1 1 0 0 2 3 2 1 1 1 2 0 0 1 0 1 2 2 
13 3 3 1 2 1 0 3 3 2 1 2 0 0 1 1 2 0 2 2 1 2 2 1 0 0 2 4 2 2 2 3 3  
14 3 2 4 3 3 0 0 3 0 2 2  3 2 0 3 4 4 2  3 3 3 4 3 3 3 2 2 3 4 3 3 2 
15 3 2 2 3 1 0 0 2 2 2 2 2 0 3 0 2 2 0 2 1 2 2 2 2 2 0 1 0 3 0 3 1 
16 2 2 2 2 3 2 0 3 1 2 2 0 0  3 2 0 2 0  2 2 4 3 0 2 2 2 1 1 2 0 2 2  
17 3 2 3 1 2 0 0 3 2 1 3 1 1 3 2 3 0 1 1 3 3 3 0 2 0 1 2 1 2 2 2 2  
1 8  4 2 2 0 0 0 1 2 0 0 2 0 1 2 0 0 0 0 0 0 0 0 0 0 0 2 2 0 2 2 4 1  
19 2 0 2 4 1 0 0 2 0 2 0 2 0 2 2 1 0 0 0 2 2 3 2 2 2 2 0 2 2 1 2 0 
20 2 2 2 2  2 0 0 2 0 3 2 2 0  3 1 2 2 0 2 0  3 4 2 3 3 0 0 2 3 1 0 0  
21 3 3 2 2 2 0 0 3 1 2 3 2 0 2 3 4 3 0 2 2 0 3 2 2 3 0 1 2 2 1 0 1 
II 2 2 2 3 0 0 0 2 3 2 2 0 0 3 2 3 2 0 3 3 3 0 0 4 2 0 0 2 4 0 0 2  
n 3 2 4 3 0 0 0 2 0 4 0 1 0 3 1 1 0 0 3 2 1 1 0 2 2 0 0 2 3 2 2 0  
� 3 2 2 2 3 2 0 3 2 2 3 2 2 3 2 3 2 2 2 3 3 4 2 0 3 0 2 3 3 2 2 2  
� 2 2 2 3 1 0 0 3 0 3 2 2 0 3 2 3 0 0 2 3 3 3 3 3 0 0 0 1 2 0 0 0  
26 4 1 2 1 1 0 1 1 0 1 1 1 2 2 1 1 0 3 2 1 1 2 1 2 1 0 0 2 2 0 3 0  
TI 3 2 2 2 2 2 0 3 3 2 2 0 4 1 2 2 2 2 2 1 2 2 1 2 0 0 0 0 2 2 2 2  
28 3 2 0 3 0 0 0  2 0 1 1 0 2 2 2 2 0 0  3 2 2 3 0 2 1 2 1 0 2 0  2 2 
� 3 2 2 3 2 2 0 3 0 3 2 3 2 4 3 2 2 2 2 3 2 4 2 4 0 2 2 2 0 2 3 2  
m 3 3 1 2 0 2 0 3 0 2 2 0 2 2 0 2 2 2 2 2 2 2 0 2 2 0 3 2 3 0 3 3  
31 4 4 2  2 2 3 2 2 2 2 3 2 3 2 3 2 2 3 2 2 2 2 2 2  2 2 2 2 3 2 0 4  
32 4 4 0 2 2 2 0 4 4 2 3 0 2 1 0 3 2 0 0 1 2 3 1 1 0 2 2 1 3 2 4 0 
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748 Data 

Table B.11. Attributes for Freeman's EIES researchers 

Researcher Original ID Citations Discipline code Discipline 

I 1 19 1 Sociology 
2 2 3 2 Anthropology 
3 3 170 4 Communication 
4 6 23 1 Sociology 
5 8 16  4 Psychology 
6 10 6 4 Psychology 
7 1 1  I 4 Psychology 
8 13 9 2 Anthropology 
9 14 6 2 Anthropology 

10 18 40 Sociology 
I I  19 1 5  Sociology 
12 20 54 Sociology 
13 21 4 2 Anthropology 
14 22 46 1 Sociology 
15 23 17 1 Sociology 
16 24 32 3 Statistics 
17 25 23 4 Psychology 
18 26 1 1 Sociology 
19 27 34 1 Sociology 
20 32 64 1 Sociology 
21 33 1 1  3 Statistics 
22 35 1 1  1 Sociology 
23 36 3 1  1 Sociology 
24 37 18 1 Sociology 
25 38 4 1 Sociology 
26 39 0 1 Sociology 
27 40 4 3 Mathematics 
28 41 56 1 Sociology 
29 42 1 2  1 Sociology 
30 43 2 2 Anthropology 
31 44 0 4 Psychology 
32 45 I 2 Anthropology 



B.5 Galaskiewicz's CEO and Clubs Network 749 

Table R12. Trade of basic manufactured goods between countries 

1 1 1 1 1 1 1 1 1  1 2 2 2  2 2 
Nation 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4  

1 Alg Algeria 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1  
2 Arg Argentina 1 0 1  1 0 1 0 0 1 0 1 1 1 0 0 0  1 1 1 0 1 0 1 0 
3 Bra Brazil 1 1 0 1  1 1 1 0 1  1 1 1 1 1 0 1  1 1 1 1 1 1 1 1 
4 Chi China 1 1 1 0 1 0 1  1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 
5 Cze Czechoslovakia 1 1 1 1 0 1  1 1 1 1 1 0 1 1 0 1  1 1 1 1 1 1 1 1 
6 Ecu Ecuador 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
7 Egy Egypt 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1  
8 Eth Ethiopia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 
9 Fin Finland 1 1 1 1 1 1 1 1 0 1  1 1 1 0 0 1 1 1 1 1 1 1 1 1 

10 Hon Honduras 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
1 1  Ind Indonesia 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 11 
12 Isr Israel 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1  
13 Jap Japan 1 1 1 1 1 1 1 1 1  1 1 1 0 1  1 1 1 1 1 1 1 1 1 1 
14 Lib Liberia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
15 Mad Madagascar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
16 NZ New Zealand 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1  
17 Pak Pakistan 0 0 0  1 1 0 0 0  1 0 1 0  1 1 0 1 0 1  1 1 1 1 1 0 
18 Spa Spain 1 1 1 1 1 1 1 0 1  1 1 1 1 1 1 1 1 0 1  1 1 1 1 1 
19  Swi Switzerland 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1  1 1 1 1 
20 Syr Syria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
21 Tai Thailand 0 0 1  1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 0 1  1 1 
22 UK United Kingdom 1 0 1 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1  1 
23 US United States 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1  
24 Yug Yugoslavia 1 1 0 1  1 0 1  1 1 0 1  1 1 0 0  1 1 1 1 1 1 1 1 0 



750 Data 

Table B.13. Trade of food and live animals between countries 

Nation 

Algeria 
Argentina 

Brazil 
China 

Czechoslovakia 
Ecuador 

Egypt 
Ethiopia 
Finland 

Honduras 
Indonesia 

Israel 
Japan 

Liberia 
Madagascar 

New Zealand 
Pakistan 

Spain 
Switzerland 

Syria 
Thailand 

United Kingdom 
United States 

Yugoslavia 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
1 0 1 0 1 1 1 0 1 0 1  1 1 0 0 1 1 1 1 1 1 0 1  1 
1 1 0 1  1 0 1 0 1 0 1 1 1 1 0 1  1 1 1 1 1 1 1 1  
1 0 0 0  1 0 1 0 1 0 1 0 1 1 0 1  1 1 1 1 1 1 1 0 
o 0 1 0 0 0  1 0 1 0 0 0  1 0 0 0 0 1 1 1 1 1 1 1 
o 1 1 0 1 0 0 0  1 0 0 0  1 0 0 1 0 1  1 0 0  1 1 1 
1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0  
0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0  
1 0 0 0  1 0 1 0 0 0  1 1 1 0 0 0 0 1 1 1 1 1 1 1 
o 0 0 0 1 0 1 0 1 0 0  1 1 0 0 0 0 1 1 1 0 1  1 1 
1 0 0  1 1 0 1 0 1 0 0 0  1 0 0 1  1 1 1 0 1  1 1 1 
o 1 1 0 0 0  1 0 1 0 0 0  1 0 0 1 0 1 1 0 1  1 1 1 
0 0 0  1 1 0 1 0 1  1 1 1 0 1  1 1 1 1 1 1 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0  
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0  
1 0 0 1 0 1 1 0 1  1 1 0 1 0 0 0  1 1 1 1 1 1 1 0  
1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0  
1 1 1 1 1 1 1 0 1  1 1 1 1 1 0 1 0 0 1  1 1 1 1 1  
1 1 1  1 1 0 1  1 1 0 1  1 1 1 1 1 1 1 0 1  1 1 1 1 
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
1 0 0 1 1  1 1 0 1 0 1  1 1 0 1  1 1 1 1 1 0 1  1 0 
1 0 1  1 1 0 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 0  1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1  
1 0 1  1 1 0 1  0 1 0 0  1 1 0 0 0 0 1 1 1 0 1  1 0 



B.5 Galaskiewicz's CEO and Clubs Network 

Table B.14. Trade of crude materials, excluding food 

Nation 

Algeria 
Argentina 

Brazil 
China 

Czechoslovakia 
Ecuador 

Egypt 
Ethiopia 
Finland 

Honduras 
Indonesia 

Israel 
Japan 

Liberia 
Madagascar 

New Zealand 
Pakistan 

Spain 
Switzerland 

Syria 
Thailand 

United Kingdom 
United States 

Yugoslavia 

0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 
1 0 1 1 1  1 0 0 1 0 1 1 1 0 0 0  0 1 1 0 1 0 1 1 
1 1 0 1  1 1 1 0 1 0 1 1 1 0 1  1 1 1 1 0 1  1 1 1 
o 1 0 0 1 0 1  1 1 0 1 0 1 0 0 1  1 1 1 0 1  1 1 1 
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0  
1 0 0  1 1 0 0 0 1 0 1  1 1 0 0 0  1 1 1 0 1  1 1 1  
1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 1 0  
1 1 0 1  1 1 1 0 0 0  1 1 1 0 0 1  1 1 1 0 1  1 1 1 
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1  
0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1  
0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1  
1 1 1 1 1 1 1 1 1 0 1  1 0 0 0 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 1  
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0  
1 1 0 1  1 0 1 0 1 0 1 1 1 0 0 0  1 1 1 1 1 1 1 1 
0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 1 0  
1 1 1 1 0 1  1 0 1  1 1 1 1 0 0  1 1 0 1  1 1 1 1 1 
1 1 1 1 1 1 1 0 1 0 1 1 1 0 0  1 1 1 0 1  1 1 1 1 
1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1  
0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1  
1 0 1  1 1 1 1 1 1 0 1  1 1 1 0 1  1 1 1 1  1 0 1  1 
1 1 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1  
1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 
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7S2 Data 

Table B.IS. Trade of minerals. fuels. and other petroleum products 
between countries 

Nation 

Algeria 
Argentina 

Brazil 
China 

Czechoslovakia 
Ecuador 

Egypt 
Ethiopia 
Finland 

Honduras 
Indonesia 

Israel 
Japan 

Liberia 
Madagascar 

New Zealand 
Pakistan 

Spain 
Switzerland 

Syria 
Thailand 

United Kingdom 
United States 

Yugoslavia 

0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0  
1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 
0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0  
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  
1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0  1 0 1 1 1 
0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0  
1 0 1  1 1 1 1 1 1 0 1 1 0 1  0 1 1 1 1  1 1 0 1  1 
1 1 1 1 0 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1  
1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0  



B.5 Galaskiewicz's CEO and Clubs Network 

Table B.16. Exchange of diplomats between countries 

Nation 

Algeria 
Argentina 

Brazil 
China 

Czechoslovakia 
Ecuador 

Egypt 
Ethiopia 
Finland 

Honduras 
Indonesia 

Israel 
Japan 

Liberia 
Madagascar 

New Zealand 
Pakistan 

Spain 
Switzerland 

Syria 
Thailand 

United Kingdom 
United States 

Yugoslavia 

0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1  
1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1  
1 1 0 1  1 1 1 0 1  1 1 1 1 0 0 0  1 1 1 1 1 1 1 1  
1 1 1 0 1 1 1 1 1 0 0 0  1 1 1 1 1 1 1  1 1 1 1 1 
1 1 1 1 0 1  1 0 1 0 1 0 1 0 0 0 0  1 1 1 0 1  1 1 
o 1 1 1 1 0 1 0 0 1 0 1 1 0 0 0  0 1 1 0 0 1 1 1 
o 1 1 1 1 1 0 1  1 0 1  1 1 1 0 0 1 1 1 0 1  1 1 1  
1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 1  
o 1 1 1 1 0 1 0 0 0  1 1 1 0 0 0  0 1 1 0 0 1 1 1 
0 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0  
1 1 1 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1  
0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0  
1 1 1 1 1 1 1 1 1 1 1 1 0 1  1 1 1 1 1 1 1 1 1 1  
1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0  
1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0  
0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 1  
1 1 1 1 1 0 1 0 0 0  1 0 1 0 0 0  0 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 0 1  1 1 0 1 0 0 0  1 0 1  1 1 1  1 1 
1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 1 1 1 1  
1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 1 1 1  
0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1  
1 0 1  1 1 1 1 1 1 1 1 1 1 1 0 1  1 1 1 1 1 0 1  1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1  
1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0  1 1 1 1 1 1 1 0 
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Table B. 17. Attributes for countries trade network 

Country Pop. growth GNP Schools Energy 

Algeria 3.3 3.0 33 814 
Argentina 1.6 0.3 56 2161 

Brazil 2.1 5.3 32 1101 
China 1.5 43 618 

Czechoslovakia 0.7 44 6847 
Ecuador 3.4 4.7 40 692 

Egypt 2.5 5.6 52 595 
Ethiopia 2.0 0.6 1 24 
Finland 0.4 2.6 90 6351 

Honduras 3.4 0.7 30 292 
Indonesia 2.3 5.9 28 266 

Israel 2.6 1.2 72 2813 
Japan 1.1 3.4 91 4649 

Liberia 3.5 -0.4 20 502 
Madagascar 2.6 -1.9 12 74 

New Zealand 1.5 0.3 81 4816 
Pakistan 3.0 2.1 15 224 

Spain 1.1  2.3 87 2944 
Switzerland 0.1 0.7 55 5223 

Syria 3.7 5.5 46 964 
Thailand 2.5 4.2 29 370 

United Kmgdom 0.1 1.6 82 5363 
United States 1.0 2.0 97 11626 

Yugoslavia 0.9 4.7 83 2402 
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Table B.18. CEOs and clubs affiliation network matrix 

Club 
1 1 1 1 1 

CEO 2 3 4 5 6 7 8 9 0 1 2 3 4 5 

1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 
2 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 
3 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 
4 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 
5 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 
6 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 
7 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 
8 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 
9 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 

10 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 
1 1  0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 
12 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 
13 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 
14 0 1 1 1 0 0 0 0 0 0 1 1 1 0 1 
15 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 
16 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 
17 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 
18 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 
19 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 
20 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 
21 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 
22 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 
23 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 
24 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 
23 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 
26 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 
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JV' = {nl,n2, " " ng} 

!!t 
g 
X 

i ---> j 
I 
XP 

Multiple Relations: 
R 

!!t, 
Sf, 
L, 
X, 
Xijr 

Graph Properties: 

Sf = {lb 12, . • •  , Id 
lk = (n;, nj) 
L 
<§(%, Sf) 

d(n;) 
11 

the set of actors in a network or the set of 
nodes in a graph 
a single relation 
the number of actors or nodes in % 
the sociomatrix for relation !!t 
elements of the sociomatrix X; value of the tie 
from actor i to actor j 
a tie from actor i to actor j 
an incidence matrix 
the pth power of a sociomatrix 

the number of relations 
the rth relation, r = 1,2, . . .  , R 

the set of lines for the rth relation 
the number of lines in Sf, 
the sociomatrix for relation !!t, 
elements of the sociomatrix X, 

the set of lines 
the line between nodes i and j 
the number of lines in Sf 
a graph consisting of node set % and line 
set Sf 
the degree of node i; d(n;) = x+; = X;+ 
the density of a graph 
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d(i,j) the geodesic distance between node i and 
node j 

Directed Graph Properties: 
�d(.;V,.P) a directed graph with nodes .;V and arcs .P 
lk =< ni, nj > the arc from node i to node j 
dI(n,) the indegree of node i; equals x+, 
do(n,) the outdegree of node i; equals x,+ 

Signed and Valued Graphs : 
�±(.;V, .P, 'i'") or �± a signed graph with nodes .;V, lines .P, and 

�d±(.;V,.P, 'i'") or �d± 
�v(.;V, .P, 'i'") or �v 

Two Mode Networks: 
.;V = {n" n2, . . .  , ng} 
..It = {m" m2, . . .  , md 
h 
f£.KA 
f£A.K 
X.K..I! 

Centrality and Prestige: 
CA(n,) 
PA("') 
C�(n,) 

CD(n,) 
Cdn,) 
CB(n,) 
CI(n,) 
CD(n,) 

signs or values for the lines, 'i'" 
a signed directed graph 
a valued graph with nodes .;V, lines .P, and 
values, 'i'" 
the value or sign for line lk 

the first set of actors 
the second set of actors 
the number of actors in ..It 
a relation from actors in .;V to actors in ..It 
a relation from actors in ..It to actors in .;V 
the sociomatrix for a relation from actors in .;V 
to actors in ..It 
the sociomatrix for a relation from actors in ..It 
to actors in .;V 

actor centrality index of type A for actor i 
actor prestige index of type A for actor i 
standardized actor-level centrality index of 
type A for actor i 
standardized actor-level prestige index of 
type A for actor i 

largest value of the particular actor centrality 
index for all g actors in .;V 
actor-level degree centrality index 
actor-level closeness centrality index 
actor-level betweeness centrality index 
actor-level information centrality index 
actor-level degree centrality index 
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group-level centralization index of type A ;  
A = D, C, B,I 
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S2 n variance of the standardized degrees ; index of 
centralization 

s' c 

S2 1 

Pn(n;) 
Pp(n,) 
PR(n,) 

Cohesive Subgroups: 
cg, 
.IV, 
g, 
fE, 
d,(i) 
A(i,j) 

variance of the standardized closeness 
centralities; index of centralization 
variance of the standardized information 
centralities; index of centralization 
actor-level degree prestige index 
actor-level proximity prestige index 
actor-level rank prestige index 

a subgraph 
the set of nodes in subgraph cg, 
the number of nodes in subgraph cg, 
the set of lines in subgraph cg, 
the degree of node i in subgraph cg, 
the line connectivity of nodes i and j 

Affiliations and Overlapping Subgroups : 

ff = (d,@J) a hypergraph with point set d = {a[ ,a2, . . .  ,ag}, 

x.J{ = {x;;1} 

and edge set @J = {Bj,B2, , , . , Bh} 
the sociomatrix for an affiliation network 
sociomatrx of co-membership frequencies for 
actors in .IV 
sociomatrix of event overlap frequencies for 
events in .4t 

Structural Equivalence and Blockmodels : 

!?4k an equivalence class or position 
gk the number of actors in equivalence class k 
B = {bkl,} an image matrix for relation !Z', 
B the number of positions (equivalence classes) 
Ilkl' the density of block bkl, 
d'j the Euclidean distance between sociomatrix 

entries for actors i and j 
the correlation between sociomatrix entries for 
actors i and j 

Relational Algebras: 
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U, T, V, . . .  
iUj 
o 
T o U  
i(T U)j 

Rs 
!!2 

Positions and Roles: 

<Po (i) = 1'4(0)k 

I'4(EA)k 

capital letters refer to relations 
a tie from actor i to actor j on relation U 
the operation of composition 
the composition of relations T and U 
a tie from actor i to actor j on the compound 
relation TU 
a set of distinct primitive and compound 
relations 
the role structure for a network with actor 
set .AI' 
the number of relations in Y 
a partition (or reduction) of Y 
the number of elements in !!2 

the joint homomorphic reduction of Y.¥ and 
YJ/ 
the number of classes in !!2� 

the common structure semigroup for Y JV and 
[f'J/ 
the number of classes in !!2��( 

a measure of dissimilarity of role structures 
Y JV and Y J/ based on the joint 
homomorphic reduction 
a measure of similarity of role structures Y JV 
and Sf'dI based on hoth the joint homomorphic 
reduction and the common structure 
semigroup 

assignment of actor i to equivalence class l'4(o)k 
based on the equivalence definition "." 
an equivalence class based on structural 
equivalence 
an equivalence class based on automorphic 
equivalence 
an equivalence class based on regular 
equivalence 
an equivalence class based on local role 
equivalence 
an equivalence class based on ego algebra 
equivalence 
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Mij 
D(.9'7,9'j) 
oij 

Dyads and Reciprocity : 
Dij = (X'j, Xj,) 

{Dij} 
< M, A, N > 

Triads and Transitivity: 
P-O-X 

P-O-Q 

+; 
PC; TC 

a similarity measure of regular equivalence 
a dissimilarity measure of role equivalence 
a dissimilarity measure of ego algebra 
equivalence 
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the dyad, or 2-subgraph, consisting of actors i 
and j, for i i= j 
collection of dyads 
the dyad census; numbers of mutual, 
asymmetric, and null dyads 
indices of mutuality 

two actors and an "object," about which 
opinions are expressed 
a triple of three actors; P and 0 have opinions 
about Q 
positive and negative signs for a line 
the numbers of positive and total (semi)cycles 
in a (di)graph 
the triad, or 3-subgraph, involving n" nj, and 
nk, i < j < k 
the set of all triads 

T = { Tu ; u  = 1,2, . . .  , 16} the sixteen COUllt triad census 
I = (lu; u = 1 , 2, . . .  , 16) a linear combination vector of the triad census 
PT 

�T 

« I) 

Distributions: 
P(e) 
S 
Gd(.;V) 

u 
P,/= P(X'j = 1)  

the mean of the triad census; the vector of 
expected values of the Tu 
the 16 x 16 covariance matrix of the triad 
census 
a test statistic to test specific configurations 
derived from the triad census 
test statistics for intransitivity and transitivity 

the probability that the event "e" occurs 
the sample space of a random variable 
the set of all possible directed graphs with g 

nodes 
the uniform random digraph distribution 
the probability that a specific arc is present in 
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a digraph; can be assumed constant over all 
arcs, and equal to P 

B the Bernoulli random digraph distribution 
� the maximum likelihood estimate of the 

UlMAN 

PI and Relatives : 

PI 

y 

w 

w 

Goodness-of-fit: 

G2 
!!.G2 
dt; !!.dt 
Obi 

Ob2 

unknown parameter "." 
the conditional uniform distribution which 
gives equal probability to all digraphs 
with L arcs and zero probability to all 
digraphs without x++ arcs 
the conditional uniform distribution for 
random directed graphs that conditions on 
a fixed set of outdegrees: 

Xl+ = Xl+, X2+ = X2+, . . .  , Xg+ = Xg+ 
the conditional uniform distribution that 
conditions on a fixed dyad census: 
M = m,A = a, and N = n dyads 
the conditional uniform distribution that 
conditions on the indegrees, the outdegrees, 
and the number of mutual dyads 

Holland & Leinhardt's model for a single, 
directional relation; contains parameters 
A, e, �, p, and (�p) 
a four dimensional array (of size g x g x 2 x 2) 
derived from X 
a sample realization of Y 
a sample realization of the random 
sociomatrix X 
a Y array aggregated over subgroupings 
defined by actor attribute variables 
a sample realization of the random W array 

likelihood-ratio test statistic 
conditional likelihood-ratio test statistic 
degrees-of-freedom 
simple goodness-of-fit index 
Carrington-Heil-Berkowitz goodness-of-fit 
index 
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xil� = h¢(;)¢(j), 
lix! 

Stochastic Blockmodels: 
X= {xij,} 
p(x) 

Miscellaneous: 
o 
® 

blockmodel predicted value 
goodness-of-fit index comparing data to 
predicted values 
goodness-of-fit index; match coefficient 
goodness-of-fit index; matrix correlation 

super-sociomatrix of size g x g x r 
the probability distribution for the 
super-sociomatrix; also, a stochastic 
blockmodel 

a "tangential" section of the book 
a "difficult" section of the book 
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